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Abstract  

   Dynamic path planning involves finding the most efficient path between the 

beginning and the destination in an unfamiliar and constantly changing environment 

while avoiding fixed and moving impediments. Using advanced sensors, mobile 

robots may traverse their environment without human intervention, ensuring safety 

and autonomy. 

It is necessary to utilize more efficient algorithms to resolve the problem of inadequate 

robot performance in such environments and achieve intelligent path planning 

considering factors such as time, energy, and distance. Recently, reinforcement 

learning and deep neural networks techniques had been used recently to address these 

problems. By using a trial-and-error methodology to communicate with its 

surroundings, an artificial intelligence agent uses reinforcement learning to acquire an 

ideal behavioural approach predicated on reward signals from previous transactions. 

The reinforcement learning agent's learning process resembles the method used by 

humans and animals to learn. The fact that reinforcement learning may be used to 

different scientific and engineering domains is one of its most advantageous features. 

Reinforcement learning has shown to be an effective approach in recent years for 

managing difficult sequential decisions. It presents a fantastic chance to explore new 

technological horizons in areas where system models are non-existent or too complex, 

costly, or time-consuming to develop. This review article examines path planning 

strategies utilizing neural networks, such as deep reinforcement learning, the 

fundamental concepts of it as well as the components of a system that uses it. 

Including policy gradient, model-free learning, model- based learning, and actor-critic 

techniques.  

 

Keywords: Path planning, Deep reinforcement learning approaches, Actor-critic, 

Mobile autonomous robots. 

 

I. Introduction 

Autonomous mobile robots have become more and more necessary in recent years. These 

robots are used in many aspects of our everyday lives, such as cleaning, self-driving cars, 

military operations, and rescue missions. In the majority of these applications, the robot must 

maneuver through challenging and unfamiliar terrain without running into any impediments. 

To prevent accidents with both stationary and moving obstacles, these robots must devise a 

comprehensive path based on the existing environmental data. Subsequently, they must design 

a specific path to reach the checkpoints along the previously determined global Path, 

Utilizing data using sensors like LiDAR, RGBD, or RGB cameras. Analytical methods have 

traditionally been used to tackle the issue of path planning. However, these methods need 

enhancement for complex situations or emergencies, as they require precise placement in the 

environment and a detailed map for path planning [1, 2]. 
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Path planning is crucial for robots' ability to navigate on their own. Robotic path planning 

challenge involves setting the most effective path from the current location. Direct the robot to 

the designated target location in its working environment based on one or more optimization 

objectives, given that the site of the robot is already determined [3-5]. 

Reinforcement learning could be better suited for complex tasks, and deep learning needs 

to make –decision. Consequently, many researchers contemplated utilizing deep learning's 

aptitude for extracting information in combination with reinforcement learning's ability in 

decision-making for robot path planning.  

In artificial intelligence, known as "deep reinforcement learning," intelligent systems are 

built, trained by interacting with their environments and evaluated in real-time. Deep 

reinforcement learning (DRL) approaches are frequently used in a variety of fields, such as 

robotics, machine translation, control systems, text generation, target identification, video 

prediction optimization, autonomous driving, text-based games, and more [6].  

Artificial intelligence is a section of machine learning that replicates the functions of the 

brain in humans using artificial neural networks. Such techniques allow computers to explore 

potential outcomes that exceed human capacities [7]. This procedure relies heavily on intricate 

mathematical formulas. Furthermore, numerous formulas may be required for machine 

learning, which performs optimally with extensive datasets. If we had perfect foresight into the 

consequences of all our choices, deep reinforcement learning would be unnecessary [8]. We 

could develop an algorithm to determine the optimal decision for reaching a particular 

outcome. We require technologies such as deep reinforcement machine learning to assist us in 

addressing issues involving various variables in our intricate reality, as correct predictions are 

challenging. 

The DRL showed an excellent capacity for learning and adaptability. The DRL technique 

serves as crucial for robotic path-planning. Figure (1) provides an overview of traditional 

Strategies for path-planning [9]. 
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Ultimately, the residue of this work is organized as follows: A review of path planning 

approaches is discussed in Section II. Summarizing deep reinforcement learning concepts is the 

main objective of Section III. Deep Reinforcement learning strategies are covered in Section 

IV. Section V. contains the paper's conclusion. 

II. Path Planning Techniques 

A. Deep Learning (DL) 

Artificial neural networks, support vector machines, and decision trees are examples of 

machine learning approaches employ different approaches to create a predictive model using 

data. The models aim to predict and collect data. Machine learning aims to estimate a function 

based on data mathematically [10].  

Previously, when computers had limited processing speed, neural networks, which had 

several layers of interconnected neurons, could have been more effective in solving complex 

issues. Advanced deep-learning techniques and developing increasingly powerful computers 

have led to significant progress[11] . 

Now, deep neural networks employ a wide variety of connections and several layers of 

neurons. The Deep learning and deep networks have significantly enhanced the precision of 

certain essential machine learning tasks, allowing for machine learning in intricate, high-

dimensional issues like distinguishing between dogs and cats in high-resolution (mega-pixel) 

photographs. Deep learning allows for the rapid solution of intricate problems involving many 

variables. Furthermore, it has expanded machine learning to commonplace tasks, such as 

speech and facial recognition on mobile devices[12] . 

