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ABSTRACT 
This work investigates the encryption and decoding strategies for getting ecological sensor telemetry information. The 

review assesses both symmetric and awry encryption calculations considering their encryption and decoding times. The 

point is to distinguish the most reasonable encryption procedures that give harmony between security and execution for 
safeguarding delicate natural sensor information. The examination incorporates famous symmetric calculations like 

Blowfish, Twofish, RC4, AES, and ChaCha20, as well as topsy-turvy and crossbreed encryption approaches like ECC + 

AES, 3DES, 3DES + RSA, AES + RSA, and ChaCha-20 + RSA. This examination makes a huge commitment by 

directing a far-reaching near investigation of symmetric encryption calculations, in particular Blowfish, 

Twofish, RC4, AES, and ChaCha20, with a particular spotlight on their encryption and decoding times. By 

assessing the exhibition and security qualities of both uneven calculations and crossbreed encryption draws 

near, like ECC + AES, 3DES, 3DES + RSA, AES + RSA, and ChaCha-20 + RSA, the review gives important 

experiences into their appropriateness for getting natural sensor telemetry information. The examination 

reaches out to investigate the compromises among security and execution innate in various encryption and 

unscrambling methods, offering a nuanced comprehension of their suggestions about ecological sensor 

information assurance. The outcomes feature the qualities and shortcomings of every calculation, empowering analysts, 

and experts to pursue informed choices with information security in ecological sensor telemetry. 
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1. INTRODUCTION  

 

1.1.   Conext and Motivation 

 

Natural sensor telemetry information assumes a critical part in different fields, including environment 

observation, air quality evaluation, and biological system examination [1]. This information is frequently 

gathered from various sensors conveyed in far-off areas, making it defenseless against unapproved access and 

altering. Safeguarding the secrecy and honesty of ecological sensor telemetry information is fundamental to 

guarantee the precision and unwavering quality of the gathered data [1-2]. Encryption and unscrambling 

procedures give a way to get this delicate information and moderate potential security dangers [3-5]. 

The rising dependence on natural sensor telemetry information features the requirement for powerful 

safety efforts to shield the honesty and secrecy of this data [6]. Notwithstanding, choosing the most reasonable 

encryption and decoding strategies for getting natural sensor telemetry information is a difficult undertaking. 

With plenty of encryption calculations accessible, it is pivotal to assess and look at their exhibition and security 

qualities concerning natural sensor information. This examination will help with recognizing the most proper 

encryption and decoding methods for getting natural sensor telemetry information [7-9]. 

Strong security measures are essential given the growing reliance on environmental sensor telemetry data 

and other cutting-edge technological data collection techniques like unmanned aerial vehicles (UAVs) in smart 

cities. UAVs are an example of the kind of technology that can benefit from secure data transmission to 

improve city administration and operation services. They are able to gather geospatial data, monitor traffic, 

and help in emergency situations. Because environment monitoring and smart city management depend heavily 

on digital telemetry, data security is crucial. To prevent unwanted access and maintain data integrity, efficient 

encryption and decryption methods are required [10]. 
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1.2.   Contribution 

 

This examination makes a huge commitment by directing a far-reaching near investigation of symmetric 

encryption calculations, in particular Blowfish, Twofish, RC4, AES, and ChaCha20, with a particular spotlight 

on their encryption and decoding times. By assessing the exhibition and security qualities of both uneven 

calculations and crossbreed encryption draws near, like ECC + AES, 3DES, 3DES + RSA, AES + RSA, and 

ChaCha-20 + RSA, the review gives important experiences into their appropriateness for getting natural sensor 

telemetry information [11-12]. The examination reaches out to investigate the compromises among security 

and execution innate in various encryption and unscrambling methods, offering a nuanced comprehension of 

their suggestions about ecological sensor information assurance [13]. Through this thorough assessment, the 

exploration means to convey pragmatic proposals for choosing encryption and unscrambling methods custom-

made to the necessities of ecological sensor applications, accordingly, adding to the advancement of powerful 

systems for guaranteeing the uprightness and classification of telemetry information. Moreover, by 

distinguishing key future examination headings, the review lays the basis for continuous progressions in the 

field, tending to raise difficulties and open doors in getting ecological sensor telemetry information [14-15].  

 

2. LITERATURE REVIEW 

 

2.1.   Current Research 

 

An example of an emerging encryption technique that has demonstrated promise in data security is one 

based on chaos theory, and this can be applied to the transmission of image data needed in environmental 

monitoring. A particular example is a modified version of the image encryption process which uses both chaotic 

maps and orthogonal matrices in Hill cipher. The process where the digital image is scrambled with a chaotic 

Henon map and then encrypted with a Hill cipher suggests high security and efficiency for image data collected 

by environmental sensors. This innovation is significant due to its implication in rapid yet highly secure image 

processing, reflecting the value of exploring advanced encryption methods as well for environmental sensor 

telemetry data security [16]. 

This research intends to improve data security in 2021 by analyzing symmetric encryption techniques 

(DES, 3DES, AES) based on entropy, histogram, and floating frequency. The results show that AES has the 

maximum entropy, assuring strong security. Working on addressing variances in frequency distribution and 

floating frequency contribution can be improved further [17]. The Enhanced BB84 Quantum Cryptography 

Protocol will be introduced in 2021 to improve security in Wireless Body Sensor Networks for remote health 

monitoring during the COVID-19 pandemic. The protocol, which employs quantum theory and bitwise 

operations, outperforms standard methods in terms of safe key distribution efficiency. Despite the results, 

scalability and real-world deployment issues demand additional investigation, as does a more in-depth review 

of quantum-specific weaknesses [18]. TDES will be introduced for cloud healthcare data security in 2022, with 

an emphasis on efficient encryption. TDES provides triple encryption, guaranteeing robust, easy, and 

compatible data security. TDES outperforms IFHDS in terms of encryption/decryption time for healthcare data. 

