
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

Design and Development of Novel AXI Interconnect based NoC Architecture

for SoC with Reduced Latency and Improved Throughput

aNagarjuna Malladhi, bGirish. V. Attimarad
aResearch Scholor, K S School of Engineering and Management, Bangalore, India

aVardhaman College of Engineering, Hyderabad, India
bK S School of Engineering and Management, Bangalore, India

amalldhinagarjuna@gmail.com

Abstract

A novel AXI interconnect-based Network-on-Chip (NoC) architecture is presented in this

research. The purpose of the architecture is to make System-on-Chip (SoC) designs more efficient

by reducing latency and improving throughput. Because of its high performance and bandwidth

capabilities, the Advanced eXtensible Interface (AXI), which is a component of the Advanced

Microcontroller Bus Architecture (AMBA) of the ARM architecture, is used. This configuration

makes it possible to communicate effectively inside the chip. The proposed architecture overcomes

the scalability limits that are inherent in conventional bus systems. This is accomplished by

integrating AXI with NoC principles, which enables more efficient data transmission over a greater

number of linked modules. By introducing an effective routing system and a network interface that

has been improved, This research work enables packet transfer to occur without interruption. A

2x2 mesh topology is used to simulate the proposed architecture, and an XY routing algorithm is

included into the simulation in order to guarantee that deadlock and livelock-free operations are

carried out. This highlights the potential of the proposed architecture in high-performance

computing applications that require rapid data exchange and minimal response times. The

simulation results demonstrate significant improvements over traditional interconnect approaches,

yielding a lower latency of 0.99 microseconds and a higher throughput of 4.363 flits per cycle

which demonstrates the potential of the proposed architecture.

Keywords: AXI Interconnect, NoC, SoC, Router, Mesh Topology.

1. Introduction

The AXI interface is essential in SoC architectures for enabling communication among different

system components, like processors, memory modules, peripherals, and other IP blocks [1]. It is

based on the ARM Advanced Microcontroller Bus Architecture (AMBA) protocol, ensuring

compatibility and interoperability across various System on Chip (SoC) setups [2]. The AXI

connection is known for its scalability, being able to adapt to a variety of system configurations to

fulfill the specific requirements of each SoC design [3]. It improves resource consumption and

promotes system efficiency, whether handling simple single-master setups or overseeing intricate

multi-layered systems. This versatility also applies to its capacity to handle many sorts of

transactions, including read, write, and atomic operations, to facilitate the smooth integration of

IP blocks with different data processing needs. The AXI connection has strong arbitration features

to efficiently handle simultaneous access requests from several masters in the SoC context. The

connection guarantees fair resource allocation by using round-robin scheduling and priority-based

arbitration procedures, which help prevent bottlenecks and contention concerns. This sturdy

IJCDS 1571017778

1

mailto:amalldhinagarjuna@gmail.com

construction improves system performance and creates a favorable environment for developing

intricate embedded systems for many applications.

Interconnects play a crucial function as the foundation of effective communication among nodes

in distributed systems inside NoC designs [4]. They easily connect processor parts, memory units,

and other IP blocks spread across the network, serving as the basis for integrated NoC systems.

Also, follow defined protocols and topologies based on network-on-chip design concepts,

promoting interoperability and scalability in various NoC setups. In NoC designs, interconnects

are notable for their capacity to adapt to various system needs, supporting both homogeneous and

heterogeneous node topologies. NoC interconnects boost routing efficiency and enhance overall

network performance by coordinating processing units or IP blocks with various capabilities [5].

They are versatile in supporting many communication paradigms, such as packet-switched and

circuit-switched architectures, to seamlessly integrate multiple processing units in the NoC

ecosystem.

NoC systems include sophisticated routing algorithms and flow management technologies to

efficiently handle data traffic and reduce congestion. These interconnects use virtual channel

allocation and quality-of-service (QoS) priority mechanisms to provide fair resource distribution

and reduce performance issues. This sturdy construction improves network speed and creates a

favorable environment for developing advanced, high-performance computing systems for many

applications. Numerous obstacles have surfaced in the current interconnects of NoC designs,

limiting the best possible system performance and scalability. An emerging problem is the growing

intricacy and diversity of system designs, which put pressure on traditional connection methods.

As Network-on-Chip (NoC) designs advance to include various processor elements, memory units,

and specialized IP blocks, current interconnects often face challenges in establishing effective

communication channels among these different components [6]. This complexity worsens routing

inefficiencies, latency bottlenecks, and contention difficulties, which impede overall network

speed and responsiveness.

Another obstacle is the increasing need for bandwidth and energy efficiency in Network-on-Chip

(NoC) systems. System-on-chip designs include an increasing number of cores and functional units,

which require interconnects to handle expanding data traffic volumes while adhering to strict

power limits. Current interconnections may have challenges in meeting these requirements,

resulting in higher power use, thermal concerns, and reduced performance. Furthermore, the

changing workload allocation and communication patterns in NoC designs make it more difficult,

requiring flexible and scalable interconnect solutions that can allocate resources dynamically and

enhance energy efficiency. Additionally, the absence of defined interfaces and protocols presents

a major challenge to the interoperability and scalability of Network-on-Chip (NoC) designs.

Integrating various IP blocks and system components may be challenging without consistent

communication protocols, leading to compatibility problems and design inefficiencies. The lack

of standardized interconnect topologies hinders the ability to easily transfer and reuse across

various NoC designs, resulting in vendor lock-in and impeding innovation. To tackle these

problems, industry collaboration is needed to create shared interconnect standards and frameworks,

promoting a more open and compatible environment for NoC development and implementation.