 The Neural networks are employed in deep learning in the area of machine learning to 

model and tackle complex problems. Neural networks consist of interconnected nodes 

organized into layers, which receive input and undergo processing and transformation. These 

networks are made to simulate the structure and functioning of the human brain. Deep 

learning's versatility allows it to be employed in several ways to tackle the path planning issue. 

Figure 1.Overview of path planning techniques. 
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CNNs are utilized in algorithms designed to process pictures as input. Neural networks are 

employed in mimicking education and to deal with the Q-value problem in reinforcement 

learning when dealing with a complicated state of actions space [13].  

In [14], the Deep SORT human tracking technique was utilized to monitor the movement 

of individuals. The SSD Mobile net object recognition method was trained to expose common 

stains, litter on the ground, and footprints in places with substantial human presence. There are 

1200 pictures for each of the four classifications in the dataset: Stain, Foot Stain, Trash, and 

Human. 

In [15], the authors presented a new and innovative method for multiple-path planning in 

real-time. This method combines the conventional graph-based search with semantic 

segmentation. A fully convolutional neural network (FCN) was initially developed to examine 

the ideal trajectory area produced by an A* path planning algorithm in several real-life and 

simulated settings. Incorporating auditory information into the localization data significantly 

improves the neural network's capacity to generalize, even in the presence of incorrect 

localization findings. Subsequently, the FCN infers several possible path locations, which are 

subsequently employed as constraints for the subsequent A*-based path planning. 

In [16], a novel graph convolutional network model, TAM-GCN, was developed to 

address a significant limitation of the current graph convolutional network, which is its 

inability to effectively represent the dynamic interaction among various nodes in autonomous 

driving. TAM-GCN addresses this problem by incorporating a trainable adjacency matrix. An 

approach for surpassing a deep neural network is devised by utilizing the TAM-GCN to build a 

correlation between observed data and intended actions. The network is trained and optimized 

using the imitation learning technique. 

In [17], this work utilizes motion profiles (M.P.) and compact road profiles (R.P.) to 

recognize dynamic objects and path areas effectively. These profiles greatly enhance 

recognition by reducing video data to a smaller dimension and increasing the sensing average. 

To ensure the avoidance of collisions at short distances and to assist in the navigation of 

vehicles at medium and long distances, many reference points and measurement points are 

consistently scanned at different depths to aid in planning vehicle paths. The authors utilized a 

deep network to train and execute semantic segmentation of R.P. in the spatial-temporal 

domain. In addition, the authors proposed an inference model called Temporal Shifting 

Memory (TSM) for online testing. This model is designed to avert data overlap in sequent 

semantic segmentation, an essential process for edge device applications. 
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In [18], a persistent challenge in autonomous driving is the accurate categorization of 

LiDAR data in an outside setting, known as semantic segmentation. The authors presented a 

pioneering approach called Hybrid CNN-LSTM for semantic segmentation of LiDAR point 

clouds. The system consists of a unique neural network architecture combined with an effective 

method for handling point cloud characteristics. Building upon Polar Net’s approach of 

representing point clouds as vectors with uniform magnitude, the 3D point clouds were 

transformed into pseudo-images. The scientists developed an innovative neural network 

structure that combines the features of several channels produced by convolutional neural 

networks with extended short-term memory networks to improve the representation of small 

object qualities. The procedure entailed feeding the pseudo image into an LSTM network that 

relied on the spatial filling curve. Experiments performed on the Semantic KITTI dataset 

demonstrate that the approach outperforms current cutting-edge techniques in terms of 

accuracy for semantic segmentation. Provide a theoretical study explaining how a network with 

sparse point cloud features may effectively distinguish small details. 

B. Reinforcement Learning (RL) 

Machine learning encompasses three fundamental paradigms that delineate how 

observations might be represented: supervised, unsupervised, and reinforcement learning[19]. 

Supervised learning is the primary and foundational approach in machine learning. Supervised 

learning involves the learning algorithm providing data in the form of (x, y) example pairs, 

which are used to train the function f(x). Here, y represents the observed output value that must 

be learned for a given value x input. The phrase supervised learning is derived from a concept 

that the y values serve as a means of overseeing the learning process and instructing it on the 

correct responses for each input value, utilizing alternative learning approaches becomes 

imperative when the information is devoid of labels. Unsupervised learning is synonymous 

with distinctive learning. Unsupervised learning utilizes an inherent metric, such as distance, to 

assess the characteristics of the data items. The task of unsupervised learning often involves the 

identification of data patterns; such as clusters or subgroups[20].  

Reinforcement learning is the final pattern in the field of machine learning. Reinforcement 

learning distinguishes itself from previous models by three key factors: the ability to learn 

through interaction, the incorporation of incentives, and its use in solving sequential choice 

troubles. Reinforcement learning acquires knowledge by iterative interaction, unlike supervised 

and unsupervised learning techniques, which learn more holistically[21]. 
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 The dataset is generated in real-time. Reinforcement learning aims to identify the policy, a 

function that specifies the better action to do in any given environmental state. In 

reinforcement learning, an agent gains information through interactions with its surroundings. 

