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Abstract 

A novel AXI interconnect-based Network-on-Chip (NoC) architecture is presented in this 

research. The purpose of the architecture is to make System-on-Chip (SoC) designs more efficient 

by reducing latency and improving throughput. Because of its high performance and bandwidth 

capabilities, the Advanced eXtensible Interface (AXI), which is a component of the Advanced 

Microcontroller Bus Architecture (AMBA) of the ARM architecture, is used. This configuration 

makes it possible to communicate effectively inside the chip. The proposed architecture overcomes 

the scalability limits that are inherent in conventional bus systems. This is accomplished by 

integrating AXI with NoC principles, which enables more efficient data transmission over a greater 

number of linked modules. By introducing an effective routing system and a network interface that 

has been improved, This research work enables packet transfer to occur without interruption. A 

2x2 mesh topology is used to simulate the proposed architecture, and an XY routing algorithm is 

included into the simulation in order to guarantee that deadlock and livelock-free operations are 

carried out. This highlights the potential of the proposed architecture in high-performance 

computing applications that require rapid data exchange and minimal response times. The 

simulation results demonstrate significant improvements over traditional interconnect approaches, 

yielding a lower latency of 0.99 microseconds and a higher throughput of 4.363 flits per cycle 

which demonstrates the potential of the proposed architecture. 

Keywords: AXI Interconnect, NoC, SoC, Router, Mesh Topology. 

1. Introduction  

The AXI interface is essential in SoC architectures for enabling communication among different 

system components, like processors, memory modules, peripherals, and other IP blocks [1]. It is 

based on the ARM Advanced Microcontroller Bus Architecture (AMBA) protocol, ensuring 

compatibility and interoperability across various System on Chip (SoC) setups [2]. The AXI 

connection is known for its scalability, being able to adapt to a variety of system configurations to 

fulfill the specific requirements of each SoC design [3]. It improves resource consumption and 

promotes system efficiency, whether handling simple single-master setups or overseeing intricate 

multi-layered systems. This versatility also applies to its capacity to handle many sorts of 

transactions, including read, write, and atomic operations, to facilitate the smooth integration of 

IP blocks with different data processing needs. The AXI connection has strong arbitration features 

to efficiently handle simultaneous access requests from several masters in the SoC context. The 

connection guarantees fair resource allocation by using round-robin scheduling and priority-based 

arbitration procedures, which help prevent bottlenecks and contention concerns. This sturdy 
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construction improves system performance and creates a favorable environment for developing 

intricate embedded systems for many applications.  

 

Interconnects play a crucial function as the foundation of effective communication among nodes 

in distributed systems inside NoC designs [4]. They easily connect processor parts, memory units, 

and other IP blocks spread across the network, serving as the basis for integrated NoC systems. 

Also, follow defined protocols and topologies based on network-on-chip design concepts, 

promoting interoperability and scalability in various NoC setups.  In NoC designs, interconnects 

are notable for their capacity to adapt to various system needs, supporting both homogeneous and 

heterogeneous node topologies. NoC interconnects boost routing efficiency and enhance overall 

network performance by coordinating processing units or IP blocks with various capabilities [5]. 

They are versatile in supporting many communication paradigms, such as packet-switched and 

circuit-switched architectures, to seamlessly integrate multiple processing units in the NoC 

ecosystem.  

 

NoC systems include sophisticated routing algorithms and flow management technologies to 

efficiently handle data traffic and reduce congestion. These interconnects use virtual channel 

allocation and quality-of-service (QoS) priority mechanisms to provide fair resource distribution 

and reduce performance issues. This sturdy construction improves network speed and creates a 

favorable environment for developing advanced, high-performance computing systems for many 

applications. Numerous obstacles have surfaced in the current interconnects of NoC designs, 

limiting the best possible system performance and scalability. An emerging problem is the growing 

intricacy and diversity of system designs, which put pressure on traditional connection methods. 

As Network-on-Chip (NoC) designs advance to include various processor elements, memory units, 

and specialized IP blocks, current interconnects often face challenges in establishing effective 

communication channels among these different components [6]. This complexity worsens routing 

inefficiencies, latency bottlenecks, and contention difficulties, which impede overall network 

speed and responsiveness.  

 

Another obstacle is the increasing need for bandwidth and energy efficiency in Network-on-Chip 

(NoC) systems. System-on-chip designs include an increasing number of cores and functional units, 

which require interconnects to handle expanding data traffic volumes while adhering to strict 

power limits. Current interconnections may have challenges in meeting these requirements, 

resulting in higher power use, thermal concerns, and reduced performance. Furthermore, the 

changing workload allocation and communication patterns in NoC designs make it more difficult, 

requiring flexible and scalable interconnect solutions that can allocate resources dynamically and 

enhance energy efficiency. Additionally, the absence of defined interfaces and protocols presents 

a major challenge to the interoperability and scalability of Network-on-Chip (NoC) designs. 