Creating an AXI Interconnect-based NoC architecture for SoCs to decrease latency and improve

throughput requires careful strategic planning. The design should prioritize using the scalability

2

and flexibility of the AXI interface to provide effective communication channels among the system

components [7]. The design may efficiently distribute traffic by using several AXI interconnects

arranged in a hierarchical or mesh topology, reducing contention and latency bottlenecks and

maximizing resource efficiency. The design should focus on implementing advanced features

including out-of-order transaction scheduling, Quality of Service(QoS) methods, and adaptive

routing algorithms. The characteristics allow for dynamic resource allocation and prioritizing

depending on the criticality and urgency of data transfers, improving system responsiveness and

throughput. Furthermore, including specialized buffers and flow control methods into the AXI

interconnects helps reduce congestion and minimize latency spikes when there is a significant

volume of data traffic [8].

Optimizing the AXI Interconnect-based NoC architecture for power efficiency is crucial for

maintaining sustained performance improvements. The design may reduce energy consumption

without sacrificing performance by using clock gating, voltage scaling, and dynamic

reconfiguration of interconnect resources. Furthermore, integrating low-power modes and

intelligent power management techniques allows for precise control over power consumption,

hence improving the energy efficiency of the SoC architecture. The AXI Interconnect-based NoC

design may efficiently fulfill current SoC applications' strict performance requirements by

balancing latency reduction, throughput enhancement, and power optimization. The organization

of the paper as follows: Section-II describes the Literature survey and proposed AXI interconnect

based NoC is explained in Section-III. The simulation results are discussed in Section-IV.

2. Literature

Kun-Chih (Jimmy) Chen et al [9] introduced an approach for flattening Deep Neural Networks

(DNN) is to transform different DNN operations into Multiply-Accumulate (MAC)-like operations,

enabling the implementation of operations like convolution and pooling in contemporary DNN

architectures. A DNN slicing approach is proposed to evaluate large-scale DNN models in a

resource-limited NoC environment. The assessment results show a significant reduction in off-

chip memory accesses when compared to current DNN models. Performance analysis is carried

out when discussing the trade-offs between various design factors.

Phan-Duy Bui et al [10] proposed the Unified System Network Architecture (USNA), a highly

flexible and space-efficient NoC design that can be tailored to various topologies. The USNA

provides a high degree of flexibility in port configurations to accommodate different quantities of

local cores and router linkers. It also facilitates quality of service operations for routers and linkers.

This research examines the network performance of the USNA, focusing on measures like average

latency and saturated throughput, along with the installation cost. Multiple network architectures

are studied with an equal number of local cores under uniform random traffic circumstances. The

simulation findings show that the USNA performs better or equals other NoCs in terms of

performance, with a smaller footprint and lower power consumption.

Gokul Krishnan et al [11] performed an experimental evaluation on several Deep Neural Networks

to quantitatively analyze the performance of the IMC architecture using both NoC-tree and NoC-

mesh configurations. NoC-tree is recommended for compact DNNs at the edge, whereas NoC-

3

mesh is necessary for accelerating DNNs with high connection density. A method is suggested to

identify the best connection option for a certain DNN. This method uses analytical models of

Network-on-Chip (NoC) to assess the total communication delay of the Deep Neural Network

(DNN) being studied. Optimizing the connectivity in the IMC design might potentially increase

the energy-delay-area product for VGG-19 inference by up to 6 times compared to current

ReRAM-based IMC systems.

Aravindhan Alagarsamy et al [12] An innovative hybrid topology called Four Regular Dense

Spidergon (FRDS) is presented as a deterministic Network-on-Chip (NoC) design with 64 cores.

A mix of cluster and general heuristic-based techniques is suggested for mapping applications into

the FRDS topology. The cores are mapped into the topology using a genetic algorithm (GA) and

simulated annealing (SA) inside a general heuristic method to guarantee effective mapping and

fair performance comparison of the proposed FRDS. Experimental findings show that the

suggested FRDS achieves a faster execution time compared to Mesh design when utilizing genuine

benchmark traces under normalized settings.

C. De Sio et al [13] evaluated the dependability of the connecting module in programmable

hardware in relation to radiation-induced failures in the configuration layer. An intentional fault

injection effort is under underway to simulate the effects of radiation on the configuration memory

of the AP-SoC Zynq 7000. The main focus is on the specific portion of the configuration memory

responsible for programming the connection module in the programmable logic. The connection

module plays a critical role in several applications and mitigation measures, such as hardware-

accelerated concepts, Dynamic Partial Reconfiguration, or Triple Modular Redundancy. It is

particularly important when aiming for high performance, bandwidth, and reliability. The fault

injection results are analyzed and categorized based on their impact on the availability of the

processor-system side along with the effect of the fault model on data computed by cores on the

programmable logic side.

Demyana Emil et al [14] analyzed a low-power, straightforward design multi-core RISC-V

processor that is derived from the open-source single RISC-V core processor, Taiga. The device

combines two Taiga cores, solving issues related to cache coherence, connectivity, and memory

architecture. Data consistency between caches and main memory is ensured by the use of the

snoopy protocol. A specialized peripheral unit tailored for hardware coordinates duties across the

operating cores. The primary memory unit is structured for consistency and control, using a dual-

port arrangement following a specified protocol in the interface, consisting of 8192 lines and word

addressable units. A UART peripheral device has been included for communication with other

devices due to its widespread use in many devices and CPUs. The processor is developed using

System Verilog HDL and thoroughly tested on several testbenches to guarantee correct operation.

Santhi Chebiyyam et al [15] suggested incorporating a memory controller into a multi-core

System-on-Chip (SoC) using the Advanced Extensible Interface (AXI4Lite) protocol. This

approach improves the performance of the multi-core SoC by using the burst mode capabilities of

the AXI protocol. The architecture suggested is implemented in System Verilog HDL using the

Vivado tool. The experimental results show that the suggested strategy surpasses traditional

approaches documented in current literature in terms of power consumption and space utilization.