Reinforcement learning agents collect data by selecting actions according to the rewards they 

receive in their surroundings. Agents have the ability to select particular activities to gain 

information; reinforcement learning is a distinct kind of active learning. Our agents are like 

children who develop certain ability via play and exploration. The subject's level of 

independence is a key aspect that draws researchers[22].  

The RL agent develops a set of actions to be executed in various environmental scenarios 

based on past experiences. It does this by choosing which action or hypothesis to test and 

refining its grasp of effective strategies. Reinforcement learning only necessitates an 

environment that produces feedback signals for the agent's activities, whereas supervised 

learning relies on pre-existing datasets with labeled cases to approximate a function[23]. 

Reinforcement learning could be used in a broader variety of situations compared to 

supervised learning due to its lower level of complexity. The figure (2) shows the architecture 

of reinforcement learning [24]. 

 

 

 

 

 

 

 

 

 

 

Basic ideas in Reinforcement Learning are known as Markov decision process (MDP): 

 Agent: the learner and decision-maker [25]. 

 Environment: The environment encompasses all entities with which the agent or agents 

interact. Its purpose is to create the illusion of being an authentic case in the actual 

world for the agent. It is essential to showcase an agent's efficacy and ability to work 

effectively in a real-world application. 

Figure 2 Reinforcement learning architecture 
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 State: Epistemic state is the whole data that an agent has about its immediate 

surroundings at a specific moment. The data may consist of the agent's present location, 

next objects, the space between the robot and its intended location point, and any past 

actions executed by the robot [26]. 

 Action:  If the agent is in a specific state, it selects an action based on its current 

behavioral rules (policy). The actions show discreteness in specific situations and 

continuous in others. Possible actions in a discrete action space contain movements like 

left, right, up, down, and more. The mobile robot in a continuous action space can move 

from zero to 360 degrees.  

 Policy: When the agent is in a state, it chooses an action to perform, guide by its 

existing behavior rules (policy). Policy dictates the behavior of the learning agent at a 

specific moment. Essentially, a policy is a function that links perceived environmental 

situations to corresponding actions to be executed in those states  [27]. It aligns with 

what would be referred to in psychology as a gathering of stimulus-response rules or 

relationships. At times, the policy could be a basic function or lookup table, while in 

other instances; it may require complex processing like a search technique. The policy 

is the key ingredient of a reinforcement learning agent as it is solely responsible for 

defining behavior. Policies can be probabilistic in nature [28]. 

 Reward: A numerical rating that reflects the algorithm's efficacy concerning its 

environment. A reward signal establishes the objective in a reinforcement learning 

scenario. Every each step, the surrounding provides the reinforcement learning agent 

with a singular numerical value known as a reward[29]. The reward signal determines 

which events are considered favorable or unfavorable for the agent. In a biological 

system, rewards might be likened to the sensations of pleasure or pain. The features are 

the primary and distinctive characteristics of the problem encountered by the agent. The 

reward given to the agent is contingent upon the activity taken by the agent and the 

present state of the agent's environment. The agent is unable to modify the procedure. 

The agent can only impact the reward signal by doing activities that directly affect the 

reward or indirectly by altering the condition of the environment [30]. 

The State-action-reward-state-action (SARSA) and Q-learning are popular and simple 

methods in reinforcement learning [31] 

SARSA is an on-policy temporal difference approach used for policy control.  SARSA 

evaluates the Q-value functions using T.D. updates to get the appropriate policy. 
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Q-learning is a model-free approach, indicating that it doesn't rely on a model of the 

environment to guide the reinforcement learning process. The agent acquires knowledge 

through practical encounters and formulates its prognostications on the environment. Q-

learning is an off-policy technique that set the optimal action based on the current state. 

Watkins proposed the Q-Learning method as a suitable approach for Handling the trouble of 

path planning of mobile robots [32]. 

In [33], the IQL was explicitly built to enhance the obstacle avoidance performance of 

Q.L. in dynamic scenarios by including the concept of distortion and an optimization mode. An 

analysis was conducted to compare the computational time, collision rate, traveled distance, 

and success rate of IQL with Q.L., DWA, and I.Z. in 14 different navigation scenarios with 

different layouts and types of dynamic obstacles. 

 In [34], the QAPF learning method, which integrates Q-learning with the artificial 

potential field, is proposed as a resolution for mobile robot path planning challenges. The 

QAPF learning algorithm consists of three operations: exploration, exploitation, and APF 

weighting. These are employed to overcome the limitations of the conventional Q-learning 

approach for path planning in both familiar and unfamiliar contexts. 

In [35], The research introduced dynamic weighting coefficients based on Q-learning for 

DWA (DQDWA) using a Q-table that includes robot statuses, ambient circumstances, and 

weight coefficient actions. DQDWA may utilize the Q-table to dynamically choose the best 

pathways and weight coefficients that can adjust well to changing environmental conditions. 