Integrating various IP blocks and system components may be challenging without consistent 

communication protocols, leading to compatibility problems and design inefficiencies. The lack 

of standardized interconnect topologies hinders the ability to easily transfer and reuse across 

various NoC designs, resulting in vendor lock-in and impeding innovation. To tackle these 

problems, industry collaboration is needed to create shared interconnect standards and frameworks, 

promoting a more open and compatible environment for NoC development and implementation. 

Creating an AXI Interconnect-based NoC architecture for SoCs to decrease latency and improve 

throughput requires careful strategic planning. The design should prioritize using the scalability 
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and flexibility of the AXI interface to provide effective communication channels among the system 

components [7]. The design may efficiently distribute traffic by using several AXI interconnects 

arranged in a hierarchical or mesh topology, reducing contention and latency bottlenecks and 

maximizing resource efficiency. The design should focus on implementing advanced features 

including out-of-order transaction scheduling, Quality of Service(QoS) methods, and adaptive 

routing algorithms. The characteristics allow for dynamic resource allocation and prioritizing 

depending on the criticality and urgency of data transfers, improving system responsiveness and 

throughput. Furthermore, including specialized buffers and flow control methods into the AXI 

interconnects helps reduce congestion and minimize latency spikes when there is a significant 

volume of data traffic [8].  

 

Optimizing the AXI Interconnect-based NoC architecture for power efficiency is crucial for 

maintaining sustained performance improvements. The design may reduce energy consumption 

without sacrificing performance by using clock gating, voltage scaling, and dynamic 

reconfiguration of interconnect resources. Furthermore, integrating low-power modes and 

intelligent power management techniques allows for precise control over power consumption, 

hence improving the energy efficiency of the SoC architecture. The AXI Interconnect-based NoC 

design may efficiently fulfill current SoC applications' strict performance requirements by 

balancing latency reduction, throughput enhancement, and power optimization. The organization 

of the paper as follows: Section-II describes the Literature survey and proposed AXI interconnect 

based NoC is explained in Section-III. The simulation results are discussed in Section-IV. 

2. Literature  

Kun-Chih (Jimmy) Chen et al [9] introduced an approach for flattening Deep Neural Networks 

(DNN) is to transform different DNN operations into Multiply-Accumulate (MAC)-like operations, 

enabling the implementation of operations like convolution and pooling in contemporary DNN 

architectures. A DNN slicing approach is proposed to evaluate large-scale DNN models in a 

resource-limited NoC environment. The assessment results show a significant reduction in off-

chip memory accesses when compared to current DNN models. Performance analysis is carried 

out when discussing the trade-offs between various design factors. 

Phan-Duy Bui et al [10] proposed the Unified System Network Architecture (USNA), a highly 

flexible and space-efficient NoC design that can be tailored to various topologies. The USNA 

provides a high degree of flexibility in port configurations to accommodate different quantities of 

local cores and router linkers. It also facilitates quality of service operations for routers and linkers. 

This research examines the network performance of the USNA, focusing on measures like average 

latency and saturated throughput, along with the installation cost. Multiple network architectures 

are studied with an equal number of local cores under uniform random traffic circumstances. The 

simulation findings show that the USNA performs better or equals other NoCs in terms of 

performance, with a smaller footprint and lower power consumption. 

Gokul Krishnan et al [11] performed an experimental evaluation on several Deep Neural Networks 

to quantitatively analyze the performance of the IMC architecture using both NoC-tree and NoC-

mesh configurations. NoC-tree is recommended for compact DNNs at the edge, whereas NoC-
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mesh is necessary for accelerating DNNs with high connection density. A method is suggested to 

identify the best connection option for a certain DNN. This method uses analytical models of 

Network-on-Chip (NoC) to assess the total communication delay of the Deep Neural Network 

(DNN) being studied. Optimizing the connectivity in the IMC design might potentially increase 

the energy-delay-area product for VGG-19 inference by up to 6 times compared to current 

ReRAM-based IMC systems. 

Aravindhan Alagarsamy et al [12] An innovative hybrid topology called Four Regular Dense 

Spidergon (FRDS) is presented as a deterministic Network-on-Chip (NoC) design with 64 cores. 

A mix of cluster and general heuristic-based techniques is suggested for mapping applications into 

the FRDS topology. The cores are mapped into the topology using a genetic algorithm (GA) and 

simulated annealing (SA) inside a general heuristic method to guarantee effective mapping and 

fair performance comparison of the proposed FRDS. Experimental findings show that the 

suggested FRDS achieves a faster execution time compared to Mesh design when utilizing genuine 

benchmark traces under normalized settings. 

C. De Sio et al [13] evaluated the dependability of the connecting module in programmable 

hardware in relation to radiation-induced failures in the configuration layer. An intentional fault 

injection effort is under underway to simulate the effects of radiation on the configuration memory 

of the AP-SoC Zynq 7000. The main focus is on the specific portion of the configuration memory 

responsible for programming the connection module in the programmable logic. The connection 

module plays a critical role in several applications and mitigation measures, such as hardware-

accelerated concepts, Dynamic Partial Reconfiguration, or Triple Modular Redundancy. It is 

particularly important when aiming for high performance, bandwidth, and reliability. The fault 

injection results are analyzed and categorized based on their impact on the availability of the 

processor-system side along with the effect of the fault model on data computed by cores on the 

programmable logic side. 