4

https://link.springer.com/article/10.1007/s11227-023-05304-1#auth-Demyana-Emil-Aff1

The suggested methodology results in a significant 90% decrease in power usage, as shown by

numerical measurements.

Biruk Seyoum et al [16] presented DART, a tool created to automate the whole design process in

a real-time Dynamic Partial Reconfiguration (DPR)-based system, including software and

hardware components. DART is designed to minimize the manual work usually needed by existing

tools for Xilinx Zynq 7-series and Ultrascale+ FPGA-based SoCs, without assuming extensive

knowledge in programmable logic design under DPR. The tool automatically manages partitioning,

floorplanning, and implementation stages, which include routing and bitstream creation. It

produces a sequence of bitstreams according to tasks marked with high-level timing specifications.

Mathematical optimization methods are used to solve partitioning and floorplanning issues, and a

series of automatically created scripts connect with vendor products to aid in synthesis and

implementation processes. DART's performance is evaluated via experimental assessment

utilizing a case study application from an accelerated image processing system.

Jayshree et al [17] presented three on-chip connecting strategies designed to reduce performance

decline caused by the ongoing reduction in global interconnect parameters. The suggested

approaches include 2-D network-on-chip based interconnection (NoC-BI), point-to-point based

interconnection (PTP-BI), and AXI4 streaming and AXI4 light bus based interconnection (AXI4-

BBI). Analyzing various connections strategies via experiments to compare resource use, latency,

throughput, and energy consumption. The NoC-BI approach aims to mitigate denial of service

(DoS) threats, including deadlock and livelock concerns, in order to improve security in

multimedia systems-on-chips. A dynamic adaptive (DyAD) routing method is suggested to alter

routing according to congestion data on the route. The results show that NoC-BI has great

scalability and performs better across several measures compared to PTP-BI and AXI4-BBI.

Ian Swarbrick et al [18] described the Network-on-Chip (NoC) in Xilinx's planned Versal

architecture, which includes a robust NoC incorporated into Xilinx's future 7nm design devices.

The devices have a range of new robust features that make up the Adaptable Computing

Acceleration Platform (ACAP) devices. There is an increasing tendency in FPGA devices to

strengthen frequently used components such as processors, memory controllers, and IO controllers.

The next Xilinx devices have a device-wide memory-mapped NoC that connects components and

the fabric in a unified way. This Network-on-Chip (NoC) enables smooth communication across

the CPU system, FPGA fabric, memory subsystem, and other specialized accelerator functions.

The article outlines the Versal architecture NoC and explains several unique features of the design.

It shows that strengthening the Network on Chip (NoC) allows users to quickly create high-

performance system-level connections.

Joshua Lant et al [19] put forward a network interface architecture and networking infrastructure

designed to be included into the FPGA fabric of a sophisticated MPSoC device. This configuration

enables communication across networks of devices in distributed and shared memory

environments, with the goal of reducing the need for expensive software networking system calls.

They discuss their implementation and prototype system, focusing on important design choices for

using the Xilinx Zynq Ultrascale+, an advanced MPSoC, and overcoming problems presented by

the device's restrictions and limits. The authors demonstrate a working prototype system that links

5

two MPSoCs, facilitating communication between the processor and a distant memory location,

as well as an accelerator. They then assess the present implementation's constraints and pinpoint

opportunities for enhancement to increase its preparedness for production deployment.

Debasis Behera et al [20] proposed to improve the efficiency of Embedding-Memory-

Management-Units in a Network-on-Chip (NoC) system. The study investigates the use of a 3D

Network-on-Chip (NoC) to enhance NoC performance, resulting in significant progress. The

research also uses first-in-first-out (FIFO) buffers in NoC routers to temporarily hold data packets.

A suggestion suggests using RAM as an intermediary between the crossbar switch and input ports.

The simulation findings show that the study achieves memory usage levels between 0 and 16 out

of 64 in a data storage stack, with a constantly strong "almost empty" signal.

3. Proposed AXI interconnect based NoC Architecture

An AXI interconnect-based NoC architecture is a highly advanced and innovative approach to

designing and implementing communication subsystems in complex integrated circuits,

particularly in System-on-Chip (SoC) topologies. The Advanced eXtensible Interface (AXI) is a

component of the ARM Advanced Microcontroller Bus Architecture (AMBA) standard. It

functions as a high-performance and high-bandwidth bus interface that facilitates the connection

of components inside a microcontroller system. The integration of AXI with NoC principles

enables the development of a communication infrastructure that is scalable, efficient, and

adaptable. This infrastructure is capable of meeting the high data transmission demands of current

computer applications.

The proposed architecture utilizes the AXI protocol's capabilities in facilitating rapid data

transmission, handling many data streams, and effectively managing concurrency. By using a

Network-on-Chip (NoC) approach, the design may overcome the constraints in scalability that are

present in conventional bus systems. This enables more efficient transfer of data across a greater

number of linked modules or processing units. The NoC design functions as a network fabric that

links different components, including processors, memory blocks, and I/O devices. This allows

them to interact with each other via a common network infrastructure.

Within this architectural framework, the nodes of the NoC are interconnected by routers, which

control the routing of data packets depending on network circumstances and destination addresses.

These routers are specifically intended to accommodate the characteristics of the AXI protocol,

including out-of-order transaction completion, burst transfers, and split transactions. This ensures

that they are compatible with AXI-compliant modules and maximizes the efficiency of data

transmission and overall system performance. The block diagram of the proposed AXI

interconnect based NoC architecture is depicted in Figure 1.

