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Abstract: Accurate diagnostic tools for disease control and treatment options is of immense importance, specially during pandemics,
Coronavirus (or COVID) that drew global attention in late 2019. Early detection and seclusion are the cornerstone effective ways to
prevent virus spread. Artificial intelligence (AI)-based diagnostic tools for COVID detection have surged dramatically using various
diagnostic imaging techniques, among which Chest X-ray (CXR) have been extensively investigated due to its fast acquisition coupled
with its superior results. We propose a hybrid, automated, and efficient approach to detect COVID-19 at an early stage using CXRs.
One of the main advantages of the proposed analysis is the development of a learnable input scaling module, which accommodates
various CXR with different sizes with the ability to keep prominent CXRs features while filtering out noise. Additionally, the suggested
method ensembles several learning modules to extract more discriminative representation of texture and appearance cues of CXRs,
thereby facilitating more accurate classification. Particularly, we integrated two sets of features (texture descriptors and deeper features)
representing a rich accumulation of both local and global characteristics. In addition to learnable scaling and information-rich features,
an ensemble classifier using various machine learning models is used for classification. Our classification module included support
vector machine, XGBoost and extra trees modules. Extensive evaluation, supported by ablation and comparison studies, is conducted
utilizing two benchmark datasets to assess the model’s performance via a cross-validation strategy. Using various metrics, the results
document the robustness of our ensemble classification system with higher accuracy of 98.20% and 97.85% for the two data sets,
respectively.

Keywords: Ensemble Classifier; Autoencoder; Artificial Intelligence; Feature Fusion

1. Introduction
The Coronavirus (COVID-19) has rapidly propagated

across the globe since its emergence in late 2019. The global
pandemic precipitated by COVID-19 has unleashed a catas-
trophic assault, afflicting over 287M individuals and claim-
ing the lives of approximately 5.4M people. Subsequently,
medical experts worldwide have relentlessly dedicated their
efforts to find vaccines and treatments for COVID-19 [1].
COVID-19 could be recognized in two distinct manners.
The primary one is a real-time polymerase chain reaction
(RT-PCR) nucleic identification testing. RT-PCR has aided
in diagnostics, discharge evaluation, and recovery moni-
toring. Nevertheless, the RT-PCR sample sensitivity is re-
stricted, and this may result in an increased false negatives.
Medical imaging, i.e., chest X-ray (CXR) or computed
tomography (CT), is the second technique for detecting
COVID-19 [2], [3]. CT scans have multiple cross sections,
making diagnosis time-consuming and costly. Technicians
must make numerous adjustments during the process. In-

adequate disinfection between CT technicians and patients
can cause cross-contamination. Furthermore, in some areas,
a shortage of radiologists poses a challenge [4]. Given the
enormous impact of artificial intelligence (AI) methods for
health-related imagery, a number of scientists have turned
to these resources in the recent COVID-19 scenario more
accurately, quickly, and affordably [5]. Deep learning (DL)
is highly effective and produces better results for CXR
image classification. It has made significant progress in
feature learning and representing features [6]. In summary,
early, precise, and fast COVID-19 detection is critical for
timely isolation and medical intervention. Such measures
are pivotal for patient diagnosis, epidemic prevention, and
public preventive care.

In this work, we propose a hybrid architecture based
on an ensemble classifier that integrates a scale-invariant
input module and an ensemble cascaded classification for
lung disease detection. Our proposed model has been
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evaluated using two data sets and compared against of
the shelf networks as well as recent COVID-19 detection
methods. The key contributions of the present study are:
(i) a robust ensemble design that integrate feature fusion of
information-rich features for classification as compared to
direct feature concatenation; (ii) prominent disease-related
features are retained through the a learnable scale-invariant
module compared with conventional image resizing algo-
rithms; (iii) we developed a hybrid architecture to extract
prominent features, thereby aiding in intermediate feature
learning; and (iv) we demonstrated improved system clas-
sification accuracy using cross-validation and two data sets
for evaluation.

The paper is structured into five sections starting with
the introduction to CXRs and its utilization in modern CAD
systems for COVID detection and diagnosis long with the
outlined contributions of this work, is given in Section 1.
The relevant review of the recent and related literature work
is provided in Section 2. Full descriptions of the methodol-
ogy and the details of the learnable modules and strategies
are completely specified in Section 3. Data description,
employed evaluation criteria, conducted experiments, and
results and discussion are given in Section 4. Associated
conclusions, and future work suggestions are outlined in
Section 5.