Demyana Emil et al [14] analyzed a low-power, straightforward design multi-core RISC-V 

processor that is derived from the open-source single RISC-V core processor, Taiga. The device 

combines two Taiga cores, solving issues related to cache coherence, connectivity, and memory 

architecture. Data consistency between caches and main memory is ensured by the use of the 

snoopy protocol. A specialized peripheral unit tailored for hardware coordinates duties across the 

operating cores. The primary memory unit is structured for consistency and control, using a dual-

port arrangement following a specified protocol in the interface, consisting of 8192 lines and word 

addressable units. A UART peripheral device has been included for communication with other 

devices due to its widespread use in many devices and CPUs. The processor is developed using 

System Verilog HDL and thoroughly tested on several testbenches to guarantee correct operation. 

Santhi Chebiyyam et al [15] suggested incorporating a memory controller into a multi-core 

System-on-Chip (SoC) using the Advanced Extensible Interface (AXI4Lite) protocol. This 

approach improves the performance of the multi-core SoC by using the burst mode capabilities of 

the AXI protocol. The architecture suggested is implemented in System Verilog HDL using the 

Vivado tool. The experimental results show that the suggested strategy surpasses traditional 

approaches documented in current literature in terms of power consumption and space utilization. 

4

https://link.springer.com/article/10.1007/s11227-023-05304-1#auth-Demyana-Emil-Aff1


The suggested methodology results in a significant 90% decrease in power usage, as shown by 

numerical measurements. 

Biruk Seyoum et al [16] presented DART, a tool created to automate the whole design process in 

a real-time Dynamic Partial Reconfiguration (DPR)-based system, including software and 

hardware components. DART is designed to minimize the manual work usually needed by existing 

tools for Xilinx Zynq 7-series and Ultrascale+ FPGA-based SoCs, without assuming extensive 

knowledge in programmable logic design under DPR. The tool automatically manages partitioning, 

floorplanning, and implementation stages, which include routing and bitstream creation. It 

produces a sequence of bitstreams according to tasks marked with high-level timing specifications. 

Mathematical optimization methods are used to solve partitioning and floorplanning issues, and a 

series of automatically created scripts connect with vendor products to aid in synthesis and 

implementation processes. DART's performance is evaluated via experimental assessment 

utilizing a case study application from an accelerated image processing system. 

Jayshree et al [17] presented three on-chip connecting strategies designed to reduce performance 

decline caused by the ongoing reduction in global interconnect parameters. The suggested 

approaches include 2-D network-on-chip based interconnection (NoC-BI), point-to-point based 

interconnection (PTP-BI), and AXI4 streaming and AXI4 light bus based interconnection (AXI4-

BBI). Analyzing various connections strategies via experiments to compare resource use, latency, 

throughput, and energy consumption. The NoC-BI approach aims to mitigate denial of service 

(DoS) threats, including deadlock and livelock concerns, in order to improve security in 

multimedia systems-on-chips. A dynamic adaptive (DyAD) routing method is suggested to alter 

routing according to congestion data on the route. The results show that NoC-BI has great 

scalability and performs better across several measures compared to PTP-BI and AXI4-BBI. 

Ian Swarbrick et al [18] described the Network-on-Chip (NoC) in Xilinx's planned Versal 

architecture, which includes a robust NoC incorporated into Xilinx's future 7nm design devices. 

The devices have a range of new robust features that make up the Adaptable Computing 

Acceleration Platform (ACAP) devices. There is an increasing tendency in FPGA devices to 

strengthen frequently used components such as processors, memory controllers, and IO controllers. 

The next Xilinx devices have a device-wide memory-mapped NoC that connects components and 

the fabric in a unified way. This Network-on-Chip (NoC) enables smooth communication across 

the CPU system, FPGA fabric, memory subsystem, and other specialized accelerator functions. 

The article outlines the Versal architecture NoC and explains several unique features of the design. 

It shows that strengthening the Network on Chip (NoC) allows users to quickly create high-

performance system-level connections. 

Joshua Lant et al [19] put forward a network interface architecture and networking infrastructure 

designed to be included into the FPGA fabric of a sophisticated MPSoC device. This configuration 

enables communication across networks of devices in distributed and shared memory 

environments, with the goal of reducing the need for expensive software networking system calls. 

They discuss their implementation and prototype system, focusing on important design choices for 

using the Xilinx Zynq Ultrascale+, an advanced MPSoC, and overcoming problems presented by 

the device's restrictions and limits. The authors demonstrate a working prototype system that links 
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two MPSoCs, facilitating communication between the processor and a distant memory location, 

as well as an accelerator. They then assess the present implementation's constraints and pinpoint 

opportunities for enhancement to increase its preparedness for production deployment. 

Debasis Behera et al [20] proposed to improve the efficiency of Embedding-Memory-

Management-Units in a Network-on-Chip (NoC) system. The study investigates the use of a 3D 

Network-on-Chip (NoC) to enhance NoC performance, resulting in significant progress. The 

research also uses first-in-first-out (FIFO) buffers in NoC routers to temporarily hold data packets. 