6

Figure 1: Proposed AXI interconnect based NoC Architecture

The block diagram of a proposed NoC architecture based on AXI interconnect would consist of

many essential components:

AXI-Master and Slave modules: AXI-compliant Master and Slave Modules refer to the

components such as processor units, memory controllers, and peripheral devices that establish

communication using the AXI interface. Masters are responsible for initiating transactions, whilst

slaves are responsible for responding to them.

Routers: Routers are essential components of the NoC, responsible for overseeing the routing of

data packets between nodes. They do this by using network topology and routing algorithms. They

have been designed specifically to effectively manage the needs of the AXI protocol.

Network Interfaces (NIs): NIs, positioned between the AXI modules and the routers, convert

AXI transactions into NoC packets and vice versa, guaranteeing smooth integration between the

AXI interface and the NoC architecture.

Interconnect links: Interconnect links refer to the physical or logical connections that exist

between routers, allowing for the transport of data packets across the network. They may be

engineered to accommodate different bandwidths and latency demands.

3.1 NoC Architecture

NoC

A
X

I
In

te
rc

o
n

n
ec

t

AXI Interconnect

Node

0

Node

1

Node 3
Node

2

R

0

R

3

R

1

R

2

AXI-NoC

Interface

DDR

Memory

Controller

Zynq PS

SoC

7

The NoC architecture comprises Routers, network interfaces, IPs, along with connections. Figure

2 displays the components of a (2×2) Mesh topology. The network topologies are determined by

the connectivity of the Router, NI, IP, and link. The essential elements of NoC architecture consist

of the routing algorithm, network structure, including switching mechanisms. The router is an

essential element of a SoC that is constructed using NoC architecture, similar to other types of

networks. There are communication lines that connect the whole chip, and the NoC Router is

responsible for efficiently directing incoming packets to either the core that they are meant for or

the router that comes after it along the routing path that extends from the originating point to the

destination.

Figure 2: NoC Architecture

Network interfaces provide the link between the IP cores as well as the on-chip router network. A

Network Interface in a NoC serves as an intermediary between the computing unit and the

communication system. Network interfaces facilitate the transfer of data produced by IP blocks

into data packets and also provide additional routing information dependent on the underlying NoC

network. NoC routers serve as the primary means of steering packets in a communication network.

Routers enable the transfer of packets to the chosen connection in order to reach their intended

destination.

3.2 Router

A router is a crucial element in the communication infrastructure of a NOC system. The router

enables the efficient transmission of network communication from its origin to its intended

endpoint. It ensures the synchronization of data transmission, which is a crucial component of

communication networks. The router's design has five buffers: north, south, east, west, and a local

buffer, as seen in Figure 3.

8

Figure 3: Router (2D mesh topology)

The local buffer serves as a means to connect the IP core, while the first four ports are used to

establish connections with other routers inside the network. Routers, which are intelligent devices,

accept incoming packets, analyze their destination, and determine the optimal path for transmitting

packets from the source node to the destination node. Using the routing function, a router decodes

the data from the incoming message and determines the packet's destination. The OSI model is

followed in the construction of the NoC router. Every layer in the model created by OSI has certain

tasks to complete.

3.3 AXI Network Interface

The network interface establishes the logical link between the IP core and the network. The

network interface serves as an intermediary between the router and the IP core. NI keeps an eye

on packets being sent and received inside the IP core. Simultaneous bidirectional communication

is made possible via the network interface. It starts by gathering IP core data. After that, it divides

the data into packets, gives each packet a destination address, and transmits the packets to the

router. The packets are then sent to their intended destination once it has removed the packetization

and received them from the associated routers.

3.3.1 AXI interconnect

AXI interconnects have been designed to meet the demands of on-chip communication that

requires both high bandwidth and low latency. These interconnects are meant to be compatible and

adaptable to different design requirements. The AXI connection plays a vital role in the

advancement of complex digital systems that need effective data transfer across many processor

units, memory blocks, and peripherals. The multi master and multi slave with AXI interconnect is

depicted in Figure 4.

E

N

W
M x N

Crossbar

Switch

VC buffer

VC buffer

VC buffer

VC buffer

Routing &

Arbitration

E

N

W

VC buffer IP

S

IP

Inputs

Outputs

9

Figure 4: AXI interconnect with multi master and slave

The fundamental purpose of the AXI protocol is to enable direct communication between master

and slave devices in a system. It facilitates efficient data transfers by allowing for concurrent

addresses, transfers of data that are not aligned, and transactions that occur in bursts. These

properties play a crucial role in achieving the efficiency necessary in contemporary high-speed

computing systems. The protocol specifies many channels (read address, write address, read data,

write data, and write response) that function autonomously, enabling concurrent data transactions,

hence enhancing throughput and system performance to a large extent. The channels in the AXI

protocol is shown in Figure 5.

Figure 5: AXI channels

The AXI protocol defines five distinct types of channels:

Read Address Channel: The master device utilizes this channel to transmit read requests to the

slave device. The read address channel conveys details on the data's source address, as well as

transaction parameters such as data amount, burst type, and transaction ID. This allows the slave

to comprehend the specific facts that the master is soliciting.

AXI

Interconnect

Master-1

AW

AR

W

R

Master-2

AW

AR

W

R

Slave-2

AW

AR

W

R

Slave-1

AW

AR

W

R

AW

AR

W

R

AW

AR

W

R

AW

AR

W

R

AW

AR

W

R

Master

Interface

Slave

Interface

Read Address channel

Address and Control

Read Data

Address and Control

Write Response

Write Address channel

Write Data

10

Read Data Channel: The slave uses the read data channel to provide the data requested by the

master via the read address channel. In addition to the primary data, this channel also transmits the

response status (showing whether the read operation was successful or not) and the transaction ID,

which assists the master in linking the incoming data with the appropriate request.

