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Abstract: In our effort to introduce programming foundations to secondary-level students in a more engaging way, we are developing
a turn-based tactics game named MECH.AI. In addition of being a strategy game, MECH.AI incorporates elements of serious games,
focusing on educating players in basic programming and artificial intelligence concepts. Players can control game objects not only
through the graphical user interface but also via the command line, simulating programming practices. However, providing game maps
and challenges is crucial and can significantly impact game pacing, thereby affecting the player experience. The creation of battle maps
is essential to maintain diversity and excitement in the game, preventing it from becoming monotonous. Producing high-quality content
in a short amount of time is challenging, and procedural content generation emerges as an effective solution to this problem. In this
study, we aim to apply a system that generates game maps with pacing controllable by the designer using the Wave Function Collapse
algorithm. We will examine a pacing aspect that influences player experience, specifically tempo. This system enables us to generate
tactical game maps and manage game pacing. The results show that controlling game pacing while in pre-battle map generation is
feasible and adjustable to match designer’s preferences.

Keywords: Procedural Content Generation, Turn-based Tactics, Strategy Games, Wave Function Collapse, Game Design, Serious
Games

1. INTRODUCTION
Besides providing entertainment, serious games serve

various purposes, including educational aspects [1], [2] such
as enhancing students’ motivation [3], [4] and involvement
[5] in basic programming fundamentals. Among the popular
game sub-genres is turn-based tactics (TBT) game, a subset
of strategy games [6]. Turn-based tactics is a sub-genre of
strategy games and one of the most profitable genres in the
game industry [7]. A turn-based tactics game implements
turn-based mechanics and strategic elements. Typically,
players control characters and resources to achieve victory
by defeating enemies and exploring the environment. The
main mechanics in turn-based tactics are not exclusive to
this sub-genre, as these mechanics are also found in tactical
role-playing games (TRPGs), also called simulation role-
playing games (SRPGs) [8], [9], turn-based combat, and
turn-based strategy games in general. Due to the presence
of tactical aspects in TBT games, this genre is well-suited
for teaching basic programming fundamentals.

As part of our progress to teach the basic program-
ming fundamentals to secondary-level students, we created
MECH.AI, a turn-based tactics game with a science fiction

theme where players act as mecha robot pilots competing
to mine precious gems as universal currency of the future.
MECH.AI is developed by following the game development
life cycle (GDLC), a software development methodology
aimed at managing the development process, especially in
video games [10], [11].

However, providing maps and challenges that are suit-
able for players is a crucial task, as it may affect the game
pacing and, consequently, the overall player experience.
Pacing, an essential aspect of game [12], refers to the level
or flow of activity or actions in a video game, such as
movement, attacks, or other elements that influence the
player’s experience. Pacing can be observed separately in
threats, movement impetus, and tempo [13]. Understanding
the pacing distribution through the game is important,
because we can illustrate the level of difficulty and its
distribution during gameplay [14]. Moreover, keeping the
battle map interesting while also creating non-monotonous
challenges is key to maintaining player excitement. Fortu-
nately, procedural content generation (PCG) can be used
as an effective solution to address this problem. PCG is a
general term for systems that utilize specific design patterns
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to generate new assets based on those patterns [15].

Creating high-quality content in a short amount of
time and automatically generating battle maps that align
with each pacing determined by the game designer pose
challenges. Manual creation of battle maps according to
game pacing by developers can be time-consuming and
require significant effort. Therefore, a technique is needed
to automatically generate maps quickly and effectively.
One procedural method that can address this problem is
Wave Function Collapse (WFC). Wave Function Collapse
is a search algorithm renowned for its ability to produce
consistent output on a large scale while leveraging a small
set of constraints [16].

With a greater variety of stage maps, players can employ
different strategies at each game pacing and enjoy a more
fulfilling gaming experience. The aim of this research is
to apply and analyse the WFC technique in automatically
generating turn-based tactics game maps according to the
game pacing set by game designer. By generating map
variants while allowing control over the resulting game
pacing, the experience provided to players by the designer
will effectively maintain player engagement in learning the
basic programming fundamentals incorporated into game-
play. Furthermore, this technique can also be applied in the
development of other sub-genres of strategy games, thereby
enriching the variety of stage maps in those games as well.
However, we do not discuss the impact of the proposed
system on serious game purposes.