A suggestion suggests using RAM as an intermediary between the crossbar switch and input ports. 

The simulation findings show that the study achieves memory usage levels between 0 and 16 out 

of 64 in a data storage stack, with a constantly strong "almost empty" signal. 

3. Proposed AXI interconnect based NoC Architecture 

An AXI interconnect-based NoC architecture is a highly advanced and innovative approach to 

designing and implementing communication subsystems in complex integrated circuits, 

particularly in System-on-Chip (SoC) topologies. The Advanced eXtensible Interface (AXI) is a 

component of the ARM Advanced Microcontroller Bus Architecture (AMBA) standard. It 

functions as a high-performance and high-bandwidth bus interface that facilitates the connection 

of components inside a microcontroller system. The integration of AXI with NoC principles 

enables the development of a communication infrastructure that is scalable, efficient, and 

adaptable. This infrastructure is capable of meeting the high data transmission demands of current 

computer applications.  

The proposed architecture utilizes the AXI protocol's capabilities in facilitating rapid data 

transmission, handling many data streams, and effectively managing concurrency. By using a 

Network-on-Chip (NoC) approach, the design may overcome the constraints in scalability that are 

present in conventional bus systems. This enables more efficient transfer of data across a greater 

number of linked modules or processing units. The NoC design functions as a network fabric that 

links different components, including processors, memory blocks, and I/O devices. This allows 

them to interact with each other via a common network infrastructure. 

Within this architectural framework, the nodes of the NoC are interconnected by routers, which 

control the routing of data packets depending on network circumstances and destination addresses. 

These routers are specifically intended to accommodate the characteristics of the AXI protocol, 

including out-of-order transaction completion, burst transfers, and split transactions. This ensures 

that they are compatible with AXI-compliant modules and maximizes the efficiency of data 

transmission and overall system performance. The block diagram of the proposed AXI 

interconnect based NoC architecture is depicted in Figure 1. 
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Figure 1: Proposed AXI interconnect based NoC Architecture 

The block diagram of a proposed NoC architecture based on AXI interconnect would consist of 

many essential components:  

 

AXI-Master and Slave modules: AXI-compliant Master and Slave Modules refer to the 

components such as processor units, memory controllers, and peripheral devices that establish 

communication using the AXI interface. Masters are responsible for initiating transactions, whilst 

slaves are responsible for responding to them.  

Routers: Routers are essential components of the NoC, responsible for overseeing the routing of 

data packets between nodes. They do this by using network topology and routing algorithms. They 

have been designed specifically to effectively manage the needs of the AXI protocol.  

Network Interfaces (NIs): NIs, positioned between the AXI modules and the routers, convert 

AXI transactions into NoC packets and vice versa, guaranteeing smooth integration between the 

AXI interface and the NoC architecture.  

Interconnect links: Interconnect links refer to the physical or logical connections that exist 

between routers, allowing for the transport of data packets across the network. They may be 

engineered to accommodate different bandwidths and latency demands. 
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NoC 

A
X

I 
In

te
rc

o
n

n
ec

t 
 

AXI Interconnect  

Node 

0 

Node 

1 

Node 3 
Node 

2 

R

0 

R

3 

R

1 

R

2 

AXI-NoC 

Interface 

DDR 

Memory 

Controller 

Zynq PS 

SoC 

7



The NoC architecture comprises Routers, network interfaces, IPs, along with connections. Figure 

2 displays the components of a (2×2) Mesh topology. The network topologies are determined by 

the connectivity of the Router, NI, IP, and link. The essential elements of NoC architecture consist 

of the routing algorithm, network structure, including switching mechanisms. The router is an 

essential element of a SoC that is constructed using NoC architecture, similar to other types of 

networks. There are communication lines that connect the whole chip, and the NoC Router is 

responsible for efficiently directing incoming packets to either the core that they are meant for or 

the router that comes after it along the routing path that extends from the originating point to the 

destination. 

 

Figure 2: NoC Architecture 

 

Network interfaces provide the link between the IP cores as well as the on-chip router network. A 

Network Interface in a NoC serves as an intermediary between the computing unit and the 

communication system. Network interfaces facilitate the transfer of data produced by IP blocks 

into data packets and also provide additional routing information dependent on the underlying NoC 

network. NoC routers serve as the primary means of steering packets in a communication network. 

Routers enable the transfer of packets to the chosen connection in order to reach their intended 

destination. 

3.2 Router 

A router is a crucial element in the communication infrastructure of a NOC system. The router 

enables the efficient transmission of network communication from its origin to its intended 

endpoint. It ensures the synchronization of data transmission, which is a crucial component of 

communication networks. The router's design has five buffers: north, south, east, west, and a local 

buffer, as seen in Figure 3. 
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Figure 3: Router (2D mesh topology) 

The local buffer serves as a means to connect the IP core, while the first four ports are used to 

establish connections with other routers inside the network. Routers, which are intelligent devices, 

accept incoming packets, analyze their destination, and determine the optimal path for transmitting 

packets from the source node to the destination node. Using the routing function, a router decodes 

the data from the incoming message and determines the packet's destination. The OSI model is 

followed in the construction of the NoC router. Every layer in the model created by OSI has certain 

tasks to complete. 