2. RelatedWork
In applications that use image-based data, AI approaches

have consistently produced accurate and dependable re-
sults. In recent years, researchers have investigated and
analyzed CXR images to identify COVID-19 using DL-
based techniques (e.g., [7]–[13]). A technique to auto-
mate the detection of COVID-19 was developed using
extended segmentation-based fractal texture analysis and
discrete wavelets [14]. Selected optimal features are com-
bined with an entropy-controlled genetic algorithm and
implemented through serial approach. To detect the chosen
features, different ML classifiers were used. The Naı̈ve
Bayes classifier achieved 92.6% accuracy, compared to
other ML algorithms. A hybrid shape-based (HOG-based)
and convolutional neural network (CNN)-derived features
was proposed by [15]. Integrated features improved overall
performance by allowing classifiers to gather insights from
the amalgamated data. They used three CT datasets of
328, 1,972, and 1,608 images for pneumonia, COVID-19,
and normal individuals, respectively. VGG16 + HOG+SVM
accomplished an accuracy of 99.4%. This suggests that
the proposed combined feature can improve SVM accuracy
in COVID19 diagnosis. Pre-trained CNNs were combined
by [16] with a pyramid MLP-mixer module to classify 4,099
CXR images which contained 1,464 COVID-19, 1,294
pneumonia, and 1,341 normal patients. They attained a
98.3% of accuracy with their model. Singh et al. [7] utilized
a customized stacked ensemble model compromising four
learners based on CNN and Naı̈ve Bayes serving as meta-
learner for categorizing CXR images. Their method scored
an accuracy of 98.67%. The performance of seven CXR-

DL-based COVID detection modules was introduced by
El Asnaoui et al. [17]. In their study, Inception-ResNetV2
achieved an accuracy of 92.18%. A DL-based ensemble
module based on CNN for binary and multi-calss classifi-
cation was proposed by Bhardwaj et al. [10]. Their method
provided an average accuracies of 98.33% and 92.36% for
binary and multiclass, respectively. A similar approach was
proposed in [11], where the experimental results showed
that their approach achieved an accuracy of 91.2% for
the multi-class problem. Although the used dataset was
large and TL concept was applied, the overall accuracy
wasn’t high. A modified COVIDnet model for COVID-19
diagnosis, called EDL-net, was proposed by Tang et al. [13].
The suggested framework achieved a detection accuracy
of 95%. COVID-19 identification was carried out using
multiclass and hierarchical classification tasks in [18]. In
the classification schema, both early- and late-fusion meth-
ods were used using texture features and CNN-extracted
features. They used a dataset consisted seven classes with a
total 1,144 CXR images. The evaluation results showed that
the suggested method was effective, resulting in a F1-score
of 0.89 to acquire COVID-19 recognition.

Recently, a method employing a pre-processing step
fusing 800 CXRs was developed by Waisy et al. [19].
They combined the weighted decisions of the two trained
modeled suggestions and accomplished an accuracy of
98%. Balasubramaniam et al. [20] proposed a model based
on ensemble learning technique for COVID-19 detection.
They applied their method on a dataset consisted of 5,000
CXR images. Their approach achieved an accuracy of
92.3%. Hossain et al. [21] presented an AI-based solu-
tion for COVID-19 infection identification by integrated
a weighted CNN fusion strategy with an attention mod-
ule. The former combined multiple base pretrained CNN
models, such as ResNet50V3, VGG-16, and InceptionV3
models. The utilized attention module identified important
features while resisting overfitting and leverage an LC
layer. The dataset used includes 1,848 CXR images with
equal counts from the COVID-19, healthy, and pneumonia
categories. Experimental outcomes revealed that the fusion
model scored an accuracy of 96.75%. Additionally, Paul et
al. [22] offered an ensemble approach using an inverted bell
curve weighted ensemble with DenseNet161, ResNet18,
and VGG-16 networks. Their binary- and three-class classi-
fications were performed on an internal validation dataset of
1,214 images, involving 683 COVID-19 instances, with an
99.84% accuracy. Kumar et al. [23] suggested an ensemble
model for detecting COVID-19 infection using multiple
transfer learning models such as GoogLeNet, Efficient-
Net, and XceptionNet. They used a dataset contained four
classes: COVID-19, pneumonia, tuberculosis, and normal.
The designed ensemble model enhances the effectiveness of
the classifier on multiclass and binary COVID-19 datasets.
Their proposed method scored an accuracy of 99.2% on four
class classification and 99.3% for the binary classification.