2. LITERATURE STUDY
In this study, we use the GDLC to develop our turn-

based tactics game MECH.AI, and then apply WFC as a
technique to procedurally generate battle maps. Addition-
ally, we aim to observe and confirm that the concept of
game pacing can be adjusted to control map generation in
strategy games, as it has been applied in dungeon-crawler
[13] and platformer games [17] before.

A. Game Development Life Cycle (GDLC)
GDLC summarizes the entire process of developing a

game [10] and can be organized into four phases: analysis,
production, testing, and release [18]. Analysis, the first step
in GDLC, determines the game type and creates the main
concept. This phase results in game concepts and descrip-
tions, including the serious purposes. The second phase,
production, is the most essential process related to asset
creation, source code creation, and the integration of both.
This phase emphasizes on the design and implementation
of program and visuals while also ensuring the learning
content provided in the game. A prototype is produced as
the product of this phase and will be tested on the next
phase.

Testing, as the third phase, is performed to assess the
functionality and playability of the game. Usually, alpha
testing and beta testing are performed. Alpha testing is
performed by internal testers, while beta testing is carried

out by external testers. The final phase in this study is
release, which involves game launching, project documen-
tation finalization, and marketing. This step should explain
how the game is launched step-by-step, post-production
activities, and other activities needed to expose the game.
Today’s popular methods of launching include early access
or demos, where players can try the game before its
final version is released. This approach facilitates quicker
player acquisition while also obtaining feedback as early as
possible [19].

B. Wave Function Collapse (WFC)
In an attempt to automate game content creation, various

pseudo-random numbers and other techniques have been
widely used in PCG for games. Implementing PCG in game
development brings significant benefits, including labour
efficiency, greater creative expression for game designers,
storage space savings, and potential unlimited replayability
[20]. WFC is a procedural generation algorithm that pro-
duces images by arranging a set of tiles based on rules about
which tiles can be adjacent to each other, as well as how
often each tile should appear relative to others [15], [21].
Most research on WFC has focused on testing its ability
to generate levels based on image data and expanding the
design domain that WFC can accommodate [22], as it is
popular for generating grid-based game maps.

1) Pattern
The term “pattern” refers to the depiction of repetitive

occurrences of game area, characterized by local patterns
contained within them. These patterns typically consist of
sub-tiles (or images) that are only a few tiles wide and high
(for example, an n×n tile window) [22]. In this context, the
input pattern is called seed, while the output is the resulting
map generated according to the input.

2) Constraints Solving
Constraint solving in WFC ensures that the output image

matches the input patterns without breaking any rules.
It ensures that the generated image follows specific con-
straints, such as keeping local patterns intact and avoiding
conflicts. The process involves representing the problem
as a constraint satisfaction problem (CSP), where variables
represent the possible states of each tile (or pixel in image
generation) in the output image, and constraints define the
relationships between neighbouring tiles. These constraints
ensure that the generated image conforms to the input
patterns while maintaining coherence and consistency. For
instance, adjacency rules are one type of constraint used in
this context [22]. During the solving process, the algorithm
iteratively selects and collapses tiles based on constraints
and input patterns until either a solution is found or it
encounters a contradiction, indicating that the constraints
cannot be satisfied. Constraint solving algorithms in WFC
typically employ backtracking or other search techniques
to efficiently explore the solution space and find a valid
configuration for the output image.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. #, No.# (Mon-20..)) 191

In this study, we are applying constraints in the form
of seed tiles and game pacing. The seed is n×n tiles as a
sample input. The game pacing is calculated with the main
focus only on the tempo aspect. As [13], [17] stated that the
implementation of pacing aspect in the game is might be
intuitively tailored according to the designer’s preferences.