The efficacy of DQDWA was validated by empirical testing and thorough simulations. 

In [36], the authors employed the accomplishment motivation model to modify the Q-

Learning algorithm to generate different path variations. The Motivated Q-Learning (MQL) 

method was implemented in an environment consisting of three scenarios: one with no 

obstacles, one with uniformly distributed obstacles, and one with randomly placed obstacles. 

 In [37], the improved Q-learning for the mobile robot approach utilizes the following 

strategies to boost performance: The final path is more efficient and seamless due to the 

implementation of 8 optical self-adaptive action spaces, path extensions, and dynamic 

exploration factors. 

C. Deep Reinforcement Learning (DRL) 

Recently, reinforcement learning and deep learning disciplines have converged, resulting 

in the development of novel procedure that can effectively solve complex troubles by 

iteratively adjusting their behaviors based on feedback. By employing an iterative process of 
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experimentation and learning from several engagements with the challenge. Deep 

reinforcement learning has introduced novel methodologies and achievements through model-

based, policy-based, transfer, hierarchical reinforcement, and multi-agent learning progress 

[38]. 

Deep Reinforcement Learning intends to acquire the most advantageous behaviors that 

provide the highest rewards across various environmental conditions. This is achieved through 

engaging with intricate, multi-dimensional environments, conducting experiments with diverse 

actions, and assimilating knowledge from received feedback .One of the primary factors 

driving interest in this form of learning is its compatibility with contemporary computer 

systems, allowing for its effective implementation across a range of applications such as 

gaming, Atari, and robotics [39]. 

DRL offers solutions for trajectory planning in uncertain circumstances owing to 

technique developments. Unlike traditional trajectory planning methods that need significant 

effort to address complicated, high-dimensional problems, the recently proposed Deep 

Reinforcement Learning (DRL) enables a mobile robot to actively engage with its surroundings 

and independently acquire knowledge to choose the optimal course [40]. Mobile robots with 

DRL techniques have demonstrated remarkable abilities in accurately accomplishing tasks, 

maneuvering complex environments, and evading obstacles. Notable DRL techniques, like 

Deep Q-learning Network (DQN), Double-DQN, actor-critic (A2C, A3C), Deep Deterministic 

Policy Gradient (DDPG), Twin Delayed DDPG (TD3), and Soft Actor-Critic (SAC), among 

others. The strategy utilizes an action-reward framework to mimic human learning behavior. 

The system incentivizes the agent to engage in positive acts and imposes penalties for negative 

ones [41]. 

We will examine key concepts in DRL, including model-free and model-based learning, 

off-policy and on-policy approaches, policy gradient theory, and actor-critic techniques. Next, 

we will analyze recent research that employed prominent deep reinforcement learning 

techniques to address path design and dynamic avoiding obstacles. 

III. Concepts in Deep Reinforcement Learning 

A. Model-free learning vs model-based learning 

Reinforcement learning is classifiable as model-based learning or model-free learning. 

Model-free learning is a core technique for reinforcement learning where agents ( 

Robot) evaluate actions and acquire knowledge of their consequences using techniques based 
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on experience[42]. These algorithms repeatedly perform actions and adjust their policy (the 

strategy guiding their actions) to maximize rewards based on the observed outcomes. 

Model-free reinforcement learning may be further categorized into techniques based on 

value, policy, and actor-critic. The value-based DRL techniques utilizes temporal difference 

(T.D.) learning and deep neural network to estimate the function’s value [6, 37]. The 

environment model comprises the likelihood of state transitions and the expected reward. 

However, in actual scenarios, they may not be accessible for all potential states. Model-free 

reinforcement learning (RL) techniques utilize the agent's experience to directly learn the most 

optimum value functions or policies without relying on a comprehensive model of the 

environment. This is achieved by approximating the ideal policy through a trial-and-error 

procedure. The quantity of agent samples of data regarding environment interaction needed for 

training model-based algorithms is lower than that required for model-free techniques. 

However, model-based algorithms still require the utilize of model-free approaches in order to 

create the environment model [43].   

Model-free reinforcement learning (RL) approaches are beneficial for intricate issues in 

which constructing a sufficiently precise environment model is difficult. Model-based learning 

depends on the development of internal representations of the environment to optimize reward. 

Preferences are prioritized above action outcomes; the agent with a greedy approach will 

consistently attempt to do actions that provide the highest possible reward, regardless of 

potential consequences. In order for a model-based system to learn all of the transition 

probabilities, it must utilize dynamic programming methodologies to determine the chance of 

an agent changing states [44].  

The system's model-based component uses a cross-entropy optimizer to change the model. 