3.3 AXI Network Interface 

The network interface establishes the logical link between the IP core and the network. The 

network interface serves as an intermediary between the router and the IP core. NI keeps an eye 

on packets being sent and received inside the IP core. Simultaneous bidirectional communication 

is made possible via the network interface. It starts by gathering IP core data. After that, it divides 

the data into packets, gives each packet a destination address, and transmits the packets to the 

router. The packets are then sent to their intended destination once it has removed the packetization 

and received them from the associated routers. 

3.3.1 AXI interconnect  

AXI interconnects have been designed to meet the demands of on-chip communication that 

requires both high bandwidth and low latency. These interconnects are meant to be compatible and 

adaptable to different design requirements. The AXI connection plays a vital role in the 

advancement of complex digital systems that need effective data transfer across many processor 

units, memory blocks, and peripherals. The multi master and multi slave with AXI interconnect is 

depicted in Figure 4. 
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Figure 4: AXI interconnect with multi master and slave 

The fundamental purpose of the AXI protocol is to enable direct communication between master 

and slave devices in a system. It facilitates efficient data transfers by allowing for concurrent 

addresses, transfers of data that are not aligned, and transactions that occur in bursts. These 

properties play a crucial role in achieving the efficiency necessary in contemporary high-speed 

computing systems. The protocol specifies many channels (read address, write address, read data, 

write data, and write response) that function autonomously, enabling concurrent data transactions, 

hence enhancing throughput and system performance to a large extent. The channels in the AXI 

protocol is shown in Figure 5. 

 

Figure 5: AXI channels 

The AXI protocol defines five distinct types of channels: 

Read Address Channel: The master device utilizes this channel to transmit read requests to the 

slave device. The read address channel conveys details on the data's source address, as well as 

transaction parameters such as data amount, burst type, and transaction ID. This allows the slave 

to comprehend the specific facts that the master is soliciting. 
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Read Data Channel: The slave uses the read data channel to provide the data requested by the 

master via the read address channel. In addition to the primary data, this channel also transmits the 

response status (showing whether the read operation was successful or not) and the transaction ID, 

which assists the master in linking the incoming data with the appropriate request. 

Write Address Channel: The write address channel, like the read address channel, is used by the 

master to commence a write operation. The data packet contains the destination address, 

transaction characteristics, and a distinct transaction identifier. This channel efficiently conveys 

information to the subordinate on the master's desire to record data and the precise details of the 

activity. 

Write Data Channel: The write data channel is tasked with transmitting the factual data from the 

master to the slave for the purpose of writing it to the designated location. This channel transmits 

the data along with the write strobes (which signify the valid data bits in the transfer) and the 

transaction ID. The write strobes are essential for performing partial writes or for writing data that 

is less than the bus width. 

Write Response Channel: Once a write operation is started using the write address and data 

channels, the slave utilizes the write response channel to confirm the successful completion of the 

write operation. The system returns a status that indicates whether the write transaction was 

successful or not, together with the transaction ID. This allows the master to verify that the write 

operation was done accurately. 

Each of these channels functions autonomously, enabling concurrent processing of numerous 

transactions. This greatly improves the data throughput and overall efficiency of the system. The 

division of channels for addressing, data transmission, and control signals in SoC designs that use 

the AXI protocol reduces congestion and optimizes performance. The AXI connection offers 

significant benefits due to its capability to accommodate various degrees of concurrency and 

effectively manage transactions of varying sizes. The flexibility of AXI-based systems allows them 

to be customized for many purposes, ranging from basic control duties to intricate data-intensive 

activities. The AXI connection has a split-transaction mechanism that separates the request and 

response portions of a transaction. This design reduces latency and enhances data throughput 

inside the system. 

4. Simulation Results  

The proposed AXI interconnect is integrated with NoC architecture, rather than the traditional bus-

based NoC architecture. The 2x2 mesh topology is considered for the simulation and xy routing 

algorithm is incorporated in the router. The mesh topology is characterized by a grid-like structure 

with n rows and m columns. In a mesh architecture, each router is linked to the neighboring router 

using cables. The network's (x, y) coordinates are used to specify the address of the router and IP 

cores. In a Mesh Topology, the detection of defects and the avoidance of problematic nodes during 

packet routing in the network are straightforward and efficient. This topology is the most 

straightforward to implement compared to other topologies. In this architecture, packets traverse 

a dedicated connection and are delivered only to their intended destinations. 

4.1 Routing Algorithm 

Routing algorithms play a crucial role in optimizing communication inside a NoC. These methods 

ascertain the precise path that a packet should follow in order to reach its intended destination 

node. Several routing algorithms have been suggested for implementation in NoC systems, and 
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they may be categorized based on their distinct characteristics and needs. The routing algorithm 

may be classed as source, distributed, or centralized based on where the routing option is made. In 

a centralized algorithm, the route is selected by the central controller. Source routing involves the 

selection of a path by the source router before transmitting a packet, while distributed routing 

involves the selection of the routing path by intermediate routers. The xy routing algorithm is 

chosen in this work due to adoptability in nature and suitable for 2D mesh topologies.  