In sum, various studies have been conducted and demon-
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strated promising results. Most of the methods employed
DL-based approaches; however, the overall accuracy still
need improvement. While, some methods utilize ensemble
learning, some of these studies have a small number of
subjects to test. Traditionally, the original image is used as
the input to the CNN, that might not be sufficient to give
a high accuracy score. Furthermore, various studies have
integrated CXR and CT data sets; however, higher-order
texture features were not deeply investigated in addition
to the deep features. This work aims to present a robust
pipeline based on feature fusion of higher-order texture
features and CNN-derived deep features in order to get high
accuracy with minimum loss. Additionally, our design is
based on an ensemble classifier that integrates three ML
algorithms with five fold cross-validation for evaluation.
Our proposed model is hybrid in nature and has been
evaluated using two data sets and compared against of
the shelf networks as well as recent COVID-19 detection
methods.

3. Analysis Pipeline
Figure 1 illustrates the proposed analysis pipeline, com-

prising multiple main analysis blocks: learnable-scale in-
variant module, the proposed deep feature extraction model,
feature fusion, and ensemble classification. Before data
analysis, a preprocessing stage is conducted, which is es-
sential to improve the input data for subsequent processing
operations. This stage is crucial as it ensures that a given
model is generalizable, particularly when evaluated on data
sets outside of the training cohort. Preprocessing step also
minimizes data noises and/or deformations, allowing the
deep architectures or hand-crafted features extraction to
perform its tasks effectively and quickly. All stages are
further detailed next.

A. Learnable Input-Scaling
Evaluation data sets in the filed of medical image

analysis are usually collected at different sites and ma-
chines. Thus, collected images have different sizes. Also,
modern CAD system for disease diagnosis that utilize pre-
trained networks requires input image downscaling to fit
the model’s input layer. This results in a huge loss of
prominent features. To avoid this, in our design we have
developed a learnable module that utilizes auto-encoder to
resize input CXRs images without losing rich information
as compared with traditional downscaling techniques [24].
Auto-encoders are well known for their ability to filter noise
and irrelevant information while minimizing information
loss in output reconstruction [25]. In our pipeline, the learn-
able input scaling module resize the CXRs to a 224 × 224
using an auto-encoder structure to be utilized as the input
in a pre-trained CNN-based feature extraction.

The block diagram of the learnable input scaling module
is depicted in Figure 2. The encoding path comprises
successive convolutional and pooling layers to produce
small sized feature maps, AEm, of the desired size of
224×224, which subsequently undergoes convolution, trans-
posed convolution, and reshaping to achieve dimensions

of 224 × 224 × 4. Both original and processed AEms are
then combined via concatenation, generating high and low-
resolution images. The former is generated from AEm and
is then utilized for preprocessing and feature extraction
and classification. The latter aids in module training to
minimize reconstruction error and learn crucial features
while discarding redundancy and noise. Training employs a
hybrid customized loss function that incorporates pseudo-
Huber and log-cosh loss functions. In particular, Pseudo-
Huber loss (see Eq. 1 ) is used due to its robustness against
outliers in addition to its unique behaviour that resemble
squared (for small errors) and absolute losses (for large
errors) using one tunable hyper-parameter, λ [26].

PH(ν) = λ2


√

1 +
(
ν

λ

)2
− 1

 (1)

The Log Cosh loss function logcosh(x) = log(cosh(ν)),
on the other hand is similar to Huber loss, while hold
the benefits of being double differentiable everywhere [27].
In the above equations, ν is the the variance between the
observed and anticipated outcomes.