The model uses more network/CPU resources; future work will use elliptic curve encryption and blockchain 

for greater data security [19]. This paper presents a unique architecture, Health Lock, for privacy-preserving 

IoT-based healthcare applications in 2023, merging homomorphic encryption with blockchain. It resolves 

concerns about data security, provides fine-grained access control, and incorporates a prediction model. More 

work may be done to increase scalability, investigate sophisticated homomorphic encryption, and integrate 

privacy-preserving analytics for better utility [20]. 

In 2023, the author tested the performance of the RSA and El-Gamal algorithms for encrypting and 

decrypting speech communications. The results show that both the RSA and El-Gamal techniques are effective 

in providing a high level of security, secrecy, and dependability. However, in most ciphering/deciphering 

speech performance criteria, the RSA voice cryptosystem surpasses the El-Gamal speech cryptosystem [21]. 

In 2023, researchers planned to compare the encryption methods AES and RSA in terms of encryption time, 

decoding time, key length, and cipher length. A symmetric block encryption algorithm and an asymmetric 

block encryption scheme, RSA, were built and tested. The results showed that AES surpassed RSA in terms of 

encryption and decryption speeds, as well as key and cipher lengths. The study lacks a thorough examination 

of any vulnerabilities or security concerns related to the algorithms under consideration [22]. 

Research published in 2023 sought to improve agricultural environment monitoring by proposing an 

adaptive method combining compressed sensing, image fusion, and blockchain encryption for safe data transfer 

and storage. The suggested technique enhanced the chance of reconstruction, picture quality, and data security. 

When compared to current methods, the adaptive algorithm outperformed them in terms of reconstruction 



 

 

probability, MSE, and PSNR [23] Enhance healthcare using wireless Nanosensors for real-time monitoring by 

2023. Through binary conversion, XOR operations, crossover, and chromosomal bit creation, the proposed 

genetic encryption enables secure wireless data transfer. The method enables lightweight, energy-efficient, and 

secure data transfer, which reduces time consumption by 90% while improving system performance and 

avoiding assaults. 

Further research into incorporating artificial intelligence and identifying real-world vulnerabilities might 

improve the applicability of the suggested approach [24]. In 2023, the project intends to improve WSN security 

by using ECC for key generation and a mix of AES and ECC for encryption/decryption, while employing 

LEACH clustering to improve energy efficiency and data security in WSNs. In comparison to existing 

approaches, the hybrid algorithm outperforms them in terms of time complexity, encryption, and decryption, 

providing a strong solution for secure WSN data transfer, particularly against side-channel assaults [25]. 

In 2023, the research evaluates encryption approaches in communication networks using Visual Basic 

simulations, comparing methods such as Multi-Level Algorithms and RSA. With an emphasis on temporal 

complexity analysis, symmetric and public key cryptography, encryption techniques, and cryptographic hash 

functions are used. The temporal complexity of the Multi-Level Algorithm is linear. Performance comparisons 

show that SHA-512 hardware implementations outperform SHA-1, delivering higher performance without 

sacrificing security. The study emphasizes the need to investigate the influence of encryption on battery life, 

memory, and output byte [26]. In 2023, the research offers a revolutionary multiple-image encryption (MIE) 

approach that achieves multi-layer security in time, frequency, and coordinate domains by combining AHC, 

RP2DFrHT, and 2D AM. The suggested technique's encryption quality is confirmed by simulation and 

statistical studies, providing multi-layer security for color, grayscale, and binary pictures with minimal space 

and time complexity. Existing solutions lack multi-layer security for numerous pictures; the proposed method 

fills this need, providing better security and encryption efficiency [27] for further analysis we visualized it in 

Table 1. 

  

Table 1. Comparison Analysis with Existing Studies 

Related 

Work 

Symmetric Algorithms Asymmetric 

Algorithms 

Hybrid Encryption Algorithms 

 

Algorithm Blowfish 

 

Twofish 

 

RC4 

 

AES 

 

 

 

ChaCha20 3DES 

 

ECC 

+ 

AES 

 

3DES 

+ 

RSA 

 

AES 

+ 

RSA 

 

ChaCha20 

+ RSA 

[28] No No No No No No ECS No No No 

[29] No No No No No Yes No No No No 

[30] No No No Yes No No No No No No 

[31] No No No No No No ECS no No No 

[32] Yes No No yes No yes No no No No 

[33] No Yes No No No Yes No no No No 

Proposed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

 

2.2.   Research Gap 

 

2.2. The Research Deficit 

 

Although a lot of study has been done on data security encryption methods, few of those studies explicitly 

address the special difficulties associated with protecting environmental sensor telemetry data. The majority of 

current research is focused on general or healthcare-related data, with very little investigation into the particular 

needs for encrypting environmental data. Furthermore, a thorough comparative analysis comparing and 

contrasting hybrid approaches with symmetric and asymmetric encryption techniques for this kind of data is 

lacking. Studies that have already been done frequently overlook the need of striking a balance between 

security and performance, which is crucial for environmental telemetry applications that need both reliable 

data transfer and strong protection. Furthermore, not all of the potential of cutting-edge technologies like 

quantum cryptography and blockchain to improve the security of environmental sensor data has been 

investigated. By offering a thorough comparison of encryption techniques appropriate for environmental 

telemetry data, taking performance and security into account, and investigating the integration of cutting-edge 

technologies for enhanced security solutions, this research seeks to close these gaps. 

 

3. METHODOLOGY 

 

3.1.   Data Description 

This dataset includes telemetry information from three Internet of Things sensor arrays that are linked 

to Raspberry Pi devices under various environmental circumstances. Along with device IDs and timestamps, 



 

 

it contains seven sensor readings (CO, humidity, light, LPG, motion, smoke, and temperature). From July 12 

to July 19, 2020, data was gathered and sent over MQTT. It's useful for predictive maintenance, environmental 

monitoring, and Internet of Things analytics since it makes it possible to analyze sensor trends and patterns 

under various circumstances [34,35]. 

 

3.2.   Encryption and Decryption Techniques  

To get the ecological sensor telemetry information, we assess both symmetric and unbalanced 

encryption calculations. The encryption procedures are applied to the dataset to quantify their encryption and 

decoding times and survey their reasonableness for getting the information [36]. 