Write Address Channel: The write address channel, like the read address channel, is used by the

master to commence a write operation. The data packet contains the destination address,

transaction characteristics, and a distinct transaction identifier. This channel efficiently conveys

information to the subordinate on the master's desire to record data and the precise details of the

activity.

Write Data Channel: The write data channel is tasked with transmitting the factual data from the

master to the slave for the purpose of writing it to the designated location. This channel transmits

the data along with the write strobes (which signify the valid data bits in the transfer) and the

transaction ID. The write strobes are essential for performing partial writes or for writing data that

is less than the bus width.

Write Response Channel: Once a write operation is started using the write address and data

channels, the slave utilizes the write response channel to confirm the successful completion of the

write operation. The system returns a status that indicates whether the write transaction was

successful or not, together with the transaction ID. This allows the master to verify that the write

operation was done accurately.

Each of these channels functions autonomously, enabling concurrent processing of numerous

transactions. This greatly improves the data throughput and overall efficiency of the system. The

division of channels for addressing, data transmission, and control signals in SoC designs that use

the AXI protocol reduces congestion and optimizes performance. The AXI connection offers

significant benefits due to its capability to accommodate various degrees of concurrency and

effectively manage transactions of varying sizes. The flexibility of AXI-based systems allows them

to be customized for many purposes, ranging from basic control duties to intricate data-intensive

activities. The AXI connection has a split-transaction mechanism that separates the request and

response portions of a transaction. This design reduces latency and enhances data throughput

inside the system.

4. Simulation Results

The proposed AXI interconnect is integrated with NoC architecture, rather than the traditional bus-

based NoC architecture. The 2x2 mesh topology is considered for the simulation and xy routing

algorithm is incorporated in the router. The mesh topology is characterized by a grid-like structure

with n rows and m columns. In a mesh architecture, each router is linked to the neighboring router

using cables. The network's (x, y) coordinates are used to specify the address of the router and IP

cores. In a Mesh Topology, the detection of defects and the avoidance of problematic nodes during

packet routing in the network are straightforward and efficient. This topology is the most

straightforward to implement compared to other topologies. In this architecture, packets traverse

a dedicated connection and are delivered only to their intended destinations.

4.1 Routing Algorithm

Routing algorithms play a crucial role in optimizing communication inside a NoC. These methods

ascertain the precise path that a packet should follow in order to reach its intended destination

node. Several routing algorithms have been suggested for implementation in NoC systems, and

11

they may be categorized based on their distinct characteristics and needs. The routing algorithm

may be classed as source, distributed, or centralized based on where the routing option is made. In

a centralized algorithm, the route is selected by the central controller. Source routing involves the

selection of a path by the source router before transmitting a packet, while distributed routing

involves the selection of the routing path by intermediate routers. The xy routing algorithm is

chosen in this work due to adoptability in nature and suitable for 2D mesh topologies.

The xy routing approach belongs to the category of distributed deterministic routing algorithms.

xy routing is free from both deadlocks and livelocks. The xy routing algorithm typically selects the

shortest and predetermined route for packet transmission. This approach is applicable to both

regular and irregular network topologies. Each node in the mesh network is identified by its

coordinates, represented as (x, y), where x represents its horizontal location and y represents its

vertical position.

The path from the source node to the destination node is pre-established and stays constant

regardless of the network's condition. Under conditions of non-congestion, the NoC network

exhibits a significant level of reliability and encounters little latency. This strategy establishes a

sequential movement of packets, first in the X-axis and then in the Y-axis. It blocks packets from

using other paths to circumvent blocked pathways. The present position of the router, indicated by

its (x, y) coordinates, is compared to the coordinates of the destination router to establish the route.

The data packet is first routed down the X-axis and then along the Y-axis until it reaches its

designated destination IP core. The XY routing technique in Mesh topology allows for just half of

the available turns by restricting the other half of turns. XY routing involves the initial movement

of a packet in the x-direction. Once the packet reaches the desired column, it is then transported in

the y-direction, either upwards or downwards. The xy algorithm is reported in Table 1.

Table1: XY Routing for 2D Mesh Network-on-Chip (NoC)

Algorithm: XY Routing for 2D Mesh Network-on-Chip (NoC)

1. Inputs:

 - Source Node Coordinates: (X_source, Y_source)

 - Destination Node Coordinates: (X_dest, Y_dest)

2. Output:

 - Selected Output Channel

3. Procedure:

• Calculate the differences between the destination and source coordinates:

 - X_offset = X_dest - X_source

 - Y_offset = Y_dest - Y_source

• If the offsets are both zero (meaning source and destination are the same), the algorithm

terminates as no routing is needed.

• If the Y_offset is positive, the selected output channel is North (Y+), indicating

movement towards a higher Y coordinate.

• If the Y_offset is negative, the selected output channel is South (Y-), indicating

movement towards a lower Y coordinate.

• If the X_offset is positive, after any north or south movement, the selected output

channel is East (X+), indicating movement towards a higher X coordinate.

12

• If the X_offset is negative, after any north or south movement, the selected output

channel is West (X-), indicating movement towards a lower X coordinate.

If the Yoffset is positive, the xy routing strategy routes packets to the west buffer. When the value

is negative, the packet is routed to the left, namely towards the east buffer. If the Xoffset is not equal

to zero, the packet is sent either upwards or downwards along the y-axis. If both the Yoffset and

Xoffset values are equal to zero, it signifies that the packet has successfully arrived at its intended

destination. The route from the starting node to the target node is consistently the most direct and

stays constant. This technique demonstrates reduced latency in situations of low network traffic

due to its static nature. Nevertheless, its efficiency declines considerably when there is congestion

and a restricted selection of alternative routes. When faced with a consistent traffic pattern, this

NoC routing method outperforms other algorithms. The xy routing algorithm network experiences

a much higher load in its central region compared to the average load over the whole network.