After resizing, multiple image preprocessing are con-
ducted on the resized images. Image pre-processing is a
vital process in the analysis of medical images tasks. This
step range from simple task, such as noisy removal to more
complicated tasks like, histogram equalization and data
augmentation, which are for vital for enhanced and right
classification. In this study, we used data normalization, in
which all pixel values were rescalled to [−1, 1] using

(
1

255

)
as the pixel-wise multiplication. Given a grayscale image
I with maximum (Imax) and minimum (Imin) values, the
normalized image, R = I−Imin

Imax−Imin
. After data normalization,

we applied histogram equalization in order to increase the
global contrast. This allows areas with low local contrast to
gain contrast. Histogram equalization frequently produces
artificial appearances in images; however, it is extremely
useful for scientific images in nature such as thermal,
satellite, or X-ray images [28].

B. Feature Extraction
In medical image classification problems, feature extrac-

tion and selection are critical. A number of images may
be classified based on its primary distinguishing features,
that are found using a suitable feature extraction tech-
nique [29]. To enhance the accuracy of CXR classification,
in the proposed pipeline we integrated two types of CXR-
derived information-rich features: deep CNN–derived along
with texture and radiomic features. These feature-driving
algorithms are well-known for their proficiency in medical
image classification tasks. The extracted features are then
integrated where the layers of these models are combined
using the stacking method to create an ensemble classifier,
resulting in a more robust classification.

Firstly, deep features are extracted from the prepro-
cessed image using pretrained neural network architecture.
The goal of this stage is to diagnose COVID-19 (i.e.,
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Figure 1. Schematic of the developed pipeline for lung disease detection.

Figure 2. A schematic showing the structure of the learnable input
scaling module.

categorize an input CXR image to one of the three classes).
To attain the goal, we utilized ResNet50 pretrained on the
ImageNet dataset [30]. ResNet is cutting-edge CNN archi-
tecture that presented an improvement over traditional CNN
architectures due its ability to address the vanishing gradient
problem often encountered by CNN modules, which is
circumvented using the residual layers. The latter enable
direct transfer of data from one layer to another, skipping
some layers. By doing so, the network (with very deep
architecture) to develop residual functions, that represent
basically the variations between the desired output and the
present result at the current layer. Thus, through intrgerating
a pretrained ResNet50 into our ensemble architecture, we
utilize its ability to learn detailed features and patterns
from CXR images. The CXRs are resized to 224×224
using the learnable input scaling module and then we
removed the final fully connected layer to get the feature
vector. Obtaining these feature vectors required minimal
computational capacity. We deployed pre-trained ImageNet
dataset weights instead of fine-tuning ResNet50 for the data
set, as it is able to offer features for most images.

Secondly, a set of texture features from the CXRs are
also included to enhance disease differentiation by helping
the proposed architecture to harness the spatial interactions

between pixels’ intensities. The features are computed using
two higher-order texture feature descriptors. This set of
features are derived from using GLCM based Haralick
features and the gray-level run length matrix (GLRLM)
features. GLCM produces a square matrix with the same
dimension as the number of grey levels in the image. Each
GLCM cell represents the total number of co-occurring
associated grey levels in the image. The matrix must have a
reasonably high occupancy level in order for the statistical
estimate to be reliable. Thus, either the number of grey level
values is reduced or a larger window should be used [31].
The GLCM matrix, G, can be calculated as follows [32]:

G∆x,∆y(i, j) =
K∑

x=1

M∑
y=1

{
1, Ri(x, y) = i,Ri(x + ∆x, y + ∆y) = j
0, otherwise

(2)
where Ri(x, y), and {∆x, ∆y} are pre-processed data with
K×M dimension at the spatial position {x, y}; and the spatial
offset in the image I, respectively. The GLCM matrix’s
second-order statistical analysis yields various parameters
that are widely used as texture features in medical data
classification research [33]. In our work, we extracted the
five most commonly used GLCM features from each image:
energy, contrast, correlation, homogeneity and dissimilar-
ity [34]. We statistically evaluated the GLCM features to
select the most informative and distinctive ones.