3) Entropy
In WFC, entropy denotes the degree of uncertainty or

disorder within the system, specifically reflecting the un-
predictability of patterns at each grid location in the output
image. As the algorithm assigns probabilities to various
patterns based on input constraints, higher entropy in a cell
indicates a greater range of potential patterns, while lower
entropy signifies fewer options. During image generation,
cells with lower entropy are prioritized for resolution as they
contribute to reducing uncertainty and enhancing coherence.
By focusing on cells with lower entropy first, the algorithm
efficiently explores the solution space, leading to a more
coherent and structured final image output [22].

C. Pacing
As we mentioned earlier, understanding game pacing

is crucial as it can indicate the distribution of designed
difficulties and can be analysed at each segment of the
game [13], [14], [23]. Designer can gain deeper insights
into the level design and utilize the relative risk values and
their distribution across different path clusters as a guide
to adjust the level design [24]. This helps in balancing the
overall risk or introducing interesting variations in strategic
choices for players.

Game pacing can also be measured by comparing
the gameplay data of different game groups or parties at
each timestep [14]. For instance, the speed of progression
through the game environment can be used as an indica-
tor of pacing, and displayed the recorded gameplay data
in a heatmap. Additionally, providing “fit” pacing to the
players is beneficial because players will be immersed in
an experience with the appropriate skill-challenge ratio,
thereby placing them in a conducive environment for serious
purposes [25], [26].

Pacing is the flow or rate of an activity, while in
the context of games, game pacing refers to the pace of
events influenced by the complex and cumulative aspects
of threats, movement impetus, and tempo for each segment
in the game level [13], [17]. In the context of tempo, it
refers to the length and timing of player actions. Generally,
a higher intensity of actions and a higher density of objects
(enemies, obstacles, and treasures) in a segment will result
in a higher tempo. In this study, we want to apply the WFC
to the map generation and implement the concept of pacing
as a constraint to control the resulting player experience
set by designer. However, we are only focusing one pacing
aspect, namely tempo.

Figure 1. Turn-based tactics game MECH.AI; red team vs blue team.

3. METHODOLOGY
This research aims to implement an efficient and high-

quality solution for automatically generating maps for the
serious, turn-based tactics (strategy) game MECH.AI while
considering the pacing aspect of tempo in game design.
The proposed approach involves implementing the WFC
algorithm and using map generation data in the pre-battle
phase as an experiment. Testing will be conducted to
measure the model’s ability to create maps that align with
the tempo set in the game design by the designer. The test
results are expected to yield a procedural model capable of
producing efficient and high-quality maps in MECH.AI.

A. MECH.AI
MECH.AI, developed by Game AI Code Lab

(GACLab), is a turn-based tactical game designed to
enhance students’ engagement in learning fundamental
programming concepts. In this game, players command
robots in strategic battles within a 10 × 10 grid arena
filled with obstacles like rocks and trees. The goal is
straightforward: eliminate all enemy robots. Players must
wisely choose actions: move, attack, or special attack
where each has different energy cost. Each team features
a unique mix of robots based on their equipment. Players
can control robots via a graphical user interface (GUI)
or through the command line, assuming the role of pilot
engineers directing mecha robots. Our ultimate goal is
to provide a feature where players can submit their own
AI scripts to control the robots. The game is currently in
development following the GDLC and will continue to
progress to achieve the best results. Fig. 1 illustrates the
gameplay of MECH.AI.

1) Development
As mentioned earlier, MECH.AI is intended to be a

serious game where players learn and practice programming
through gameplay contents. The ultimate goal of the game
is not only to control the robots via GUI or command line
but also to allow players to submit AI scripts and simu-
late battles against opposing parties. This feature provides
players with the freedom to experiment and observe the
underlying logic, thereby spreading basic programming and
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Figure 2. Turn-based tactics game MECH.AI; red team vs blue team.

AI foundations to the public. For instance, Move(a, x, y)
is the command to move active robot a to a target tile
with coordinates x and y. The analysis is performed as
the first phase of the development to map the serious
purposes we want to achieve and the game infrastructure.
The development cycle is shown in Fig. 2.