This change aims to decrease the probability of a collision in the following step. It 

accomplishes this by forecasting the future condition based on the current condition and the 

activity performed. Each method, whether model-based or model-free, has its advantages and 

limitations. Model-free methods may exhibit reduced efficacy and require a larger dataset to 

attain satisfactory performance, although they are frequently easier to execute and facilitate 

expedited experiential learning. Model-based strategies exhibit reduced sensitivity to 

environmental changes and enhanced efficacy with less data but pose more application 

challenges [45]. 
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B. On policy vs. off policy 

The process by which the behavior policy acquires knowledge is a basic aspect of the 

development of techniques for reinforcement learning. Reinforcement learning focuses on 

acquiring a policy by analyzing actions and rewards.  It chooses an activity to perform. On-

policy learning involves updating the value of a chosen action by consistently utilizing the 

original behavior of function’s policy that was used to select the action [46]. Off-policy refers 

to the situation when learning occurs by storing the values of an action other than the one 

chosen by the behavior policy [47]. 

C. Policy Gradient Theory 

The value function is optimized using policy gradient (P.G.) over a parameterized family 

of policies. This Technique offers a minimum of two advantages. Initially, actions are selected 

from a well-defined parametric distribution [48]. Secondly, having less knowledge about the 

parameters of the parametric family that has to be learned arises from approximation policies. 

This leads to more efficient learning if one has prior information or intuition about the potential 

optimal policies, such as Gaussian distributions [49]. 

D. Temporal-Difference Learning 

Temporal-difference (T.D.) learning combines dynamic programming principles (D.P.) 

with Monte Carlo. Like Monte Carlo techniques, T.D. procedures do not necessitate a model of 

the environment's dynamics to acquire knowledge from direct experience. Like dynamic 

programming (D.P.), temporal difference (T.D.) techniques iteratively refine their estimates by 

incorporating previously learned estimates without waiting for an outcome[50]. The 

relationship between Temporal Difference (T.D.), Dynamic Programming (D.P.), and Monte 

Carlo approaches is a recurring subject in the context of reinforcement learning. T.D. employs 

two distinct policy control techniques: State-action-reward-state-action (SARSA), which is an 

on-policy method, and Q-learning, which is an off-policy method [51]. 

E. Actor-critic methods 
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utilize temporal difference (T.D.) techniques to separate the policy from the value function 

through the use of a unique memory structure[52].  Policy framework is commonly known as 

the actor because it dictates to actor to be taken. The estimated value function is referred to as 

the critic as it assesses the decisions created by the actor simultaneously. Learning is 

fundamentally linked to policy: the critic must gain expertise and assess the policies being 

implemented by the actor. The critique is presented as a type of T.D. errors .According to 

Figure (3), this scalar signal is the critic's only output and propels all learning in the actor and 

critic [53, 54]. 

 

 

 

 

 

The notion of reinforcement comparison approaches is naturally expanded to T.D. learning 

and reinforcement learning by utilizing actor-critic methods. The critic often functions as a 

state-value function. After each decision, the critic evaluates the current condition to see if the 

outcome has exceeded or fallen short of expectations [55]. 

Actor-critic techniques optimize the policy and value functions using the benefits of both 

actors-only (policy-based) and critic-only (value-based) technique. In actor-critic approaches, 

the policy is responsible for making decisions depending on the present situation, while the 

critic analyses the actor's performance. An approximation of the function’s value. 

Figure 3.Structure of actor-critic 
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Subsequently, the parameterized policy is modified to enhance performance by including the 

value function and employing gradient ascent  [56]. 

IV. Deep Reinforcement Learning Techniques 

A. Deep Q-Learning (DQN): 

Deep Q-Learning is an approach that mixes deep neural networks with Q-Learning, a 

strategy to determine the best action to take in a certain situation[57]. The objective is to enable 

agents to learn about the optimal course of action in complex and multi-dimensional 

environments. Deep Q-learning can handle environments with large state spaces by employing 

a neural network to approximate the Q function. The Q-function estimates the expected total 

reward for each possible action in a specific state. The network is updated repeatedly by 

mixing exploitation and exploration strategies throughout the episodes [58]. 

The deep Q-network (DQN) approach is extensively employed in path-planning 

applications due to its self-learning capability and adaptability to complex situation. 

In [58], the Improved Dueling Deep Double Q Network algorithm (ID3QN) addresses the 

issues of overestimation and insufficient sample use in the classic Deep Q Network (DQN) 

technique. It achieves this by utilizing an asymmetric neural network structure, optimizing the 

neural network structure, employing a double network to estimate action values, enhancing the 

action selection mechanism, implementing a priority experience replay mechanism, and 

redesigning the reward function.  

In [59], the authors utilize the DQN and Artificial Potential Field (APF) algorithms to 

forecast the optimal Path for a mobility robot. The DQN is constructed and trained with the 

objective of obtaining the aim. Subsequently, the APF shortest path method is incorporated 

into the DQN algorithm. 

 In [60], the AG-DQN method is designed to solve the Pathfinding problem of an AGV in 

an RMFS. It offers a quicker training procedure and reduces decision-making time compared to 

the A* technique. The AG-DQN technique utilizes a trained neural network that solely relies 

on the layout data of the current system in order to guide the AGV in completing a set of tasks 

assigned at random. 

In [61], the agents are implemented utilizing a combination of the deep Q networks 

approach, namely the D3QN and rainbow algorithms. These algorithms are utilized for both 

obstacle avoidance and goal-oriented navigation tasks. The Rainbow DQN, because of its 
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enhanced updates and improved estimates, was able to achieve a more significant number of 

goals and experience fewer collisions during training compared to the D3QN agents. 