Furthermore, the GLRLM texture features are utilized in
the method we employ as a higher-order statistical texture
feature set. GLRLM investigation, like GLCM, commonly
herbal extracts the spatial plane features of pixels based on
the high-order statistics of their immediate neighbors [35].
Thus, GLRLM features texture patterns assessment deliver
discriminative power for image classification and supple-
ment other features such as color, shape, and intensity
for comprehensive representations and better performance.
The technique generates a normalized 2D feature matrix,
with each component representing the overall number of
occurrences of the graylevel in the given direction [36].
Typically, GLRLM extractor captured information of pixel
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pairs at angels 0, 45, 90, and 135o. Mathematically, each
element L(i, j|θ) of the run length matrix L, represents
the number of runs with pixels of graylevel intensity and
length of run equal to i and j,respectively along a specific
orientation, i, j ∈ [0, 255], θ ∈ {0, 45, 90, 135}. From L for
an input image of size N × M, many features including
short/long run emphasis (SRE/LRE), greyLevel/run Length
non-uniformity (GLN/RLN), run percentage (RP), low/high
gray level run emphasis (LGRE/HGRE) for a given θ can
be calculated using the number of greylevel (g) and number
of discrete run lengths (r) of a given image as as follows:

S RE =
g∑

i=1

r∑
j=1

L(i, j)
j2 (3)

LRE =
g∑

i=1

r∑
j=1

j2L(i, j) (4)

GLN =
g∑

i=1

 r∑
j=1

L(i, j)

2 (5)

RLN =
r∑

i=1

 g∑
j=1

L(i, j)

2 (6)

RP =
1

N × M

g∑
i=1

r∑
j=1

P(i, j) (7)

LGRE =
g∑

i=1

r∑
j=1

L(i, j)
i2

(8)

HGRE =
g∑

i=1

r∑
j=1

i2L(i, j) (9)

C. Feature Fusion and Ensemble Classification
Following feature extraction, we used a feature fusion

approach for combining derived CXR features for classi-
fication. This technique usually enhances the discrimina-
tive classification power of a given system by delivering
comprehensive representations of information-rich features.
Finally, the fused CXR features are provided as input to
a ML classifier for prediction. Our design is based on
an ensemble classifier that integrates three ML algorithms:
SVM, XGBoost, extra trees. Also, five fold cross-validation
technique was used for training the ensemble models on
the CXRs datasets. The SVM is the first ML algorithm
that is employed in our design. SVM, as a supervised ML
technique, constructs a hyperplane to effectively separate
two input classes while maximizing the margin. The margin
indicates the difference between the SVs and the hyper-
plane [37]. The main advantage of SVM lies in the fact
that it powerfulness ability to handle high-dimensional data
and non-linear classification using kernel functions, while
being effective with limited training samples.

In addition to SVM, XGBoost is also included in our
ensemble model. It has gradient boosting at its core. The
XGBoost algorithm differs from simple gradient boosting in
that it uses a multi-threaded approach to add weak learners,
rather than adding them sequentially. The XGBoost algo-
rithm stands out from basic gradient boosting when it adds
weak learners in a multi-threaded approach, utilizing the
machine’s CPU cores for faster and better performance.
Sparse aware implementation includes automated missing
data values handling, a block structure for parallel tree de-
sign, and ongoing training to improve an existing model on
new data [38]. Finally, extra tree, an extremely randomized
classifier, is integrated in our ensemble model [39]. It is built
differently than traditional decision trees. Random splits are
utilized to determine the best way to divide a node’s samples
into two separate sets. The best split will be determined
based on randomly selected features, specifically max fea-
tures. Its averages out the variance problems of a single
decision tree method, making it suitable for multiple sub
samples of a dataset. This improves predictive accuracy and
prevents overfitting [40].

4. Experimental Results and Discussion
In recent years, the need for the development of precise

and accurate computer-aided diagnostic tools for disease
detection has surged dramatically. Among several diseases,
lung diseases has drawn global attention for the need
to develop artificial intelligence-based tools for precise,
accurate and effective containment and treatment plans. The
primary goal of our study is to develop and evaluate a
versatile pipeline with the potential to be extended for the
detection of various lung diseases.

The primary objective for developing the proposed AI-
pipeline is to create a robust classification model that will
perform well regardless of the domain in which it can be
used. System evaluation and assessment is based on two
publicly-available chest x-ray datasets with compromising a
total CXRs of 20,063 images [41]–[45]. The datasets consist
of three classes: normal, pneumonia, and COVID-19 and are
summarized in Table I.

TABLE I. Per-class distribution for the public datasets.