The production phase results in a prototype. In this
phase, we develop the technical specifications of the game
design as well as the serious game aspects. For instance,
we designed a tutorial level to familiarize players with the
gameplay. Most of the 3D assets are obtained from the
Unity Asset Store for rapid and convenient development.
The game prototype is then tested in GACLab, focusing
on the game concept and core mechanics. The Minimum
Viable Product (MVP) of the game is released on GitHub
as an open-source project to gather valuable feedback.

In MECH.AI, before the battle starts, players need to
deploy their robots on the designated deployment tiles. After
all robots are deployed, each player will have a turn to
perform actions. Generally, there are four actions a player
can take: move, attack, use a skill, or idle (to regain energy).

2) Map Representation
In our game, the map is represented by a combination

of tiles in a 10 × 10 grid. A tile is a single occupiable area
where a robot’s actions take place. There are two main types
of tiles: passable and obstacle. A passable tile is one that
players can move through, while an obstacle tile contains
a destructible blocking environment. The map is generated
using WFC and is designed to be playable according to the
game pacing set by the designer. The presence of obstacles
requires players to think strategically. For instance, a tree
may take one hit to destroy, while a rock may have three
hit points. However, in this study, we only experiment with
one type of obstacle as a proof of concept, namely rocks.
Fig. 3 shows a sample map in MECH.AI.

Figure 3. Map representation in MECH.AI.

Figure 4. The overview of WFC used in this study.

B. Map Generator
The WFC system generated a map in the pre-battle

state. Within the framework of WFC, various processes
are executed. An explanation of how the map generation
process through WFC works is shown in Fig. 4.

1) Seed Patterns & Adjacency Rules
The patterns on the map are created from the combi-

nation of tiles and patterns (input seed). Pattern refers to
collections of n×n, each containing visual and gameplay
elements designed by the designer. In this study, we set up
experiments with pattern sizes ranging from 3 × 3 to 5 × 5.
The formation of complex patterns from smaller pattern
elements requires input that defines the interaction rules be-
tween patterns or tiles, presented simply by an input pattern.
The seed pattern consists of small parts of the set of tiles
used as a reference to establish larger patterns, representing
the adjacency rules. Seed patterns have a smaller area than
the output map to be generated, so the obstacle ratio in the
output map tends to be almost the same as that in the seed
pattern. Adjacency rules refer to conditions that govern the
relationship between neighbouring elements. In the context
of WFC, the function of this rule is to determine the patterns
or tiles that may appear in each direction from each element.
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2) Entropy, Weight, Propagation
Entropy indicates the uncertainty in a system. It is

used to assign weights to each tile to generate the most
probable neighbouring tiles once one is established, usually
represented by a weight value. Entropy is part of the system
strategy to determine pattern selection or certain values
during the pattern propagation process. The concept of
entropy is also utilized to evaluate how chaotic or complex a
particular area is, which ultimately can influence the selec-
tion of values or patterns during propagation. Propagation in
map generation via WFC involves spreading constraints and
information throughout the map to influence neighbouring
tiles or cells, ensuring consistent enforcement of constraints
across the entire map.

3) Core Solver
The process begins with the construction of a seed

pattern from a sample (input), smaller map. The input is
then converted into a 2D matrix containing the indexes
of tile types. Fig. 5 shows the core process in WFC,
while step 1 in Fig. 5 depicts the tile conversion. The
next step is to identify patterns as the basis to determine
the relationship between tiles and the complexity space of
WFC. Generally, we can detect patterns in the input by
using an n × n tiles filter, please, refer to step 2. In this
study, we do not apply rotation to the filter, meaning the
pattern is simply obtained from the seed as it is, without
any image transformation techniques. For instance, if there
is a passable tile surrounded by tree tiles as shown in seed
C in Fig. 6, the system cannot detect if the passable tile is
on the right corner of the pattern as if mirrored. Moreover,
we add offset (step 3), additional tiles on the edge of the
seed, ensuring the edge tiles have possible neighbors.