 

3.3.   Symmetric Algorithms 

Symmetric calculations, otherwise called symmetric-key calculations or mystery key calculations, 

utilize a similar key for both encryption and decoding. We examine the accompanying symmetric calculations: 

1. Blowfish: A block figure working on 64-cycle blocks and supporting key sizes going from 32 pieces 

to 448 pieces [37]. 

2. Twofish: A block figure working on 128-cycle blocks and supporting key sizes of 128, 192, or 256 

pieces [38]. 

3. RC4: A stream figure utilized for encryption and decoding, known for its effortlessness and speed yet 

with known security weaknesses [39]. 

4. AES (High-level Encryption Standard): A generally utilized block figure working on 128-cycle 

blocks and supporting key sizes of 128, 192, or 256 pieces [40]. 

5. ChaCha20: A stream figure working on 64-byte blocks and supporting a 256-digit key, intended for 

speed and obstruction against cryptographic assaults Symmetric algorithms, otherwise called 

symmetric-key calculations or mystery key calculations, are a class of cryptographic calculations 

utilized for encryption and decoding of information. In symmetric encryption, a similar key is utilized 

for both the encryption and decoding processes [41]. 

3.3.1. Blowfish 

Blowfish is a symmetric key block figure that works on 64-cycle blocks and supports key sizes going 

from 32 pieces to 448 pieces. It is known for its effortlessness and adaptability, offering a decent harmony 

between security and execution as shown in Fig. 1. 

 

Figure 1. Blowfish Algorithm 

Blowfish Encryption Mathematical Representation: 
1. Input: plaintext (64-bit block), key (variable-length key up to 448 bits). 

2. Key Expansion: Generate the subkeys using the key schedule derived from the key. 

3. Divide plaintext into two 32-bit blocks, left and right. 

4. Perform 16 rounds of the Feistel network: 

 For each round i from 1 to 16: 

 left = left XOR P[i] 

 right = F(left) XOR right 

 Swap left and right 



 

 

 After 16 rounds, swap left and right again to undo the last swap. 

5. XOR left and right with the final two subkeys (P [17] and P [18]). 

6. Output the 64-bit ciphertext. 

 Blowfish Decryption Mathematical Representation: 
1. Input: ciphertext (64-bit block), key (variable-length key up to 448 bits). 

2. Key Expansion: Generate the subkeys using the key schedule derived from the key. 

3. Divide ciphertext into two 32-bit blocks, left and right. 

4. Perform 16 rounds of the Feistel network in reverse order: 

 For each round i from 16 to 1: 

 left = left XOR P[i] 

 right = F(left) XOR right 

 Swap left and right 

 After 16 rounds, swap left and right again to undo the last swap. 

5. XOR left and right with the initial two subkeys (P [0] and P [1]). 

6. Output the 64-bit decrypted plaintext. 

 

 

3.3.2. Towfish 

Twofish is a symmetric key block figure that works on 128-cycle blocks and supports key sizes of 

128, 192, or 256 pieces. It is intended to be profoundly secure and offers an elevated degree of opposition 

against known cryptographic assaults. Twofish is known for its areas of strength and has been broadly taken 

on in different applications as shown in Fig. 2. 

 

Figure 2. Towfish Algorithm 

TwoFish Encryption Mathematical Representation: 
1. Input: input_file (plaintext CSV file), output_file (encrypted CSV file), key (128, 192, 

or 256 bits). 

2. Create a TwoFish cipher instance with the given key. 

3. Read the plaintext CSV file and parse the data into rows. 

4. For each row in the CSV file: 

 For each column in the row: 

 Pad the column data to the BLOCK_SIZE (16 bytes) using padding if 

needed. 

 Divide the padded column data into 16-byte blocks. 

 For each block in the column: 

 Encrypt the block using the TwoFish cipher. 

 Concatenate the encrypted blocks to form the 

encrypted_data. 

 Convert the encrypted_data to hexadecimal format. 

 Append the hexadecimal representation of the encrypted column data to 

encrypted_columns. 

 Append the list encrypted_columns (representing the encrypted row) to 

encrypted_rows. 

5. Write encrypted_rows to the output_file as an encrypted CSV file. 

TwoFish Decryption Mathematical Representation: 
1. Input: input_file (encrypted CSV file), output_file (decrypted CSV file), key (128, 192, 

or 256 bits). 



 

 

2. Create a TwoFish cipher instance with the given key. 

3. Read the encrypted CSV file and parse the data into rows. 

4. For each row in the encrypted CSV file: 

 For each column in the row: 

 Convert the hexadecimal column data to binary format. 

 Divide the binary column data into 16-byte blocks. 

 For each block in the column: 

 Decrypt the block using the TwoFish cipher. 

 Concatenate the decrypted blocks to form the 

decrypted_data. 

 Remove the padding from decrypted_data using unpadding. 

 Convert the decrypted_data to its original plaintext format. 

 Append the plaintext column data to decrypted_columns. 

 Append the list decrypted_columns (representing the decrypted row) to 

decrypted_rows. 

5. Write decrypted_rows to the output_file as a decrypted CSV file. 

 

3.3.3. RC4 

RC4 is a symmetric stream figure that can be utilized for both encryption and decoding. It works on 

a variable-length key and creates a keystream that is XORed with the plaintext to deliver the ciphertext. RC4 

is known for its straightforwardness and speed, however it has some security weaknesses and is not generally 

suggested for secure interchanges as shown in Fig. 3. 

 

 

Figure 3. RC4 Algorithm 

 

RC4 Encryption Mathematical Representation: 

1. Input: key (variable-length key), data (binary data to be encrypted). 

2. Initialize the S array as a list of integers from 0 to 255 (inclusive). 

3. Key Scheduling: 

 Initialize j to 0. 

 For each integer i from 0 to 255: 

 Calculate j as (j + S[i] + key [i % len(key)]) % 256. 

 Swap the values of S[i] and S[j]. 

4. Pseudo-random Generation: 

 Initialize i and j to 0. 