The xy routing approach belongs to the category of distributed deterministic routing algorithms. 

xy routing is free from both deadlocks and livelocks. The xy routing algorithm typically selects the 

shortest and predetermined route for packet transmission. This approach is applicable to both 

regular and irregular network topologies. Each node in the mesh network is identified by its 

coordinates, represented as (x, y), where x represents its horizontal location and y represents its 

vertical position. 

The path from the source node to the destination node is pre-established and stays constant 

regardless of the network's condition. Under conditions of non-congestion, the NoC network 

exhibits a significant level of reliability and encounters little latency. This strategy establishes a 

sequential movement of packets, first in the X-axis and then in the Y-axis. It blocks packets from 

using other paths to circumvent blocked pathways. The present position of the router, indicated by 

its (x, y) coordinates, is compared to the coordinates of the destination router to establish the route. 

The data packet is first routed down the X-axis and then along the Y-axis until it reaches its 

designated destination IP core. The XY routing technique in Mesh topology allows for just half of 

the available turns by restricting the other half of turns. XY routing involves the initial movement 

of a packet in the x-direction. Once the packet reaches the desired column, it is then transported in 

the y-direction, either upwards or downwards. The xy algorithm is reported in Table 1. 

Table1: XY Routing for 2D Mesh Network-on-Chip (NoC) 

Algorithm: XY Routing for 2D Mesh Network-on-Chip (NoC) 

1. Inputs: 

   - Source Node Coordinates: (X_source, Y_source) 

   - Destination Node Coordinates: (X_dest, Y_dest) 

2. Output: 

   - Selected Output Channel 

3. Procedure: 

• Calculate the differences between the destination and source coordinates: 

      - X_offset = X_dest - X_source 

      - Y_offset = Y_dest - Y_source 

• If the offsets are both zero (meaning source and destination are the same), the algorithm 

terminates as no routing is needed. 

• If the Y_offset is positive, the selected output channel is North (Y+), indicating 

movement towards a higher Y coordinate. 

• If the Y_offset is negative, the selected output channel is South (Y-), indicating 

movement towards a lower Y coordinate. 

• If the X_offset is positive, after any north or south movement, the selected output 

channel is East (X+), indicating movement towards a higher X coordinate. 
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• If the X_offset is negative, after any north or south movement, the selected output 

channel is West (X-), indicating movement towards a lower X coordinate. 

If the Yoffset is positive, the xy routing strategy routes packets to the west buffer. When the value 

is negative, the packet is routed to the left, namely towards the east buffer. If the Xoffset is not equal 

to zero, the packet is sent either upwards or downwards along the y-axis. If both the Yoffset and 

Xoffset values are equal to zero, it signifies that the packet has successfully arrived at its intended 

destination. The route from the starting node to the target node is consistently the most direct and 

stays constant. This technique demonstrates reduced latency in situations of low network traffic 

due to its static nature. Nevertheless, its efficiency declines considerably when there is congestion 

and a restricted selection of alternative routes. When faced with a consistent traffic pattern, this 

NoC routing method outperforms other algorithms. The xy routing algorithm network experiences 

a much higher load in its central region compared to the average load over the whole network. 

This results in a concentration of traffic in the center, which is often referred to as a hotspot. If 

there is a faulty node along the route, the packet will get trapped in one of the switches. 

 

 

Figure 6: Schematic of NoC Architecture 

The Figure 6 is a schematic design of a NoC router. Below is a concise description of the various 

blocks shown in the schematic: 

• RouterCC (Router Crossbar Connect): This is the core component of the router, which 

is responsible for directing data packets from the source to the destination. The system may 

include a crossbar switch that links several input and output channels, which may originate 

from the East (E), West (W), North (N), South (S), and local (L) directions.  
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• Router_Sink_W, Router_Sink_S, Router_Sink_N: These blocks are sink modules, 

which serve as endpoints in the NoC where data packets are received from the router. The 

letters "W", "S", and "N" represent the west, south, and north directions, respectively. 

Buffers may be included to store incoming data.  

• Router_Source_W: This module serves as a source, primarily responsible for transmitting 

data packets into the network. The connection will be oriented towards the West, in 

accordance with the naming tradition.  

• axis_m_const_L, axis_m_const_VI_0, axis_m_const_N, and axis_m_const_S: These 

blocks might potentially function as data generators or placeholders for data streams, 

serving as the sources of traffic for the router. The RouterCC may receive either constant 

or variable data for the purpose of routing it to various sinks.  

• dip_[7:0], send_i, end_i: These signals are inputs and controls for the Router_Source_W 

module. "dip" likely represents the data input, "send_i" might be a signal to initiate data 

transmission, and "end_i" may indicate the completion of data transmission.  

• xconstant_E: This component serves as a constant generator that produces a consistent 

value. It is used for controlling or monitoring purposes inside the NoC. The constant value 

is oriented eastward.  