The 10×10 tiles grid of the output map is prepared. Each
tile initially cont ains all possible tile types, as shown in step
4. Later, each tile type will be determined, and the weight
of each type will be calculated according to frequency and
adjacency rules. The starting tile is randomly chosen. Then,
each cell will undergo a collapsing process to converge to
the final type for the tile by the core solver, where the
main WFC process occurs. The solver performs entropy
calculation, applies the constraint distribution to all possible
tiles, and finally collapses the tiles. The weights of neigh-
boring tiles are calculated by spreading to the surrounding
neighbors, deciding which cell will be collapsed based on
the calculation; generally, the lowest entropy is chosen.
This process is iteratively applied to all cells until all
cells collapse. Equation (1) shows the entropy calculation,
and step 6 in Fig. 5 depicts the propagation simulation
in collapsing cells. Please note that the implementation of
entropy calculation may differ according to the specific case.
In this study, we define the entropy S as the log of the sum of
all weights from a map Log2(

∑
W) reduced by the average

of the log of the weight of each pattern.

S = Log2(
∑

W) −
∑n

i=1 Log2(
∑

Wi)∑
W

(1)

4) Segmentation
In this study, we aim to achieve balanced patterns on

the map segments in terms of obstacle distribution. We
decide to segment the output map into four segments, each
consisting 5×5 tiles. We expect by segmenting the map into
four, we patterns will somehow more balance while also not
too symmetrical. To achieve this, we break the WFC process
into four smaller segments, with each segment offsetting to
the neighbouring segment to ensure a seamless connection
between them. Refer to step 5 in Fig 5. for the illustration.

5) Pacing Implementation
The evaluation step is performed as the final process to

assess whether the generated map conforms to the target
pacing aspect set by the game designer, namely tempo. In
this study, we only applied the pacing aspect of tempo as a
proof of concept. The implementation of pacing dynamics
in games may vary depending on the designer’s definition.
However, it should not be limited to tempo; other pacing
aspects such as movement impetus and threat can also be
applied.

In this study, we design and observe two game design
patterns as factors of tempo: deployed obstacles and maze
patterns. The deployed obstacles factor focuses on analysing
the number of obstacles in the deployment area for both
teams. We presume that more obstacles on the deployment
tiles will result in more actions taken by the player, such
as moving around or attacking obstacles, thereby creating
higher tempo. Conversely, a lesser number of obstacles will
result in fewer actions, lowering the tempo. In our game
design, during the pre-battle phase, players deploy their
robots in a designated safe area to prevent the second player
from gaining an advantage by having more flexibility in
choosing where to deploy their robots. As illustrated in Fig.
3, the possible deployment area is represented by light red
and light blue tiles, and the dark grey tiles represent the
non-deployable robot areas.

It is notable that the ratio of obstacles in the seed pattern
as input will affect the resulting tempo. According to the
sample case shown in Fig. 3, we construct (2) to represent
the number of obstacles in deployment tiles, denotes as
O. The number of tiles in the possible deployment area
is represented by tD and the number of obstacles in the
seed pattern is represented by Os. The ratio of obstacle
in the seed pattern is R, while TI is the intended tempo
or target set by designer. Equation (2) implies the number
of obstacles generated is determined by the lower value
between the number of deployable tiles and the obstacles
ratio in relation to the expected pacing. In theory, the system
will tend to choose the latter. Finally, TA is the actual value
of tempo currently being calculated, which is derived by
the difference between number of obstacles in map and the
number of obstacles in seed pattern, divided by the ratio
multiplied by the number of tiles in deployment are, as
shown in (3). We refer this equation as the first tempo factor
(regarding obstacles in deployment area) or tempo A.
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Figure 5. The flow of map generation using WFC in this study.

Figure 6. The sample seed patterns used as input for experiments.

O = min(tD, ((R × tD) + OS ) × TI)) (2)

TA =
O − Os

R × tD
(3)

The second factor affecting the tempo is referred to
as maze pattern or tempo B. It focuses on determining
the optimal position to place the obstacles by providing
obstacles that enforce the player with doing more movement
or destroying the obstacle based on the weight of the tiles.
Thus, we presume high activities on the robots will raise
the tempo, while lower activity levels result in a lower
tempo. To identify the weight of each tile, we simulated
a pathfinding algorithm using A* and assigned the weight
according to the likelihood of them being passed through.