In [62], the authors enhanced the DQN approach for Path planning for autonomous mobile 

robots. The reward function is enhanced by incorporating heading angle and distance errors. 

Additionally, a DHD (distance-heading angle-direction) reward function is devised by 

integrating the movement direction. This modification aims to enhance the algorithm's 

execution and prevent it from getting stuck in local optima. A weight-sampling learning 

approach is developed to grow the usage rate of training samples and accelerate the 

convergence speed of the algorithm. 

B. Deep Deterministic Policy Gradient (DDPG): 

This methodology is a model-free off-policy approach developed explicitly for acquiring 

knowledge about continuous activities. It integrates principles from DPG (Deterministic Policy 

Gradient) and DQN (Deep Q-Network) [63]. The system incorporates Experience Replay and 

slow-learning target networks from DQN. It is based on DPG and can operate in continuous 

action spaces[64]. 

In [65], Robotics involves the crucial challenge of maneuvering robots over expansive 

settings while evading moving impediments. A refined deep deterministic policy gradient 

(DDPG) path planning approach incorporates sequential linear path planning (SLP) to address 

this issue. The authors aim to progress the reliability and effectiveness of standard DDPG 

approaches by including SLP to achieve a better balance between reliability and immediate 

performance. The system utilizes the Simultaneous Localization and Mapping (SLAM) 

algorithm to create a sequence of smaller objectives determined by a rapid computation of the 

robot's intended trajectory. Subsequently, The Deep Deterministic Policy Gradient (DDPG) 

technique is utilized to provide these intermediate objectives for path planning while 

guaranteeing avoidance of obstacles.  

In [66], the authors employed a DRL-based  technique known as Structure of 

Reconfigurable of Deep Deterministic Policy Gradient (RS-DDPG) for robots. This method 

incorporates an event-triggered reconfigurable actor-critic network framework for motion 

policy, which dynamically adjusts it’s the structure of network to mitigate issue the value of 

action overestimation. Subsequently, the temporal convergence the policy motion may be 

improved by utilizing the actions value that exhibit minimal divergence in valuation. A 

dynamic incentive system is developed for Flexible networks to address the absence of sample 

data. 
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In [67], the author employs the DDPG technique for path planning  mobile robot. A deep 

neural network structure may be constructed to improve the capabilities s of robots’ decision-

making by employing the Deep Learning Tensor Flow.  Employs multi-sensing data collection 

by integrating image and LIDAR information to improve perceptive abilities. A meticulously 

crafted network model, a lightweight multimodal data-fusion network has been established, 

which includes the idea of modalities separating learning.  By integrating sensory data, robots 

enhance their understanding of their environment and improve their ability to make accurate 

decisions. Utilizing the artificial potential field technique for generating the reward function 

can lead to quicker convergence of the neural network and higher success rates in guiding 

mobile robots. 

In [68], the authors employed the DDPG technique to accomplish the task of Path planning 

in a challenging continuous environment. Create a stochastic obstacle model for mobile sensors 

to replicate the complexity of target tracking situations and reduce mistakes by adjusting the 

parameters of the target network. Enhance the reward function to expedite the movement of the 

mobile sensor toward the goal location. 

In [69], the DDPG technique is used with an LSTM network-based encoder to understand 

an indeterminate number of obstacles. Based on the LSTM network, the encoder utilizes the 

most recent environment data, which includes the prominent obstacles. It applies the secure 

processing guideline to produce a state vector with a defined length. 

C. Twin Delayed DDPG (TD3): 

DDPG exhibits some instances of achieving exceptional performance, but it frequently 

demonstrates instability about hyper parameters and other tweaking forms. An example of a 

common failure situation in DDPG is when the learned Q-function overestimates Q-values 

excessively. This results in policy violation since it exploits the faults of the Q-function. Twin 

Delayed DDPG (TD3) approach incorporates three crucial strategies to address this trouble 

[70]. 

 Clipped Double-Q Learning. 

 “Delayed” Policy Updates. 

 Target Policy Smoothing. 

(TD3) is an effective method for DRL navigation. In [71] , To get the ultimate Q-value, 

enhance the precision of the Q-value estimate, and enhance the capacity to learn, the authors 

propose a revised version of the TD3 method incorporating the dueling critic network 

architecture. This design separates and recombines the state value and action trait functions. 

Additionally, the authors include the dueling network architecture into the critic network to 
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enhance the precision of the Q-value estimation. The findings indicate that the suggested model 

surpasses the old model because of its ability to design paths. 

In [72] , To address the low success rate and slow learning speed of the TD3 approach in 

the planning of mobile robot paths, researchers are examining an enhanced TD3 algorithm. In 

order to mitigate the effects of inaccuracies in value estimation, the Technique of prioritized 

experience replay is implemented, along with the development of dynamic delay updating 

algorithms. These methods reduce the training time while enhancing the benefits and 

increasing the success rate in training. Currently, simulated trials are being employed to 

validate the algorithm's effectiveness for planning mobile robot paths. 