• xlconcat_0: This block is a concatenation module that merges numerous input signals into 

a single broader output signal.  

The signals axis_s, clock, led_o, and reset_n are often used as interface signals. "axis_s" refers to 

the AXIS (AXI Stream) interface. "clock" represents the system clock signal. "led_o" is an output 

signal used to drive an LED for debugging or status signaling. Lastly, "reset_n" is an active-low 

reset signal.  The figure 6 also illustrates the interconnections among these blocks, which 

symbolize the transmission of data and control signals inside the router. The connections to the 

East (E_m), West (W_m), North (N_m), South (S_m), and Local (L_m) with the RouterCC block 

describe the possible routes for data transmission inside the network. The nomenclature used for 

these blocks and signals implies the presence of a standardized interface, most likely AXIS, which 

is widely used in FPGA and ASIC architecture for the purpose of streaming data.  

 
Figure 7: AXI interconnect with Zynq SoC 

The Figure 7 depicts a schematic representation of an AXI interconnect topology that connects 

with a NoC. Below is a breakdown of the many elements that are depicted:  
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AXIS DMA: The AXIS DMA block is a controller that represents an AXI Stream Direct Memory 

Access (DMA). DMA controllers facilitate the autonomous movement of data between memory 

and peripherals, eliminating the need for CPU involvement.  

ps7_0_axi_periph: The block labeled "ps7_0_axi_periph" indicates an AXI peripheral that is 

linked to the processing system. The term "ps7_0" suggests that it is a component of a Xilinx Zynq-

7000 series SoC, where "ps7" refers to the seventh version of the Processing System.  

s00_couplers: The s00_couplers module enables the linkage between the AXI peripheral and the 

AXI interconnect. It functions as an intermediary, ensuring proper communication between the 

peripheral and the AXI Interconnect.  

auto_pc (AXI Protocol Converter): The auto_pc is a component that handles the conversion of 

protocols, potentially across multiple AXI interfaces (such as from AXI3 to AXI4). This 

guarantees interoperability across IP blocks that may be using disparate versions of the AXI 

protocol.  

M_AXI, S_AXI: The M_AXI and S_AXI interfaces refer to the master and slave AXI interfaces, 

respectively. The "M_AXI" interface serves as the primary interface responsible for initiating read 

and write transactions. On the other hand, the "S_AXI" interface functions as the secondary 

interface that replies to these transactions launched by the master.  

AxCxK, AxRESxT: The control signals AxCxK and AxRESxT are part of the AXI protocol. 

• "AxCxK" is an abbreviation for AXI Clock, which refers to the clock signal used for the 

AXI interface.  

• "AxRESxT" is most likely an abbreviation for AXI Reset, which serves as the reset signal 

for the AXI interface.  

ack, aresetn: The control signals often seen in digital circuits are known as "ack" and "aresetn".  

• "ack" is often used as an acknowledgement signal during the process of handshaking 

between different components.  

• The "aresetn" signal is a kind of reset signal that is active-low and asynchronous. It is used 

to reset the interface or component.  

AXI Interconnect: The AXI Interconnect is a pivotal component that facilitates communication 

between various masters and slaves inside the system. It manages the process of directing 

transactions from masters to the right slaves.  
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Figure 8: Simulation results of Proposed AXI interconnect based NoC Architecture 

The Figure 8 is a waveform derived from a simulation of a NoC architecture using AXI 

interconnect. An analysis of the fundamental components included in the waveform described as 

below:  

• dma_dout: This indicates the digital output signal originating from the DMA block. The 

signal seems to be a binary signal with two bits, where each bit alternates at distinct time 

intervals throughout the simulation.  

• slot_0: dma_s Interface: This interface facilitates the DMA transaction specifically for 

slot 0. The signal comprises:  

TVALID: Indicates that the master is performing a legitimate transfer.  

TREADY: Indicates the slave's readiness to accept a transfer.  

TLAST: Indicates the last transfer inside a transaction.  

TDATA: The data that is being sent.  

• slot_2: Conn1 Interface and slot_1: S_AXI Interface: The interface for slot_2 is Conn1, 

whereas the interface for slot_1 is S_AXI. These interfaces are supplementary to the AXI 

connection. The presence of the same signals (TVALID, TREADY, TLAST, TDATA) 

indicates the occurrence of many simultaneous contacts with the interconnect.  

In Figure 8, data sent when both TVALID and TREADY signals are in a high state. TDATA displays 

the specific data that is being sent throughout these transactions. The hexadecimal value denotes 

the information payload. A high value of TLAST signals the completion of a series of data transfers. 