Figure 7. The resulting heatmap of tile weights from top half of a
battle map with 10 × 10 size.

We iteratively chose a starting point s(xi, yi) on the, let’s say,
team A’s area and iteratively select the target tile t(xi, yi) in
team B’s area until all target tiles in team B were simulated.
The loop stop after all possible starting point in team A are
simulated. Then redo the simulation with the team B’s area
as starting points. This ensure more accurate results if the
map is not symmetrical for both teams. The results of tiles’
weights are shown in a heat map in Fig. 7.

It can be concluded that the tiles with heavier weights
tend to converge in the middle of map while the lighter
ones are more towards the sides. Please note that the tiles
around rows three and four have the same weights because
those are intended to be non-deployable areas, meaning the
players are not allowed to deploy the robot there. These tiles
mean to be the neutral area that bridges the both teams’
area. We construct the equation to measure the tempo of
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the maze pattern or simply tempo B (TB), as shown in (4).
The list of tile weights W with indices i to n from the
output map, sorted in ascending order, is represented by
Lw where LW = [Wi,Wi+1, ...,Wn]. The bottom limit and
upper limit for the normalization of the tile weight list is
represented by Ln and Lm, respectively. The TA and TB will
then be averaged according to the weights WA and WB set
by designer to get the overall tempo T .

TB =

∑
(Wi − Ln)
Lm − Ln

(4)

4. EXPERIMENTS & RESULTS
In this section, we performed and analysed the two

tempo factors in the WFC-generated turn-based tactics
game map, in MECH.AI. The first factor TA focuses on the
number of obstacles spread in the deployment area, and the
second factor TB, focuses on the obstacles placement that
are positioned to create maze-like structure that increases
player movement. There are three main categories and
objectives of experiments as shown in Table I. In all
three categories, the size of the output map generated is
consistent, which is 10 × 10. The sample seed patterns
used as input are shown in Fig. 6. Each experiment was
performed in 100 runs.

A. Initial Experiment
The objective of this experiment is to evaluate the fitness

of output maps using seeds A, C, and D, with size of 3×3,
4 × 4, and 5 × 5, respectively. The target tempo values TI
are set to 0.25, 0.5, and 0.75, where 0.25 represents low
tempo, 0.5 represents balanced tempo, and 0.75 represents
high tempo. The obstacle ratios R are 0.33 for seed A, 0.31
for seed C, and 0.48 for seed D. In Table II, it can be
observed that the fitness of T for seed A is 0.99, for seed
B is 1.0, and for seed C is 0.89, which is the lowest for
the target tempo (Ti = 0.25). From the second target tempo
(Ti = 0.5), seed D still results in the lowest fitness with
0.71, while seeds A and C have fitness of 1.0 and 0.99,
respectively. For the high target tempo (Ti = 0.75), seed
A produced a fitness of 0.9, seed C produced 0.94 fitness,
while seed D only produced a fitness of 0.55.

From Table II, we can imply that seeds A and C are
closer to the expected result, and the ratio of the obstacles
has a significant impact to the resulting tempo. Although
seeds A and C have different size, their obstacles ratio
settings produced the better fitness. Moreover, the target
tempo value also influencing the output tempo, as seen
in seed D, where there are notable differences in fitness
from low to high tempo. However, the ultimate solution
to this problem lies in the complexity of the seed pattern,
as it affected the core process of wave function collapse.
Generally, the more complex the seed, the higher the
probability of errors occurring and the longer it takes to
generate results. Although the generation times indicate
that smaller seeds require more calculations, resulting in

Figure 8. Error distributions across tempo A, B, and overall.

longer generation times, this complexity trade-off is evident
in the average generation times: seed A has the highest
average generation time t at 9.85 seconds, while seeds C
and D require only 0.35 and 0.13 seconds, respectively.
This analysis underscores the importance of balancing seed
complexity with obstacle ratio to achieve optimal fitness
and efficient generation times in procedural map generation
for MECH.AI.