This results in a concentration of traffic in the center, which is often referred to as a hotspot. If

there is a faulty node along the route, the packet will get trapped in one of the switches.

Figure 6: Schematic of NoC Architecture

The Figure 6 is a schematic design of a NoC router. Below is a concise description of the various

blocks shown in the schematic:

• RouterCC (Router Crossbar Connect): This is the core component of the router, which

is responsible for directing data packets from the source to the destination. The system may

include a crossbar switch that links several input and output channels, which may originate

from the East (E), West (W), North (N), South (S), and local (L) directions.

13

• Router_Sink_W, Router_Sink_S, Router_Sink_N: These blocks are sink modules,

which serve as endpoints in the NoC where data packets are received from the router. The

letters "W", "S", and "N" represent the west, south, and north directions, respectively.

Buffers may be included to store incoming data.

• Router_Source_W: This module serves as a source, primarily responsible for transmitting

data packets into the network. The connection will be oriented towards the West, in

accordance with the naming tradition.

• axis_m_const_L, axis_m_const_VI_0, axis_m_const_N, and axis_m_const_S: These

blocks might potentially function as data generators or placeholders for data streams,

serving as the sources of traffic for the router. The RouterCC may receive either constant

or variable data for the purpose of routing it to various sinks.

• dip_[7:0], send_i, end_i: These signals are inputs and controls for the Router_Source_W

module. "dip" likely represents the data input, "send_i" might be a signal to initiate data

transmission, and "end_i" may indicate the completion of data transmission.

• xconstant_E: This component serves as a constant generator that produces a consistent

value. It is used for controlling or monitoring purposes inside the NoC. The constant value

is oriented eastward.

• xlconcat_0: This block is a concatenation module that merges numerous input signals into

a single broader output signal.

The signals axis_s, clock, led_o, and reset_n are often used as interface signals. "axis_s" refers to

the AXIS (AXI Stream) interface. "clock" represents the system clock signal. "led_o" is an output

signal used to drive an LED for debugging or status signaling. Lastly, "reset_n" is an active-low

reset signal. The figure 6 also illustrates the interconnections among these blocks, which

symbolize the transmission of data and control signals inside the router. The connections to the

East (E_m), West (W_m), North (N_m), South (S_m), and Local (L_m) with the RouterCC block

describe the possible routes for data transmission inside the network. The nomenclature used for

these blocks and signals implies the presence of a standardized interface, most likely AXIS, which

is widely used in FPGA and ASIC architecture for the purpose of streaming data.

Figure 7: AXI interconnect with Zynq SoC

The Figure 7 depicts a schematic representation of an AXI interconnect topology that connects

with a NoC. Below is a breakdown of the many elements that are depicted:

14

AXIS DMA: The AXIS DMA block is a controller that represents an AXI Stream Direct Memory

Access (DMA). DMA controllers facilitate the autonomous movement of data between memory

and peripherals, eliminating the need for CPU involvement.

ps7_0_axi_periph: The block labeled "ps7_0_axi_periph" indicates an AXI peripheral that is

linked to the processing system. The term "ps7_0" suggests that it is a component of a Xilinx Zynq-

7000 series SoC, where "ps7" refers to the seventh version of the Processing System.

s00_couplers: The s00_couplers module enables the linkage between the AXI peripheral and the

AXI interconnect. It functions as an intermediary, ensuring proper communication between the

peripheral and the AXI Interconnect.

auto_pc (AXI Protocol Converter): The auto_pc is a component that handles the conversion of

protocols, potentially across multiple AXI interfaces (such as from AXI3 to AXI4). This

guarantees interoperability across IP blocks that may be using disparate versions of the AXI

protocol.

M_AXI, S_AXI: The M_AXI and S_AXI interfaces refer to the master and slave AXI interfaces,

respectively. The "M_AXI" interface serves as the primary interface responsible for initiating read

and write transactions. On the other hand, the "S_AXI" interface functions as the secondary

interface that replies to these transactions launched by the master.

AxCxK, AxRESxT: The control signals AxCxK and AxRESxT are part of the AXI protocol.

• "AxCxK" is an abbreviation for AXI Clock, which refers to the clock signal used for the

AXI interface.

• "AxRESxT" is most likely an abbreviation for AXI Reset, which serves as the reset signal

for the AXI interface.

ack, aresetn: The control signals often seen in digital circuits are known as "ack" and "aresetn".

• "ack" is often used as an acknowledgement signal during the process of handshaking

between different components.

• The "aresetn" signal is a kind of reset signal that is active-low and asynchronous. It is used

to reset the interface or component.

AXI Interconnect: The AXI Interconnect is a pivotal component that facilitates communication

between various masters and slaves inside the system. It manages the process of directing

transactions from masters to the right slaves.

15

Figure 8: Simulation results of Proposed AXI interconnect based NoC Architecture

The Figure 8 is a waveform derived from a simulation of a NoC architecture using AXI

interconnect. An analysis of the fundamental components included in the waveform described as

below:

• dma_dout: This indicates the digital output signal originating from the DMA block. The

signal seems to be a binary signal with two bits, where each bit alternates at distinct time

intervals throughout the simulation.

• slot_0: dma_s Interface: This interface facilitates the DMA transaction specifically for

slot 0. The signal comprises:

TVALID: Indicates that the master is performing a legitimate transfer.

TREADY: Indicates the slave's readiness to accept a transfer.