 Create an empty result bytearray. 

 For each byte in the data: 

 Increment i modulo 256. 

 Calculate j as (j + S[i]) % 256. 

 Swap the values of S[i] and S[j]. 

 Get the pseudo-random byte as data [_] XOR S[(S[i] + S[j]) % 256]. 

 Append the pseudo-random byte to the result bytearray. 

5. Output the result bytearray as the encrypted data. 

RC4 Decryption Mathematical Representation: 

1. Input: key (variable-length key), encrypted_data (binary data to be decrypted). 



 

 

2. Use the same key scheduling procedure as in the encryption phase to generate the same S 

array. 

3. Pseudo-random Generation: 

 Initialize i and j to 0. 

 Create an empty result bytearray. 

 For each byte in the encrypted_data: 

 Increment i modulo 256. 

 Calculate j as (j + S[i]) % 256. 

 Swap the values of S[i] and S[j]. 

 Get the decrypted byte as encrypted_data [_] XOR S[(S[i] + S[j]) % 

256]. 

 Append the decrypted byte to the result bytearray. 

4. Output the result bytearray as the decrypted data. 

 

3.3.4. AES (Advanced Encryption Standard) 

AES is a symmetric key block figure that works on 128-cycle blocks and supports key sizes of 128, 

192, or 256 pieces. It is broadly utilized and viewed as exceptionally secure. AES has been taken on as the 

standard encryption calculation by the U.S. government and is generally utilized in different applications and 

conventions as shown in Fig. 4. 

 

 

           Figure 4. AES (Advanced Encryption Standard) Algorithm 

 

AES Encryption Mathematical Representation: 

1. Input: plaintext (binary data to be encrypted), key (128-bit AES key). 

2. Create an AES cipher with CBC mode using the provided key. 

3. Pad the plaintext using PKCS#7 padding scheme to ensure its length is a multiple of the 

block size (128 bits). 

4. Generate a random 128-bit Initialization Vector (IV). 

5. Create an AES encryptor. 

6. Encrypt the padded_plaintext using the AES encryptor. 

7. Output the ciphertext and the generated IV. 

AES Decryption Mathematical Representation: 
1. Input: ciphertext (binary data to be decrypted), IV (Initialization Vector), key (128-bit 

AES key). 

2. Create an AES cipher with CBC mode using the provided IV and key. 

3. Create an AES decryptor. 

4. Decrypt the ciphertext using the AES decryptor. 

5. Unpad the padded_plaintext using PKCS#7 unpadding scheme to remove the padding 

from the decrypted plaintext. 

6. Output the plaintext. 

 

3.3.5. ChaCha20 

ChaCha20 is a symmetric stream figure that works on 64-byte blocks and supports a 256-cycle key. 

It is intended to be secure, quick, and safe against cryptographic assaults. center strides of the ChaCha20 

encryption and decoding processes. It exhibits how ChaCha20 utilizes a 256-bit key, a 128-digit nonce, and a 

counter to create a surge of pseudo-irregular information, which is then XORed with the plaintext to deliver 

the ciphertext. Decoding follows a similar cycle, however with a similar key, nonce, and counter qualities to 



 

 

produce a similar stream of pseudo-irregular information for XORing with the ciphertext to recuperate the first 

plaintext as shown in Fig. 5. 

 

Figure 5. ChaCha20 Algorithm 

 

ChaCha20 Encryption Mathematical Representation: 
1. Input: plaintext (binary data to be encrypted), key (256-bit ChaCha20 key). 

2. Generate a random 128-bit nonce. 

3. Create a ChaCha20 cipher with the provided key and nonce. 

4. Create a ChaCha20 encryptor. 

5. Encrypt the plaintext using the ChaCha20 encryptor. 

6. Output the ciphertext and the generated nonce. 

ChaCha20 Decryption Mathematical Representation: 

1. Input: ciphertext (binary data to be decrypted), nonce (128-bit nonce), key (256-bit 

ChaCha20 key). 

2. Create a ChaCha20 cipher with the provided key and nonce. 

3. Create a ChaCha20 decryptor. 

4. Decrypt the ciphertext using the ChaCha20 decryptor. 

5. Output the plaintext. 

 

4. COMPARATIVE ANALYSIS OF SYMMETRIC ALGORITHMS  

In this section, we present a similar examination of symmetric encryption calculations, including 

Blowfish, Twofish, RC4, AES (High level Encryption Standard), and ChaCha20. These calculations are 

broadly utilized for getting information in different applications, and we assess their encryption and decoding 

execution with regards to natural sensor telemetry information. 

Blowfish: Blowfish is a symmetric key block figure that works on 64-cycle blocks and supports key sizes 

going from 32 pieces to 448 pieces. It is known for its straightforwardness and adaptability, offering a decent 

harmony among security and execution. In our examination, the encryption time for Blowfish is estimated to 

be 1.705 units, while the unscrambling time is recorded as 2.00 units. 

Twofish: Twofish is another symmetric key block figure that works on 128-digit blocks and supports key 

sizes of 128, 192, or 256 pieces. It is intended to be exceptionally secure and offers an elevated degree of 

opposition against known cryptographic assaults. In our assessment, Twofish shows a moderately longer 

encryption season of 39.30 units, while the unscrambling time is estimated to be 36.68 units. 

RC4: RC4 is a symmetric stream figure that can be utilized for both encryption and decoding. It works 

on a variable-length key and creates a keystream that is XORed with the plaintext to deliver the ciphertext. 

RC4 is known for its straightforwardness and speed, yet it has some security weaknesses and is not generally 

suggested for secure correspondence. In our examination, RC4 shows an encryption season of 307.39 units and 

a decoding season of 301.17 units. 

AES (High-level Encryption Standard): AES is a broadly taken-on symmetric key block figure that 

works on 128-cycle blocks and supports key sizes of 128, 192, or 256 pieces. It is thought of as profoundly 

secure and has been embraced as the standard encryption calculation by the U.S. government. In our 

assessment, AES exhibits an essentially lower encryption season of 0.23 units, while the decoding time is 

estimated to be 1.25 units. 