B. Single-Seed Experiment
In this experiment, we aim to analyse the resulting

tempo with various targets. Similarly, this experiment run in
total of 100 iterations using seed B, with 5 inner-iterations
within. An initial tempo value of 0.0 was given, with a
tempo increase of 0.01 for each iteration. Based on the
experiment, the results are quite stable from tempo value
above 0.1 and below 0.9. According to Fig. 8, the averaged
error on tempo A is 6.35%, and the averaged error on tempo
B is 3.48%, making the overall tempo error of 4.83%. It
is observed that the highest errors occur in 0 - 0.1 tempo
target and 0.9 - 1. This might happen depending on the
seed pattern design and the target tempo that in some cases
may not converge. For example, if the designer has a seed
pattern with high obstacle ratio, then it will be suitable for
higher pacing target rather than a low one.

Arguably, the system produced the expected tempo with
the low error rate less than 5%. Fig. 9 shows the sample
output from various tempo using seed B. According to our
observation, the most preferred outputs are produced with
approximate T = 0.2 to T = 0.8, with around T = 0.5
being the best. These outputs appear more human-crafted-
like level rather than generated solely by a system.

C. Seeds Experiment
The last experiment aimed to observe similar target

or expected tempo set by designer using different seeds.
As we mentioned earlier, we use seed A, B, C, and D
as shown in Fig. 6. In this case, since T = 0.5 has
produced the most balanced and expected fitness, we used
it as target. Each seed was run through 50 simulations
independently. According to the output fitness in Table III,
all seeds produced the expected tempo with the average
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TABLE I. Experiments and Objectives

Experiments Objectives

Initial Conducting trials and analysis to ensure that the system operates according to the seed pattern and tempo values that have been set as target.
Single-seed Performing analysis on changes or decreases in pacing aspect tempo using a seed pattern with the interval 0.1.
Seeds Conducting analysis on four different seed patterns to achieve similar pacing tempo values.

TABLE II. Fitness on Target Tempo across Seeds

Seeds 0.25 (low) 0.5 (balance) 0.75 (high) t (s)

A (R = 0.33) 0.99 1 0.9 9.85
C (R = 0.31) 1 0.99 0.94 0.35
D (R = 0.48) 0.89 0.71 0.55 0.13

Figure 9. Sample output maps by using various tempo values.

overall tempo T̄ = 0.97. Additionally, across seed patterns,
T̄B produced 4% error, and T̄ produced 3% error, while
the system perfectly converged to fit to T̄A. However, one
might notice that the output samples from seeds C and D
look less human-crafted (Fig. 10). As we mentioned before,
this might be happened because the high obstacle ratio R
in the seed. The case in D can be addressed with reducing
the obstacle on the seed pattern. Unfortunately, output from
seed C also has the less human-craft feel because the
obstacles are converged to some area. The simplest way
to handle this problem is to change the design of obstacle
pattern to be scarcer or more spread out.

D. User Study
We conducted an additional user study to evaluate the

results produced by our system. The respondents consisted
of 20 students majoring in Computer Science at Universitas

TABLE III. Fitness on All Tempo across Seeds

Seeds TA TB T

A (R = 0.33) 1 0.95 0.97
B (R = 0.31) 1 0.93 0.96
C (R = 0.31) 1 0.97 0.98
D (R = 0.48) 1 0.99 0.98

Avg. 1 0.96 0.97

Figure 10. Sample output maps by using various seeds with T = 0.5.

Dian Nuswantoro, Indonesia. They were asked to answer
questionnaire containing four questions (Q1-Q3). The pur-
pose of this user study was to observe the respondents’
perspectives in experiencing the maps produced by our
WFC map generator.