Dataset
First Second Total

Normal 4,200 1,751 5,951
Pneumonia 4,273 4,273 8,546
COVID-19 4,195 1,371 5,566
Total 12,668 7,395 20,063

For experimental and training settings, the system was
built with the TensorFlow framework and Keras as the
backend using the Python programming language. All ex-
periments are conducted using a windows machine with
32GB RAM, 8GB NIVIDIA graphics card, and a 12 core
i7-processor. We employed Adam optimizer [46] and set the
learning rate at 10−4 due to its effective hyperparameters’
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selection. Furthermore, the batch size was fine-tuned to 32,
epochs at 50, and categorical loss function was used.

To offer comprehensive assessment of the proposed
system’s efficacy, quantitative evaluation is conducted us-
ing various metrics: accuracy, recall, precision, and F1-
Score indexes. The accuracy (AC) represents the ratio of
correctly categorized labels to the total number of tested
ones. Recall (RC, specificity) is a representation of the
fraction of correctly identified positive (or negative) class.
Further, correctly predicted positive samples out of the total
predicted patterns in the positive class is referred to as
precision (PR). Finally, the F1-Score indicates the harmonic
mean between RC and PR. The overall accuracy for the
proposed method is summarized in Table II.

TABLE II. Multi-class accuracy of comparing the ensemble classifier
against various classifiers. Here, AC: accuracy, PR: precision, RC:
recall; RF: random forest; and SVM: support vector machine.

Evaluation Metrics (%)
Classifier AC PR RC F1-Score
XGBoost 78.23 80.64 76.51 77.15

RF 81.13 82.36 82.56 82.42
SVM 85.39 83.03 84.25 83.87

Extra Trees 88.10 87.18 86.08 86.73
Our (dataset1) 98.20 97.91 98.18 96.43
Our (dataset2) 97.85 97.33 95.67 96.67

At first, we investigated the importance of the ensemble
classifier on the overall system performance. Thus, we
evaluated the classification process using different single
ML models and Table II represents the summary of the
accuracy of the tested models. For the second evaluation
phase, we investigated the importance of features fusion.
Thus, we conducted an ablation study where we test the
system accuracy using each type of the features separately.
Table III represents the summary of the obtained accuracy.
As demonstrated, the proposed model’s performance is
highly enhanced using the fused features compared to
individual features and reached to an accuracy of 98.20%
and 97.85% for the first and second data sets, respectively.

TABLE III. Overall performance for the proposed model. Here,
HaC: Handcrafted Features; CNN: convolutional neural network;
AC: accuracy, PR: precision, RC: recall.

Metrics, (%)
Method AC PR RC F1-score

HaC Features 90.15 88.63 89.28 89.46
CNN Features 93.29 91.33 90.00 90.67

Proposed (dataset1) 98.20 97.91 98.18 96.43
Proposed (dataset2) 97.85 97.33 95.67 96.67

Particularly, the ablation and experimental studies shown
in the above tables emphasize the robustness of the pro-
posed model. First, in Table II, it observed that most of the
single classifier have lower performance and the extra tress
achieved the highest accuracy when tested on the extracted

features. However, individual classifiers are all less than the
ensemble model of the fused features. This highlights the
importance of the ensemble classifier compared with single
ML classification. Also, the reported results in Table III
emphasis the idea that feature fusion enhances the overall
performance.

Besides quantitative indexes, the architecture perfor-
mance is investigated using the confusion matrices (CM)
and the receiver operating characteristics (ROC) curve,
which are powerful tools for the evaluation and comparison
of classification models. On the first hand, CM is an
extremely useful tool for determining which classes, if any,
were misclassified the most. In Figure 3-c and Figure 4-a,
the confusion matrices demonstrate the ability of the model
correctly predicted 97%, 97%, and 96% of the normal,
COVID, and pneumonia classes, respectively, for the first
data set; and 95%, 96%, and 99% for the second data set.

On the other hand, the ROC analysis tool is used to
validate/support the reliability (and accuracy) of classifica-
tion pipelines by analyzing models’ output based on the
relation between false and true positive rates assessed at
various thresholds. The area under the curve (AUC) of an
ROC can be utilized in quantitative classification models
to demonstrate how well the model discriminates between
classes, with ”1” and ”0” indicating the best and the
worst performance, respectively. Figure 5-c and Figure 4-b,
demonstrate the ROC curves, by the interconnected lines,
for the proposed ensemble model evaluated on the first and
the second data set, respectively. Notably, the ROC curve for
the fused features for each class (Figure 5-c & Figure 4-b)
exhibits the best performance (AUC ≈1.0) compared with
individual feature (Figures 5-a,b). Essentially, both of the
curve and its associated metric (i.e., the AUC) show that
the model exhibited above-average performance in correctly
classifying each class for both data sets.