ChaCha20: ChaCha20 is a symmetric stream figure that works on 64-byte blocks and supports a 256-bit 

key. It is intended to be secure, quick, and safe against cryptographic assaults. In our examination, ChaCha20 

shows great execution with an encryption season of 0.17 units and an unscrambling season of 0.14 units. 

Because of the consequences of our similar examination, it is obvious that different symmetric 

calculations offer shifting degrees of safety and execution. While Blowfish and Twofish give a decent harmony 



 

 

between security and execution, RC4 shows some security weaknesses. AES and ChaCha20 stand apart with 

their somewhat quicker encryption and decoding times, making them great decisions for getting natural sensor 

telemetry information. 

 It is critical to consider the prerequisites and requirements of the application while choosing a proper 

symmetric encryption calculation. Factors like the ideal degree of safety, computational assets, and key 

administration ought to be considered to guarantee the ideal insurance of natural sensor telemetry information. 

 

5. LIMITATIONS 

 

5.1.   Blowfish 

Blowfish upholds key lengths up to 448 pieces, which might be viewed as lacking for specific high-

security applications. The first Blowfish calculation is defenseless to sorts of assaults, for example, the birthday 

assault and slide assaults [42]. 

5.2.   Twofish 

Twofish has generally slower encryption and decoding times contrasted with a few different 

calculations, as shown by the given times. The vital timetable for Twofish can be computationally costly, 

making it less reasonable for gadgets with restricted handling power [43]. 

5.3.   RC4 

RC4 has referred to weaknesses, for example, predispositions in its key stream, which can debilitate 

its security. The calculation is defenseless to factual assaults, particularly when utilized with deficient key 

statements [44]. 

5.4.   AES (High-level Encryption Standard) 

AES is helpless against side-channel assaults, for example, timing assaults and power examination 

assaults, if not executed cautiously. AES works on fixed block sizes, and while utilizing bigger key sizes (e.g., 

256 pieces), it requires a key extension process that can be computationally concentrated [45]. 

5.5.   ChaCha20 

ChaCha20 is a general fresher calculation, and it may not be as broadly upheld in specific frameworks 

or applications contrasted with additional laid-out calculations like AES. ChaCha20 doesn't have inherent help 

for key administration or confirmation. This implies that extra conventions or systems are expected to guarantee 

secure key trade and information trustworthiness [46]. 

 

6. ASYMTRIC ALGORITHMS 

 

Applies the Triple Information Encryption Standard (3DES) symmetric encryption calculation, which 

utilizes the DES calculation multiple times for every information block [47]. 

 

6.1.   3DES 

3DES (Triple Information Encryption Standard) is a symmetric encryption calculation that applies the 

DES encryption calculation multiple times to every information block. In our assessment, 3DES displays an 

encryption season of 2.55 units and an unscrambling season of 2.46 units. While 3DES offers improved 

security, it accompanies expanded computational intricacy and longer handling times [48]. 

 

3DES Encryption Mathematical Representation: 

 Input: plaintext (binary data to be encrypted), key (192-bit 3DES key). 

 Generate a random 64-bit Initialization Vector (IV). 

 Create a 3DES cipher in CBC mode with the provided key and IV. 

 Pad the plaintext using PKCS#7 padding scheme to ensure its length is a multiple of the 

block size (64 bits). 

 Encrypt the padded plaintext using the 3DES cipher. 

 Output the ciphertext and the generated IV. 

3DES Decryption Mathematical Representation: 

 Input: ciphertext (binary data to be decrypted), IV (64-bit Initialization Vector), key (192-

bit 3DES key). 

 Create a 3DES cipher in CBC mode with the provided key and IV. 

 Decrypt the ciphertext using the 3DES cipher. 

 Unpad the decrypted padded text using PKCS#7 unpadding scheme to remove the padding 

from the decrypted plaintext. 

 Output the unpadded_text (decrypted plaintext). 

 

7. HYBRID ALGORITHMS 



 

 

 

Deviated calculations, otherwise called public-key calculations, utilize different keys for encryption and 

decoding. Mixture encryption consolidates symmetric and topsy-turvy calculations for upgraded security. We 

assess the accompanying uneven calculations and half-and-half encryption draws near: 

ECC + AES: Joins elliptic bend cryptography (ECC) for key trade with the High level Encryption 

Standard (AES) for information encryption. 

3DES + RSA: Joins 3DES for information encryption with the RSA calculation for key trade and 

computerized marks. 

AES + RSA: Uses AES for information encryption and the RSA calculation for key trade. 

ChaCha-20 + RSA: Consolidates ChaCha-20 for information encryption with the RSA calculation for 

key trade. 

We measure the encryption and unscrambling times for every calculation to assess their presentation and 

security qualities. 

By utilizing these encryption and decoding methods on the natural sensor telemetry information, we 

expect to acquire bits of knowledge into their viability, execution, and security, empowering us to make 

informed proposals for getting such information in genuine applications. 

 

7.1.   Implementation Analysis of Hybrid Algorithms  

In this part, we present a near examination of hilter kilter calculations and half-breed encryption draws 

near, including ECC + AES, 3DES, 3DES + RSA, AES + RSA, and ChaCha-20 + RSA. These calculations 

consolidate the qualities of hilter kilter encryption for key trade and symmetric encryption for information 

encryption, offering improved security for natural sensor telemetry information. 

 

7.1.1. ECC + AES  

ECC + AES joins elliptic bend cryptography (ECC) for key trade and the High level Encryption 

Standard (AES) for information encryption. This half and half encryption approach gives a harmony among 

speed and security. Our investigation uncovers an encryption season of 0.30 units and a decoding season of 

0.19 units for ECC + AES, making it reasonable for applications where both speed and security are significant. 

Hybrid Approach AES+ECC Encryption Mathematical Representation: 

Key Generation: 

 Generate a private key (private_key_sender) and a corresponding public key 

(public_key_sender) for ECC (Elliptic Curve Cryptography). 

 Generate another private key (private_key_receiver) and its corresponding public key 

(public_key_receiver) for ECC. 