TLAST: Indicates the last transfer inside a transaction.

TDATA: The data that is being sent.

• slot_2: Conn1 Interface and slot_1: S_AXI Interface: The interface for slot_2 is Conn1,

whereas the interface for slot_1 is S_AXI. These interfaces are supplementary to the AXI

connection. The presence of the same signals (TVALID, TREADY, TLAST, TDATA)

indicates the occurrence of many simultaneous contacts with the interconnect.

In Figure 8, data sent when both TVALID and TREADY signals are in a high state. TDATA displays

the specific data that is being sent throughout these transactions. The hexadecimal value denotes

the information payload. A high value of TLAST signals the completion of a series of data transfers.

The simulation results indicate that the DMA is effectively starting transactions with the interface,

and data is being transferred and received as expected without any apparent faults or conflicts seen

in the waveform.

16

(a) Area utilization (b) Power utilization

Figure 9: Area and power utilization summary

Table 2: Resource Utilization comparison results

Method Resource Utilization (Slices) in %

PTP-BI [17] 50.58

AXI4-BBI [17] 34.48

Proposed AXI interconnect 14

The Table 2 presents a summary of the resource use of various connectivity technologies, with a

special emphasis on the proportion of slices used in Zynq 7000 SoC architecture. The first

technique mentioned, PTP-BI [17], refers to Point-to-Point Bidirectional Interconnect, as cited in

source [17]. It represents 50.58% of the slices. In this particular architecture, direct connections

are made between two ends, enabling data flow in both directions. The significant portion of the

slice consumption suggests a possibly extended connection configuration that necessitates a huge

amount of logic resources. PTP-BI is followed by AXI4-BBI [17], which refers to an AXI version

4 Bus-Based Interconnect, also mentioned in the same source [17]. This connection utilizes a

smaller percentage of slices, 34.48%. The AXI4 standard is renowned for its exceptional

performance and is often used in system-on-chip architectures that operate at high frequencies.

Based on the statistics, it can be inferred that a bus-based connection is more efficient in terms of

resource use when compared to the point-to-point bidirectional architecture. The Proposed AXI

interconnect based design demonstrates resource efficiency by employing 14% of the available

slices. This signifies a substantial decrease in the use of resources as compared to the PTP-BI and

AXI4-BBI approaches. Latency and throughput are crucial performance measures for assessing

NoC designs. Comprehending and computing these metrics is essential for designers to guarantee

that the NoC fulfills the required criteria for effective data transmission inside a SoC. Given that

the simulation ended after 3497 cycles and 3000 cycles measured, the approximate latency would

be 497 cycles. Each clock cycle required 2ns time period, so latency would be 994ns or 0.99 µs.

17

Latency in a Network-on-Chip (NoC) refers to the time it takes for a data packet to get from the

starting node to the ending node. It encompasses the duration required for routing, the processing

that occurs at intermediate switches, and any potential delays in queuing. The latency may be

determined by measuring the number of cycles (clock cycles), which is dependent on the clock

frequency of the system. Throughput in a NoC refers to the rate at which data may be sent between

nodes within a certain time frame. The typical unit of measurement is bits per second (bps) or

transactions per cycle. In this simulation, the simulation ended after 3497 cycles. 15257 flits sent,

and also 15257 flits received by the end of the simulation. The formula for throughput (Th) would

then be:

𝑇ℎ =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑖𝑡𝑠 𝑠𝑒𝑛𝑡 𝑜𝑟 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝐶𝑦𝑐𝑙𝑒𝑠
 (2)

The proposed NoC has a throughput of roughly 4.363 flits per cycle, as shown by the given

statistics. On average, about 4.363 flits are successfully conveyed via the network each cycle.

Table 3: Latency and Throughput comparison results

Method Latency (µs) Throughput (flits per cycle)

PTP-BI [17]
33.9 -

AXI4-BBI [17]
56.29 -

NoC-BI [17]
5.87 0.38

Proposed AXI interconnect
0.99 4.363

The Table 3 provides a comparative study of several connectivity techniques in network

architectures, evaluated based on their latency and throughput measurements. Latency is defined

in microseconds (µs), whereas throughput is evaluated by the number of flits. The first approach

is the PTP-BI [17], with a recorded latency of 33.9 µs. The AXI4-BBI [17] approach has a much

greater delay of 56.29 µs. The NoC-BI (Network-on-Chip Bidirectional Interconnect) developed

in [17] demonstrates a significant increase in performance, achieving a latency of just 5.87 µs and

a throughput of 0.38 flits per cycle. The Proposed AXI connection, which demonstrates

outstanding performance metrics: a minimal latency of just 0.99 µs, coupled with a high

throughput of 4.363 flits per cycle. These numerical metrics demonstrate a connection that has

been specifically designed to maximize both speed and efficiency. This architecture facilitates

efficient data transfer with low latency and allows a huge volume of data to be processed, which

is very beneficial in high-performance computing applications that need fast data interchange and

decreased response times.

Conclusions

The findings of the research that was carried out in this article provide evidence that the AXI

interconnect-based NoC architecture that was proposed is beneficial in improving the performance

of SoCs. The findings that were acquired from the simulation tests show proof of the architecture's

improved performance. In comparison to typical NoC designs, the architecture achieved much

reduced latency and greater throughput. The NoC architecture that has been proposed provides a

18

solution that is scalable, efficient, and adaptive for the increasingly data-intensive applications that

are being used today. It stands out as a viable approach for the development of future SoC

implementations. An infrastructure for communication that is both resilient and high-speed is

produced as a result of the combination of AXI protocols and NoC principles. This infrastructure

is suited for complicated integrated circuits and the demands of current computing workloads. A

second factor that contributes to the attractiveness of the proposed design is the significant

decrease in resource use, which is down to 14% of slices. This provides an alternative to current

interconnect techniques that is more efficient with resources. The findings of this study provide a

significant contribution to the field of on-chip network design and establish a standard for future

research in the creation of SoC architectures that are high-performance, low-power, and efficient

in terms of area use.