The simulation results indicate that the DMA is effectively starting transactions with the interface, 

and data is being transferred and received as expected without any apparent faults or conflicts seen 

in the waveform. 
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(a) Area utilization (b) Power utilization 

 

Figure 9: Area and power utilization summary 

Table 2: Resource Utilization comparison results 

 

Method Resource Utilization (Slices) in % 

PTP-BI [17] 50.58 

AXI4-BBI [17] 34.48 

Proposed AXI interconnect  14 

 

The Table 2 presents a summary of the resource use of various connectivity technologies, with a 

special emphasis on the proportion of slices used in Zynq 7000 SoC architecture. The first 

technique mentioned, PTP-BI [17], refers to Point-to-Point Bidirectional Interconnect, as cited in 

source [17]. It represents 50.58% of the slices. In this particular architecture, direct connections 

are made between two ends, enabling data flow in both directions. The significant portion of the 

slice consumption suggests a possibly extended connection configuration that necessitates a huge 

amount of logic resources. PTP-BI is followed by AXI4-BBI [17], which refers to an AXI version 

4 Bus-Based Interconnect, also mentioned in the same source [17]. This connection utilizes a 

smaller percentage of slices, 34.48%. The AXI4 standard is renowned for its exceptional 

performance and is often used in system-on-chip architectures that operate at high frequencies. 

Based on the statistics, it can be inferred that a bus-based connection is more efficient in terms of 

resource use when compared to the point-to-point bidirectional architecture. The Proposed AXI 

interconnect based design demonstrates resource efficiency by employing 14% of the available 

slices. This signifies a substantial decrease in the use of resources as compared to the PTP-BI and 

AXI4-BBI approaches. Latency and throughput are crucial performance measures for assessing 

NoC designs. Comprehending and computing these metrics is essential for designers to guarantee 

that the NoC fulfills the required criteria for effective data transmission inside a SoC. Given that 

the simulation ended after 3497 cycles and 3000 cycles measured, the approximate latency would 

be 497 cycles. Each clock cycle required 2ns time period, so latency would be 994ns or 0.99 µs.  
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Latency in a Network-on-Chip (NoC) refers to the time it takes for a data packet to get from the 

starting node to the ending node. It encompasses the duration required for routing, the processing 

that occurs at intermediate switches, and any potential delays in queuing. The latency may be 

determined by measuring the number of cycles (clock cycles), which is dependent on the clock 

frequency of the system. Throughput in a NoC refers to the rate at which data may be sent between 

nodes within a certain time frame. The typical unit of measurement is bits per second (bps) or 

transactions per cycle. In this simulation, the simulation ended after 3497 cycles. 15257 flits sent, 

and also 15257 flits received by the end of the simulation. The formula for throughput (Th) would 

then be: 

𝑇ℎ =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑖𝑡𝑠 𝑠𝑒𝑛𝑡 𝑜𝑟 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝐶𝑦𝑐𝑙𝑒𝑠
                                          (2) 

The proposed NoC has a throughput of roughly 4.363 flits per cycle, as shown by the given 

statistics. On average, about 4.363 flits are successfully conveyed via the network each cycle. 

 

Table 3: Latency and Throughput comparison results 

 

Method Latency (µs) Throughput (flits per cycle) 

PTP-BI [17] 
33.9 - 

AXI4-BBI [17] 
56.29 - 

NoC-BI [17] 
5.87 0.38 

Proposed AXI interconnect  
0.99 4.363 

 

The Table 3 provides a comparative study of several connectivity techniques in network 

architectures, evaluated based on their latency and throughput measurements. Latency is defined 

in microseconds (µs), whereas throughput is evaluated by the number of flits. The first approach 

is the PTP-BI [17], with a recorded latency of 33.9 µs. The AXI4-BBI [17] approach has a much 

greater delay of 56.29 µs. The NoC-BI (Network-on-Chip Bidirectional Interconnect) developed 

in [17] demonstrates a significant increase in performance, achieving a latency of just 5.87 µs and 

a throughput of 0.38 flits per cycle. The Proposed AXI connection, which demonstrates 

outstanding performance metrics: a minimal latency of just 0.99 µs, coupled with a high 

throughput of 4.363 flits per cycle. These numerical metrics demonstrate a connection that has 

been specifically designed to maximize both speed and efficiency. This architecture facilitates 

efficient data transfer with low latency and allows a huge volume of data to be processed, which 

is very beneficial in high-performance computing applications that need fast data interchange and 

decreased response times.  

Conclusions 

The findings of the research that was carried out in this article provide evidence that the AXI 

interconnect-based NoC architecture that was proposed is beneficial in improving the performance 

of SoCs. The findings that were acquired from the simulation tests show proof of the architecture's 

improved performance. In comparison to typical NoC designs, the architecture achieved much 

reduced latency and greater throughput. The NoC architecture that has been proposed provides a 

18



solution that is scalable, efficient, and adaptive for the increasingly data-intensive applications that 

are being used today. It stands out as a viable approach for the development of future SoC 

implementations. An infrastructure for communication that is both resilient and high-speed is 

produced as a result of the combination of AXI protocols and NoC principles. This infrastructure 

is suited for complicated integrated circuits and the demands of current computing workloads. A 

second factor that contributes to the attractiveness of the proposed design is the significant 

decrease in resource use, which is down to 14% of slices. This provides an alternative to current 

interconnect techniques that is more efficient with resources. The findings of this study provide a 

significant contribution to the field of on-chip network design and establish a standard for future 

research in the creation of SoC architectures that are high-performance, low-power, and efficient 

in terms of area use. 
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