Key Exchange: 

 Perform key exchange between the sender and receiver using Elliptic Curve Diffie-

Hellman (ECDH) to obtain a shared key (shared_key_sender) from the sender's private key 

(private_key_sender) and the receiver's public key (public_key_receiver). 

 Perform key exchange between the receiver and sender using ECDH to obtain a shared key 

(shared_key_receiver) from the receiver's private key (private_key_receiver) and the 

sender's public key (public_key_sender). 

Encryption: 

 Generate a random 128-bit Initialization Vector (IV). 

 Create an AES cipher in CBC mode with the derived shared key (shared_key_sender) and 

the IV. 

 Pad the plaintext using PKCS#7 padding scheme to ensure its length is a multiple of the 

block size (128 bits). 

 Encrypt the padded plaintext using the AES cipher. 

 Output the ciphertext and the generated IV. 

 

Hybrid Approach AES+ECC Decryption Mathematical Representation: 

Key Exchange (Same as the Encryption phase): 

 

 Perform key exchange between the sender and receiver using ECDH to obtain a shared key 

(shared_key_sender) from the sender's private key (private_key_sender) and the receiver's 

public key (public_key_receiver). 



 

 

 Perform key exchange between the receiver and sender using ECDH to obtain a shared key 

(shared_key_receiver) from the receiver's private key (private_key_receiver) and the 

sender's public key (public_key_sender). 

Decryption: 

 Create an AES cipher in CBC mode with the derived shared key (shared_key_receiver) 

and the IV (obtained during encryption). 

 Decrypt the ciphertext using the AES cipher. 

 Unpad the padded_plaintext using PKCS#7 unpadding scheme to remove the padding from 

the decrypted plaintext. 

 Output the plaintext 

 

7.1.2. 3DES + RSA 

The 3DES + RSA half breed encryption approach joins 3DES for information encryption with the 

RSA encryption calculation for key trade and advanced marks. This approach finds some kind of harmony 

among security and execution. Our investigation shows an encryption season of 2.65 units and a decoding 

season of 2.52 units for 3DES + RSA. 

. 

3DES + RSA Encryption Mathematical Representation: 

 Input: plaintext (binary data to be encrypted), public_key (recipient's RSA public key). 

 Generate a random 64-bit Initialization Vector (IV) and a session key for 3DES encryption. 

 Create a 3DES cipher in CBC mode with the session_key and IV. 

 Pad the plaintext using PKCS#7 padding scheme to ensure its length is a multiple of the 

block size (64 bits). 

 Encrypt the padded plaintext using the 3DES cipher, producing ciphertext. 

 Encrypt the session_key using the recipient's public_key with RSA-OAEP padding. 

 Combine the encrypted_session_key, IV, and ciphertext to form encrypted_data. 

 Output the encrypted_data. 

3DES + RSA Decryption Mathematical Representation: 

 Input: encrypted_data (binary data to be decrypted), private_key (recipient's RSA private 

key). 

 Extract the encrypted_session_key, IV, and ciphertext from encrypted_data. 

 Decrypt the encrypted_session_key using the recipient's private_key with RSA-OAEP 

padding, obtaining the session_key. 

 Create a 3DES cipher in CBC mode with the session_key and IV. 

 Decrypt the ciphertext using the 3DES cipher, producing decrypted_padded_text. 

 Unpad the decrypted_padded_text using PKCS#7 unpadding scheme to remove the 

padding from the decrypted plaintext. 

 Output the unpadded_text (decrypted plaintext). 

 

7.1.3. AES + RSA 

AES + RSA uses the AES encryption calculation for information encryption and the RSA encryption 

calculation for key trade. AES gives effective and secure information encryption, while RSA works with secure 

key trade. In our assessment, AES + RSA shows an encryption season of 0.25 units and a decoding season of 

0.19 units, demonstrating its viability in giving both security and speed. 

AES + RSA Encryption Mathematical Representation: 
1. Input: plaintext (binary data to be encrypted), public_key (recipient's RSA public key). 
2. Generate a random 128-bit Initialization Vector (IV) and a session key for AES encryption. 
3. Create an AES cipher in CBC mode with the session_key and IV. 
4. Pad the plaintext using PKCS#7 padding scheme to ensure its length is a multiple of the 

block size (128 bits). 
5. Encrypt the padded plaintext using the AES cipher, producing ciphertext. 
6. Encrypt the session_key using the recipient's public_key with RSA-OAEP padding. 
7. Combine the encrypted_session_key, IV, and ciphertext to form encrypted_data. 
8. Output the encrypted_data. 

AES + RSA Decryption Mathematical Representation: 
1. Input: encrypted_data (binary data to be decrypted), private_key (recipient's RSA private 

key). 
2. Extract the encrypted_session_key, IV, and ciphertext from encrypted_data. 



 

 

3. Decrypt the encrypted_session_key using the recipient's private_key with RSA-OAEP 
padding, obtaining the session_key. 

4. Create an AES cipher in CBC mode with the session_key and IV. 
5. Decrypt the ciphertext using the AES cipher, producing decrypted_padded_text. 
6. Unpad the decrypted_padded_text using PKCS#7 unpadding scheme to remove the 

padding from the decrypted plaintext. 
7. Output the unpadded_text (decrypted plaintext). 

 
7.1.4. ChaCha-20 + RSA 

ChaCha-20 + RSA joins the ChaCha-20 stream figure for information encryption with the RSA 

encryption calculation for key trade. ChaCha-20 is known for its speed and obstruction against sorts of assaults. 

Our examination uncovers an encryption season of 0.13 units and an unscrambling season of 0.13 units for 

ChaCha-20 + RSA, displaying its brilliant exhibition as far as encryption and decoding times as shown in Fig. 

6.  

 

Figure 6.  ChaCha-20 + RSA Algorithms 

 

ChaCha-20 + RSA Encryption Mathematical Representation: 

1. Input: plaintext (binary data to be encrypted), chacha20_key (random 256-bit key for 

ChaCha-20 encryption), rsa_public_key (recipient's RSA public key). 