References

1. Chakravarthi, Veena S., and Shivananda R. Koteshwar. "System on Chips (SOC)." In System

on Chip (SOC) Architecture: A Practical Approach, pp. 17-35. Cham: Springer Nature

Switzerland, 2023.

2. Harish, T. L., and M. C. Chandrashekhar. "Review on Design and Verification of an Advanced

Extensible Interface-4 Slave Devices." ACS Journal for Science and Engineering 3, no. 2

(2023): 15-20.

3. Schmid, Robert, Max Plauth, Lukas Wenzel, Felix Eberhardt, and Andreas Polze. "Accessible

near-storage computing with fpgas." In Proceedings of the Fifteenth European Conference on

Computer Systems, pp. 1-12. 2020.

4. Manzoor, Misbah, and Roohie Naaz Mir. "A Review of Design Approaches for Enhancing the

Performance of NoCs at Communication Centric Level." Scalable Computing: Practice and

Experience 22, no. 3 (2021): 347-364.

5. Poovendran, R., and S. Sumathi. "An area‐efficient low‐power SCM topology for high

performance network‐on Chip (NoC) architecture using an optimized routing

design." Concurrency and computation: practice and experience 31, no. 14 (2019): e4760.

6. Venkataraman, N. L., and Rajagopal Kumar. "An efficient NoC router design by using an

enhanced AES with retiming and clock gating techniques." Transactions on Emerging

Telecommunications Technologies 31, no. 12 (2020): e3839.

7. Uma, V., and Ramalatha Marimuthu. "D-wash–A dynamic workload aware adaptive cache

coherance protocol for multi-core processor system." Microelectronics Journal 132 (2023):

105675.

8. Javed, Aqib, Jim Harkin, Liam McDaid, and Junxiu Liu. "Predicting Networks-on-Chip traffic

congestion with Spiking Neural Networks." Journal of Parallel and Distributed

Computing 154 (2021): 82-93.

9. Chen, Kun-Chih Jimmy, Masoumeh Ebrahimi, Ting-Yi Wang, Yuch-Chi Yang, and Yuan-Hao

Liao. "A NoC-based simulator for design and evaluation of deep neural

networks." Microprocessors and Microsystems 77 (2020): 103145.

10. Bui, Phan-Duy, and Chanho Lee. "Unified system network architecture: flexible and area-

efficient NoC architecture with multiple ports and cores." Electronics 9, no. 8 (2020): 1316.

11. Krishnan, Gokul, Sumit K. Mandal, Chaitali Chakrabarti, Jae-Sun Seo, Umit Y. Ogras, and Yu

Cao. "Impact of on-chip interconnect on in-memory acceleration of deep neural

networks." ACM Journal on Emerging Technologies in Computing Systems (JETC) 18, no. 2

(2021): 1-22.

19

12. Alagarsamy, Aravindhan, Sundarakannan Mahilmaran, Lakshminarayanan Gopalakrishnan,

and Seok-Bum Ko. "FRDS: An efficient unique on-Chip interconnection network

architecture." Integration 87 (2022): 90-103.

13. De Sio, C., S. Azimi, and L. Sterpone. "On the analysis of radiation-induced failures in the

AXI interconnect module." Microelectronics Reliability 114 (2020): 113733.

14. Emil, Demyana, Mohammed Hamdy, and Gihan Nagib. "Development an efficient AXI-

interconnect unit between set of customized peripheral devices and an implemented dual-core

RISC-V processor." The Journal of Supercomputing (2023): 1-20.

15. Chebiyyam, Santhi, M. Gurunadha Babu, M. Ajay Kumar, and L. Radhika Rani.

"Development of Low Power and Area Efficient Multi-core Memory Controller Using AXI4-

Lite Interface Protocol." In International Conference on Data Science and Communication,

pp. 691-703. Singapore: Springer Nature Singapore, 2023.

16. Seyoum, Biruk, Marco Pagani, Alessandro Biondi, and Giorgio Buttazzo. "Automating the

design flow under dynamic partial reconfiguration for hardware-software co-design in FPGA

SoC." In Proceedings of the 36th Annual ACM Symposium on Applied Computing, pp. 481-

490. 2021.

17. Jayshree, Gopalakrishnan Seetharaman, and Debadatta Pati. "Design and Area Performance

Energy Consumption Comparison of Secured Network-on-Chip with PTP and Bus

Interconnections." Journal of The Institution of Engineers (India): Series B 103, no. 5 (2022):

1479-1491.

18. Swarbrick, Ian, Dinesh Gaitonde, Sagheer Ahmad, Brian Gaide, and Ygal Arbel. "Network-

on-chip programmable platform in VersalTM ACAP architecture." In Proceedings of the 2019

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 212-221.

2019.

19. Lant, Joshua, Caroline Concatto, Andrew Attwood, Jose A. Pascual, Mike Ashworth, Javier

Navaridas, Mikel Lujan, and John Goodacre. "Enabling shared memory communication in

networks of mpsocs." Concurrency and Computation: Practice and Experience 31, no. 21

(2019): e4774.

20. Behera, Debasis, Suvendu Narayan Mishra, Prabodh Kumar Sahoo, and Heli Amit Shah. "An

enhanced approach towards improving the performance of embedding memory management

units into Network-on-Chip." e-Prime-Advances in Electrical Engineering, Electronics and

Energy 6 (2023): 100332.

20