1) Q1. Which of the following maps has an approximate
medium tempo (0.5)?
The respondents were asked to experienced two maps

sequentially and choose one they perceived to have medium
tempo (0.5). One of the options presented was a map with
the set tempo of 0.5, while the other had a significantly
different tempo. This question is aimed to evaluate if the
output map produced the expected actual experience based
on the tempo set. According to the responses, 17 out of
20 respondents (85%) correctly identified the map with a
medium tempo of 0.5.

2) Q2. Although being asymmetrical, do you think the map
is balance for both teams?
Respondents were asked to experience a map and assess

whether it provided balanced area despite being asymmetri-
cal on both sides. The respondents are able to play as both
teams. The purpose of this question was to determine if the
asymmetrical maps generated by the WFC algorithm could
still offer a fair and balanced experience for both teams,
which is crucial for the strategic and competitive nature of
MECH.AI. Based on the responses, 18 out of 20 (90%)
respondents answered with “yes”, indicating that they felt
the map was balanced for both teams. Please refer to Fig.
11 for the battle map being inspected.
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Figure 11. An example of output map. Red line depicts deployment
area for team A, and Blue line depicts deployment area for team B.

Figure 12. Input: Seed pattern with size 3 × 3 (left), and Output:
battle map with size 10 × 10 (right).

3) Q3. Do you think the maps (10×10) represent the pattern
in little maps (3×3))?
Respondents were asked to determine whether the out-

put maps adequately represented the seed patterns (A-D).
They were provided with four seed patterns (A-D) and
corresponding sample output maps to make their evaluation.
The answers are then averaged into 18 out of 20 (90%)
respondents agree that the map represent the seed pattern.
The purpose of this question was to assess the effectiveness
of the WFC algorithm in scaling up from small seed patterns
to larger, playable maps while maintaining the visual and
structural integrity of the original patterns. This helps to
validate the consistency and reliability of the procedural
content generation process. Fig. 12 shows an example of
seed pattern and output map.

5. Conclusions and FutureWork
In the roadmap to create a serious game to enhance

the students’ initial motivation and knowledge in learning
basic programming and AI fundamental, we are developing
turn-based tactics game called MECH.AI. The challenge
in the form of battle map is generated by embedding
the pacing aspect tempo and the Wave Function Collapse
(WFC) algorithm into the battle map generator. The pacing
aspect tempo functions as the target set by game designer
and constraints that drives the core process of WFC. The
experiments show that the map generator is able to produce
battle map that tend to meet the target. While the analysis
and user study are also provided.

While WFC is not new algorithm for generating battle
maps, it is an interesting technique to experiment with,

especially when embedding the concept of game pacing to
produce the expected experience for players as controlled
by the designer. In our WFC implementation, we segment
the whole output map into four segmentations with the aim
to generate fair challenge (obstacle) while the layout is
still asymmetrical. Keeping the balance contents over the
different areas of the map even if it is not symmetrical.
In addition, we implemented the concept of game pacing
tailoring in a strategy game, turn-based tactics specifically,
continuing and confirming the studies done in controlling
the game content generation in dungeon-crawler and plat-
former games done by [13] and [17]. The general idea of
combining game pacing into the procedural game content
generation is to create a more abstract or less-technical layer
of content generation. In these cases, the game pacing, as it
is an important element of one of the game design elements,
game narratives.

As our study’s limitation, it is important to note that
smaller seed pattern requires longer generation time as the
size of the filter to do the calculation is small, resulting
in more possible cells to be calculated. According to our
observation, there is a tendency that the extreme low tempo
(T ≥ 0.1) and high tempo (T ≤ 0.9) to produce highest
errors due to the design of seed patterns. Hence, a deeper
study is needed. Although, we argue that the overall error
(ĒT ≤ 5%) is still acceptable. Moreover, the problem can
be easily addressed by a little tweaking the design of seed
patterns and its obstacle ratio. Regardless, the generation
process may help designer in providing contents such as
for campaign or story modes where the tempo dynamic can
be automatically set to fit the progress of the story. Finally,
based on our unpresented experiment, we recommend the
designer at least place one obstacle on the seed pattern and
not fill all the tiles with obstacles (R > 0,R < 1), otherwise
the result could not be possible to produce fitter outputs.
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