2. Generate a random 128-bit nonce. 

3. Create a ChaCha20 cipher with the chacha20_key and once. 

4. Encrypt the plaintext using the ChaCha20 cipher, producing ciphertext. 

5. Encrypt the chacha20_key using the recipient's rsa_public_key with RSA-OAEP 

padding, producing rsa_encrypted_key. 

6. Serialize the rsa_encrypted_key and rsa_public_key for sharing. 

7. Save the ciphertext, nonce, rsa_encrypted_key, and rsa_public_key to files or other 

means of communication. 

ChaCha-20 + RSA Decryption Mathematical Representation: 
1. Input: ciphertext (binary data to be decrypted), nonce (the same nonce used for 

encryption), rsa_private_key (recipient's RSA private key). 

2. Decrypt the rsa_encrypted_key using the recipient's rsa_private_key with RSA-OAEP 

padding, obtaining the original chacha20_key. 

3. Create a ChaCha20 cipher with the chacha20_key and nonce. 

4. Decrypt the ciphertext using the ChaCha20 cipher, producing decrypted_plaintext. 

5. Output the decrypted_plaintext (decrypted plaintext). 

 

The near examination of these awry calculations and crossover encryption approaches shows their 

reasonableness for getting natural sensor telemetry information. ECC + AES offers a fair blend of speed and 

security, while 3DES, 3DES + RSA, AES + RSA, and ChaCha-20 + RSA furnish changing degrees of safety 

with various encryption and decoding times. 

Choosing the most fitting uneven calculation or half breed encryption approach relies upon the 

necessities and limitations of the application. Factors like the ideal degree of safety, computational assets, and 

similarity with existing frameworks ought to be considered to guarantee the viable assurance of ecological 

sensor telemetry information. 

 

8. LIMITATIONS OF HYBRID ALGORITHMS 

 



 

 

8.1.   ECC + AES 

Key Size: The security of Elliptic Bend Cryptography (ECC) depends on the choice of fitting key 

sizes. Assuming deficient key sizes are utilized, ECC can be defenseless against assaults [49]. 

Key Administration: ECC requires cautious key administration and secure key appropriation to 

guarantee the privacy and uprightness of scrambled information [49]. 

 

8.2.   3DES + RSA 

Intricacy: Joining 3DES with RSA presents extra computational intricacy, particularly during the 

encryption and decoding process. This can affect the general presentation and effectiveness of the framework 

[44]. 

 

8.3. AES + RSA 

Key Administration: Like ECC + AES, the blend of AES with RSA requires cautious key 

administration and secure key appropriation to keep up with the security of the framework [49]. 

Execution Compromise: While AES is known for its productivity, the utilization of RSA for key 

trade or computerized marks can add computational above, influencing by and large execution [49]. 

 

8.4.   ChaCha20 + RSA 

Similarity: ChaCha20 is a moderately new encryption calculation and may not be as generally upheld 

in all frameworks or applications contrasted with additional laid out calculations like AES [49]. 

Key Administration: Similarly, as with different mixes including RSA, legitimate key administration 

and secure key trade components are essential to keep up with the security of the framework [49]. 

 

9. RESULTS OF COMPARATIVE ANALYSIS OF HYBRID ALGORITHMS 

 

We will present a thorough comparison study of the four hybrid encryption strategies—ECC + AES, 

3DES + RSA, AES + RSA and ChaCha-20 + RSA in this part. These methods secure the telemetry data from 

environmental sensors by using symmetric and asymmetric encryption algorithms. We will assess their 

applicability for various application scenarios in addition to their encryption and decryption capabilities. 

With an encryption time of 0.30 units and a decryption time of 0.19 units, ECC + AES provides a fair 

trade-off between speed and security. It uses Advanced Encryption Standard (AES) for data encryption and 

Elliptic Curve Cryptography (ECC) for key exchange. Because of its comparatively quick encryption and 

decryption rates, it is appropriate for situations where security and speed are equally important. ECC + AES 

keeps efficiency high while offering a strong degree of security. 

3DES + RSA combines the Triple Data Encryption Standard (3DES) for data encryption with the RSA 

encryption algorithm for key exchange and digital signatures, with an encryption time of 2.65 units and a 

decryption time of 2.52 units. Compared to ECC + AES, it provides a higher level of security, but at the expense 

of slower encryption and decryption speeds. This method might be more appropriate for situations where 

security comes first. 

AES + RSA combines the effective AES encryption technique for data encryption with RSA for key 

exchange, with an encryption time of 0.25 units and a decryption time of 0.19 units. It offers robust protection 

with lightning-fast encryption and decryption. Because it provides a close to ideal balance between security 

and performance, AES + RSA is a great option for situations where both are essential.  

ChaCha-20 + RSA combines the RSA encryption method for key exchange with the ChaCha-20 stream 

cipher for data encryption, with an encryption time of 0.13 units and a decryption time of 0.13 units. It is 

renowned for both its remarkable speed and defense against all kinds of attacks. ChaCha-20 + RSA exhibits 

exceptional encryption performance, with some of the fastest encryption and decoding speeds. 

 

9.1.   Comparison and Considerations  

Speed versus Security: ChaCha-20 + RSA offers the quickest encryption and unscrambling times 

among all the half and half encryption draws near, going with it a top decision for applications focusing on 

speed. 

Security Levels: While ChaCha-20 + RSA gives solid security; it may not offer a similar degree of 

safety as 3DES + RSA. In any case, it is yet reasonable for some safe correspondence situations. 

Use Cases: ChaCha-20 + RSA is great for applications where speed is a basic component, like 

continuous information transmission. It offers a decent harmony between security and execution. 

Similarity: Think about the similarity of ChaCha-20 + RSA with your current frameworks, 

particularly assuming you have explicit prerequisites or requirements. 

All in all, ChaCha-20 + RSA succeeds as far as encryption and decoding speed, making it a hearty 

decision for applications where fast information transmission is fundamental as shown in Fig. 7. Nonetheless, 



 

 

it may not give the most elevated level of safety compared with 3DES + RSA. The decision of encryption 

approach ought to line up with your application's particular necessities and needs, whether they incline more 

towards speed, security, or a harmony between the two. 