Moreover, evaluation of well-known pretrained back-
bone CNs and recent literature work developed for COVID-
19 detection are also conducted. For pretrained CNNs, we
tested various architectures including VGG19, Inception,
DenseNet121, and Xception and the average accuracies
were 71.36%, 78.50% , 80.00%, and 86.92%, respectively
and Table IV summarizes the results. Finally, the evalua-
tion results of our method against recent literature work
developed for COVID-19 detection are shown in Table V.
As readily seen, the proposed model scored higher accuracy
compared to other methods for COVID detection. The com-
pared methods mainly employed on pretrained architectures
( [47], [48]) and single classifier for the extracted deep
features [49] or hand crafted features [50]. Our method
on the other hand employed both deeper and higher order
features and utilized an ensemble classifier. Additionally, for
most of the compared methods the test data sets was small
compared to our approach that employed a larger data set
and utilized cross validation scenario for evaluation.
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(a) (b) (c)

Figure 3. Visualization of confusion matrices of individual feature sets and the proposed method: (a) higher-order features; (b) CNN-derived features,
and (c) their fusion (the proposed) on the first data set.

(a) (b)

Figure 4. Visualization of (a) confusion matrix and (b) ROC curve of our ensemble model for the second data set.

(a) (b) (c)

Figure 5. Visualization of the ROC curves of individual feature sets and the proposed method: (a) higher-order features; (b) CNN-derived features,
and (c) their fusion (the proposed) on the first data set.

TABLE IV. Multi-class accuracy of various CNN architectures.
Here, AC: accuracy, PR: precision, RC: recall.

Evaluation Metrics (%)
Model AC PR RC F1-Score
VGG16 71.36 74.47 70.11 72.22
InceptionV3 78.50 76.00 74.23 75.10
DenseNet121 80.00 82.68 85.75 84.18
Xception 86.92 89.23 87.36 88.28

TABLE V. Multi-class accuracy of recent work for COVID-19
detection. Here, AC: accuracy, PR: precision, RC: recall.

Evaluation Metrics (%)
Model AC PR RC F1-Score
Ismael et al. [49] 94.7 91.0 98.9 94.8
Horry et al. [47] 83.0 81.0 81.0
Abbas et al. [48] 92.10 — — —
Li et al. [51] 96.4 — 92.9 —
Medeiros et al. [50] 93.05 89.55 96.28 92.80
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5. Conclusions and future work
This study have introduced a hybrid pipeline incor-

porating ensemble feature fusion concept for distinguish-
ing COVID-19 from normal and pneumonia cases CXRs
images through multi-classification. Particularly, an AI-
based combining high-level features with higher-order tex-
ture ones has been developed. Compared with literature
work, our method incorporates several learning modules to
extract more discriminative representation of texture and
shape cues, thereby facilitating more accurate classifica-
tion. Further, a cascaded machine classification module
is trained to discern between classes. The potentials of
the developed feature fusion architecture is supported by
rigorous evaluation using two cohorts of CXR images. The
experimental findings reveal in which the improved fusion
approach combined with ensemble classifier outperformed
the single prediction models and achieved overall accuracy
of 98.20% and 97.85%. The use of hierarchical features in
the design of the model enabled it to outperform traditional
ML models, classical pretrained DL models, and SOTA
methods.

The suggested method has a high potential for clinical
application and has the possibility to reduce both pollutants
and hospital burden by preventing unnecessary hospital
visits. Despite the higher performance of our pipeline, our
study have some limitations, such as the use of a single
image modality for evaluation and the lack of challenging
data sets for rigorous evaluation. Secondly, our analysis
framework exploited only pre-trained CNNs as deep feature
feature extraction. Thus, in future work we plan to create a
multi-level classification framework that mimic physicians
diagnosis of separating groups by providing global screen-
ing then performing micro classification of the potential
instances. We will also investigate ensemble learning of
multi-scale images. Although we have introduced a feature
fusion approach, our future work will be dedicated to multi-
modal features fusion. Integration between CXR-based fea-
tures and CT in conjunction with using transformer-based
architectures will be another research venue.
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