In [73], the path planning method of mobile robots utilizes the Prioritized Experience 

Replay (PER) technique and Long Short Term Memory (LSTM) neural network. This 

approach effectively addresses problems related to slow convergence and incorrect perception 

of dynamic obstacles by employing TD3 technique. This unique approach has been designated 

as PL-TD3. The authors use the Policy Evaluation with Repeated Updates (PER) approach to 

enhance the algorithm's convergence rate. Subsequently, the LSTM neural network was 

utilized to improve the dynamic obstacle detection technique. Based on the testing results, PL-

TD3 outperforms TD3 in terms of both execution time and execution path length across all 

situations. 

In [74] , the authors suggested a method for designing lifting paths by employing deep 

reinforcement learning for hybrid action spaces. The network architecture was devised using 

the TD3 technique. In order to tackle the issue of limited rewards in long-distance path 

planning, a proposed solution involves the creation of a unique reward function and 

implementing hindsight experience replay. Real-time path planning is feasible in unfamiliar 

surroundings due to the ability to create a path that is easy to follow. 

In [75] The authors proposed that the Advanced TD3 model can devise drone trajectories 

energy-efficiently at the edge level. The TD3 is the best sophisticated approach in policy 

gradient reinforcement learning, now considered state-of-the-art in this field. The TD3 model 

incorporates the drone's continuous action space while employing the frame stacking method. 

The authors expanded the range of observation for agents to achieve both fast and stable 

convergence. They also modified the TD3 model using Offline RL to decrease the training 

overhead for the RL model. 
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D. Asynchronous Advantage Actor-Critic (A3C) 

In 2016, DeepMind introduced A3Cs. Policy gradients and DQN became outdated due to 

their simplicity, resilience, efficiency, and capacity to provide superior outcomes in typical RL 

assignments. A3C consists of several autonomous agents, often networks, each possessing a 

distinct weight. These agents interact simultaneously with independent replicas of the 

environment. Consequently, they can allocate significantly less time to explore a more 

extensive range of state-action possibilities [44]. A3C is an on-policy method, so utilizing an 

experience replay buffer is unnecessary. It exhibits greater resilience to hyper parameter 

adjustment than DDPG [76]. 

In [77], The authors suggested  a three-step technique, detailed in the following order: A 

path planner that use footprints  to calculate cover  and metrics for the length of the path for 

different Smorphi shapes. (2) The optimization of (PPO) and (A3C) methods. This creates 

energy-efficient and optimal configurations for Smorphi robots by maximizing rewards. (3) 

Utilizing a Markov decision process (MDP) to represent and analyze the Smorphi design space, 

enabling sequential decision-making. The proposed approach employs a validated technique, 

utilizing two separate environment maps. It subsequently evaluates the results by comparing 

them to the Pareto front solutions obtained by NSGA-II and the suboptimal random shapes.  

In [78], the authors presented a technique for training neural controllers for differential 

drive mobile robots operating in a congested environment to reach a given destination safely. 

The researchers devised a training pipeline that allows for the expansion of the process to many 

compute nodes. The authors showcased the ability to train and evaluate neural controllers 

efficiently on an actual robot in a dynamic setting by employing the asynchronous training 

methodology in A3C. 

In [79], is an ongoing process where a robot communicates with its surroundings. The 

authors suggested using a mean-asynchronous advantage actor-critic (M-A3C) reinforcement 

learning method to find the robot's final motion in continuous state and action spaces without 

the need for a reference gait. The authors utilized the M-A3C algorithm in a physical 

simulation environment to independently train several virtual robots simultaneously with the 

help of various sub-agents. The trained model was utilized to regulate the robot's walking in 

order to decrease the need for frequent training sessions on the physical robot, accelerate the 

training process, and guarantee the proper implementation of the desired walking pattern. 

Ultimately, a bipedal robot is created to confirm the practicality of the suggested approach. 

Multiple studies suggest that the proposed technique may reliably offer uniform and seamless 

gait planning for the biped robot. 
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In [65], the Dec-POMDP model-based IL-A3C algorithm is designed to conquer the 

constraints of conventional centralized path planning techniques. Afterward, the IL-A3C 

performance evaluation is carried out by measuring metrics such as the mean path planning 

length, mean path planning time, mean likelihood of a collision, and mean planning success 

rate across several dimensions. The simulation outcome demonstrates that ILA3C has excellent 

performance in environments characterized by a sparse distribution of barriers, and it can be 

easily expanded to accommodate a team consisting of 128 robots. Comparatively, the 

centralized algorithms A3C and CBS are contrasted with IL-A3C, revealing that IL-A3C 

exhibits superior stability, scalability, and success rate compared to A3C and CBS. Growing 

IL-A3C into a large-scale robot team is a straightforward task. 