 

 

 
 

Figure 7.  Graph Representation Analysis of Hybrid Encryption Algorithms 

 

10. EVALUATION AND DISCUSSION 

In this section, we give an extensive assessment and conversation of the near examination of encryption 

and decoding procedures for getting natural sensor telemetry information. We think about execution 

measurements, security contemplations, key administration, and potential use case scenarios. Performance 

measurements assume an urgent part in evaluating the viability of encryption and unscrambling strategies. In 

our examination, we estimated the encryption and decoding times for both symmetric and kilter calculations. 

The outcomes showed varieties in the handling times across various calculations. Symmetric calculations, for 

example, AES and ChaCha20 showed quicker encryption and unscrambling times, making them reasonable 

for applications that call for constant handling. Unbalanced calculations and half-and-half encryption move 

toward commonly showed longer handling times because of their more intricate activities [50-51]. 

Security is a basic perspective when choosing encryption and unscrambling procedures for ecological 

sensor telemetry information. Symmetric calculations, for example, AES and Twofish are broadly perceived 

for their high security levels and obstruction against known cryptographic assaults. Hilter kilter calculations 

furnish extra security benefits with their key trade systems and advanced marks.  

The decision of encryption and unscrambling methods relies upon the particular use case situations and 

prerequisites of ecological sensor telemetry information. For applications where ongoing handling and low 

inactivity are essential, symmetric calculations like AES and ChaCha20 offer amazing execution. Deviated 

calculations and crossbreed encryption draw near, like ECC + AES and AES + RSA, which are appropriate for 

situations requiring improved security, key trade, and advanced marks [52]. Use cases might fluctuate, and it 

is fundamental to adjust the chosen encryption procedures to the particular security and execution needs of the 

application. Generally, the near investigation gives experiences into the qualities and shortcomings of various 

encryption and decoding strategies for getting natural sensor telemetry information. The selection of 

calculations ought to think about harmony between security, execution, key administration, and the 

prerequisites of the application. Assessing the compromises and understanding the ramifications of every 

strategy will help in going with informed choices to safeguard the trustworthiness and classification of natural 

sensor telemetry information [52-53]. 

11. CONCLUSION 

In this examination, we directed an extensive similar investigation of encryption and unscrambling 

procedures for getting ecological sensor telemetry information. We assessed both symmetric and deviated 

calculations, considering their encryption and unscrambling times, execution measurements, security 

contemplations, key administration, and use case situations. The examination gave important experiences into 

the qualities and shortcomings of every procedure, supporting the determination of fitting encryption 

techniques for getting natural sensor telemetry information. As to calculations, we assessed Blowfish, Twofish, 

RC4, AES (High-level Encryption Standard), and ChaCha20. Among these calculations, AES and ChaCha20 

showed fundamentally quicker encryption and decoding times contrasted with Blowfish, Twofish, and RC4. 

AES, being broadly embraced and perceived for its high security, ended up being a reasonable decision for 

safeguarding natural sensor telemetry information. ChaCha20, with its proficient exhibition and opposition 

against cryptographic assaults, likewise arose as an ideal choice. 



 

 

In the examination of unbalanced calculations and half-breed encryption draws near, we thought about 

ECC + AES, 3DES, 3DES + RSA, AES + RSA, and ChaCha-20 + RSA. ECC + AES stood apart as a promising 

methodology, offering a reasonable mix of speed and security, making it reasonable for applications where the 

two viewpoints are significant. The crossover draws near, like 3DES + RSA, AES + RSA, and ChaCha-20 + 

RSA, gave shifting degrees of safety, with encryption and decoding times that were for the most part longer 

than symmetric calculations. These mixture encryption approaches were especially appropriate for situations 

requiring upgraded security, key trade, and advanced marks. By tending to these examination regions, the 

security and execution of encryption and decoding strategies for getting natural sensor telemetry information 

can be additionally improved. This will guarantee the security of delicate data and backing solid dynamic 

cycles considering precise and secret natural sensor telemetry information. All in all, the near examination 

introduced in this exploration gives far reaching bits of knowledge into the qualities and shortcomings of 

various encryption and unscrambling methods for getting natural sensor telemetry information. The choice of 

suitable encryption calculations ought to think about the prerequisites of the application, considering security, 

execution, key administration, and use case situations. By utilizing appropriate encryption methods, the 

uprightness and privacy of natural sensor telemetry information can be guaranteed, empowering dependable 

and secure examination and usage of the gathered data. 

 

12. FUTURE WORK 

The proposals for getting ecological sensor telemetry information underline the significance of choosing 

encryption calculations given explicit application prerequisites. For ongoing applications focusing on speed, 

symmetric calculations like AES or ChaCha20 are suggested, while those requiring upgraded security and extra 

elements, for example, key trade and advanced marks ought to investigate lopsided calculations or mixture 

encryption draws near, like ECC + AES or AES + RSA. The execution of powerful key administration works, 

including secure dissemination, stockpiling, and turn of encryption keys, is featured as a vital part of 

guaranteeing by and large security. Standard updates and evaluations of encryption methods are considered 

vital for addressing arising security dangers and weaknesses [54-55]. 

As far as future examination headings, an emphasis is recommended on lightweight encryption strategies 

upgraded for asset-obliged sensor gadgets, meaning to find some kind of harmony between security and 

productivity. Moreover, the advancement are productive and secure key administration conventions custom-

made for natural sensor networks is proposed as an area requiring further investigation. Given the potential 

dangers presented by quantum figuring, there is a proposal to explore post-quantum encryption calculations. 

The exploration likewise energizes the assessment of encryption strategies custom-made for explicit sorts of 

ecological sensor information, like pictures or time-series information. At long last, a call is made for studies 

looking at encryption procedures reasonable for huge scope organizations of natural sensor organizations, 

tending to the one-of-a-kind difficulties related to scale and information variety in such settings [54-56]. 
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