In [80], to accelerate the learning process, the authors have suggested implementing a 

sophisticated double-layered multi-agent system that utilizes a two-dimensional grid to 

represent a state space. This system provides a hierarchical representation of a two-dimensional 

grid space and leverages actions based on (A3C) technique. Both the top and lower levels 

included the state space. The top layer promptly evaluates the learning outcomes obtained from 

the bottom layer's use of A3C, leading to a decrease in the overall duration of learning. The 

efficacy of this approach was confirmed by experimentation with a virtual simulator for 

autonomous surface vehicles. The time needed to attain a 90% success rate in meeting the aim 

decreased by 7.1% compared to the standard double-layered A3C approach. Through almost 

20,000 learning sessions, the suggested approach surpassed the conventional double-layered 

A3C by obtaining a target achievement of 18.86% higher. 

E. Soft actor-critic (SAC): 

The SAC methodology integrates deep learning techniques and merges the maximum 

entropy concept into an actor-critic network over the use of stochastic policy. The SAC 

technique excels in deep reinforcement learning techniques because of its exceptional 

exploration abilities and quick reaction to complex situations [81]. The soft Actor-Critic 

method stands out from other algorithms due to its superior sampling efficiency and robustness 

in dealing with slow convergence. The algorithm learns from off-policy, which is the 

underlying cause. The primary characteristic of the change of the goal function in the context 

of (SAC) is that the objective is to optimize both rewards and policy entropy. High entropy in 

policy facilitates exploration, mitigating the vulnerability to convergence. Consequently, this 

Technique demonstrated its effectiveness in path planning. 
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In [82], the authors employed a multi-agent actor-critic approach called Soft Actor-Critic 

(SAC) with Heuristic-Based Attention (SACHA). This method incorporates heuristic-based 

attention mechanisms for actors and critics, promoting agent collaboration. SACHA trains a 

neural network for each agent to focus on the shortened Path heuristic that guides several 

agents within its vicinity. SACHA enhances the current multi-agent actor-critic paradigm by 

incorporating a dedicated critic for all agents to estimate Q-values. 

In[83], the authors developed a novel method called SAC-M, which is a combination of 

the adaptive soft actor-critic (ASAC) and soft actor-critic with automated entropy (SAC-A) 

algorithms. These approaches enable the automated adjustment of temperature settings, 

allowing the entropy to fluctuate between various states to regulate the extent of exploration. 

 In[81] , the authors improved the path planning algorithm using the soft actor-critic 

methodology. They achieved this by enhancing the reward function, allowing mobile robots to 

navigate obstacles and reach their destination point quickly. This algorithm also utilizes state 

dynamic normalization and priority replay buffer methods.  

In [84], to provide real-time optimum feedback management in the navigation task, we 

utilize a unique mixed auxiliary reward structure and sum-tree prioritized experience replay 

(SAC-SP). This approach treats the navigation job as a Markov Decision Process, 

encompassing static and movable obstacles. To enhance the efficiency of robust learning for 

AGVs, propose a unique approach incorporating mixed auxiliary incentives. Next, effectively 

utilize the AGVs by implementing the SAC-SP technique to time navigation using a mix of 

effective auxiliary reward structures. The proficient policy network can generate real-time 

optimum feedback actions based on the placements of obstacles, the objective, and the states of 

the AGV. 

In [85], the authors proposed a Soft Actor-Critic Residual-like (R-SAC) method for 

agricultural settings, aiming to provide secure for avoidance obstacle and Path planning 

intelligent for robots. To address the time-consuming issue in the exploration phase of 

reinforcement learning, the authors propose an offline expert experience pre-training 

Technique. This technique increases the effectiveness of training in reinforcement learning. 

Additionally, the method enhances the reward system by including multi-step TD-error, 

effectively resolving training-related issues. 
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V. Conclusions 

Mobile robots have significant challenges in achieving autonomous navigation, especially 

in uncertain environments. In order to survey its surroundings, ascertain its position, and devise 

a path toward the target, the intended destination position is crucial in the navigation system as 

it serves as an input for the path planning technique. A robot often requires many sensors. 

However, deep reinforcement learning approaches solve the challenges of navigating without a 

predefined map by identifying the most effective course of action. This article explores several 

methodologies for addressing the path planning challenge in mobile robotics by utilizing deep 

neural networks. The collection of reinforcement learning and deep neural networks can 

provide a dependable answer. This review provides a comprehensive analysis of several 

approaches and their respective applications. 

 Although deep learning approaches possess exceptional capabilities, they also provide 

distinct challenges. They have an enhanced ability to detect and understand little differences in 

the data, which requires a significant amount of computer processing and a large number of 

data. However, ongoing research has identified many strategies that might ease these 

challenges. Domain randomization techniques improve the quality of the data’s training, while 

intrinsic incentives and reward shaping lead to a higher concentration of rewards and overall 

performance.   

      LSTM-based RNN have been used to study the dependent on time features of 

navigational data, resulting in enhanced effectiveness for DRL approaches. It is crucial to 

thoroughly evaluate the use of these tactics when implementing DRL techniques in path-

planning activities due to the advantages they offer. Thanks to developments in (DRL)-based 

planning of paths, the efficiency of navigating across unfamiliar locations has greatly 

improved. In navigation the Deep reinforcement learning is essential for creating smart and 

adaptable mobile autonomous robots in real-world scenarios as we advance in the fourth 

industrial revolution, which began with artificial intelligence and robotics. 
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