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Abstract: Unmanned Aerial Vehicles (UAVs), particularly quadrotors, have become highly versatile platforms for various applications
and missions. In this study, the employment of Multi-Agent Reinforcement Learning (MARL) in quadrotor control systems is investigated,
expanding its conventional usage beyond multi-UAV path planning and obstacle avoidance tasks. While traditional single-agent control
techniques face limitations in effectively managing the coupled dynamics associated with attitude control, especially when exposed to
complex scenarios and trajectories, this paper presents a novel method to enhance the adaptability and generalization capabilities of
Reinforcement Learning (RL) low-level control agents in quadrotors. We propose a framework consisting of collaborative MARL to
control the Roll, Pitch, and Yaw of the quadrotor, aiming to stabilize the system and efficiently track various predefined trajectories.
Along with the overall system architecture of the MARL-based attitude control system, we elucidate the training framework, collaborative
interactions among agents, neural network structures, and reward functions implemented. While experimental validation is pending,
theoretical analyses and simulations illustrate the envisioned benefits of employing MARL for quadrotor control in terms of stability,
responsiveness, and adaptability. Central to our approach is the employment of multiple actor-critic algorithms within the proposed
control architecture, and through a comparative study, we evaluate the performance of the advocated technique against a single-agent
RL controller and established linear and nonlinear methodologies, including Proportional-Integral-Derivative (PID) and Backstepping
control, highlighting the advantages of collaborative intelligence in enhancing quadrotor control in complex environments.
Keywords: Quadrotors, Attitude Control, Multi-Agent Deep Reinforcement Learning, Collaborative Intelligence.

1. INTRODUCTION
Owing to their unparalleled agility and versatility in

navigating complex environments, quadrotors have become
increasingly an indispensable tools across a myriad of
applications. Precise control of a quadrotor’s attitude com-
prising roll, pitch, and yaw is fundamental to achieve stable
and responsive flight operations [1]. However, the intricate
dynamics of quadrotors, marked by non-linearity, underac-
tuation, and coupling, present notable challenges in control
system design. Consequently, researchers have proposed
and developed various control theories and techniques to
address these challenges.

In the realm of control for quadrotors, various method-
ologies and techniques have been explored. Linear methods,
such as PID [2], LQR [3], and Model Predictive Control [4],
offer simplicity and ease of implementation but are limited
in their operational scope. To overcome these limitations,
more complex nonlinear controllers have been introduced,
including Sliding Mode Control [5], Backstepping [6],
Adaptive control [7], and H∞ control [8]. The efficacy of

traditional control algorithms often depends on subjective
parameter choices, which depend on a comprehensive un-
derstanding of the model and experimental context. Bal-
ancing accuracy, robustness, and efficiency within a single
control function becomes notably challenging in complex
scenarios. Deep reinforcement learning (DRL), enabled by
advancements in computing power and data accessibility,
has emerged as a powerful approach within control theory.
It demonstrates remarkable advantages across diverse tasks
and applications, often surpassing conventional control
methods by autonomously learning control policies directly
from interaction with the environment, without relying on
explicit models. RL algorithms can adapt to diverse systems
by continuously updating their policies based on feedback
received from the environment, allowing to handle uncer-
tain and dynamic environments where traditional control
methods may struggle. By leveraging reinforcement learn-
ing techniques, quadrotors can autonomously learn optimal
control strategies through interaction with their environ-
ment, thereby improving their performance in tasks such
as stabilization, trajectory tracking, and obstacle avoidance.
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Building on the success of single-agent RL techniques,
Multi-Agent Reinforcement Learning (MARL) has become
a promising approach for addressing complex control prob-
lems, leveraging the adaptability and learning capabilities
of intelligent agents. MARL enables multiple agents to
interact and collaborate to achieve common goals, making
it particularly suitable for scenarios involving coordination
and cooperation. By harnessing the power of MARL in
collaborative decision-making processes among UAVs, re-
searchers and control engineers have recently focused on
developing innovative and sophisticated control strategies
that can enhance the stability, responsiveness, and adapt-
ability of quadrotor systems in various aspects including
Multi-UAVs path planing, collision and obstacle avoidance
tasks [9].

In this study, we introduce an innovative MARL based
approach for quadrotor attitude control, specifically focus-
ing on multiple baseline actor-critic RL algorithms, the
Twin Delayed Deep Deterministic Policy Gradient (TD3),
the Deep Deterministic Policy Gradient (DDPG), the Soft
Actor Critic (SAC) and the Proximal Policy Optimization
(PPO) algorithms in a collaborative multi-Agent framework.
This approach marks a departure from traditional control
paradigms by leveraging collaborative intelligence to opti-
mize control strategies and expand the scope of MARL be-
yond multi-UAV path planning and obstacle avoidance sce-
narios, demonstrating its potential to revolutionize quadro-
tor’s low level control system. Through theoretical analyses
and simulations, the proposed approach aims to validate the
envisioned benefits of employing MARL in UAV systems,
paving the way for innovative control capabilities and
robustness.

The subsequent sections of this paper delve first into
the related works and background of MARL’s theoretical
foundation, along with the quadrotor’s dynamic model and
control. We then present the architecture of the Multi-
agent based attitude control system, detailing the employed
framework, neural network structure and the reward func-
tions. Finally, we present simulation results and perfor-
mance comparisons against single-agent RL, linear and
nonlinear benchmark control techniques including the PID
and Backstepping control to validate the effectiveness of the
proposed method in achieving stable and precise quadrotor
attitude control across various scenarios.

2. BACKGROUND
A. Related works

In this section, we explore the extensive body of litera-
ture surrounding MARL, starting with existing reviews and
recent algorithmic advancements to provide an insightful
overview of the methodologies, insights, and trends in
MARL research. We then focus on the application of MARL
in UAV domains, highlighting novel breakthroughs and
promising directions for future exploration.

Firstly, We have selected several reviews that offer
comprehensive insights into the MARL current state of

research. The study in [10] underscores the significance
of MARL in multi-robot systems, emphasizing collabora-
tive learning. It identifies a scarcity of recent surveys in
the field and discusses challenges while proposing future
applications for enhanced multi-robot systems. In [11],
the authors explored recent advances in the algorithms
employed in MARL, concentrating on five key approaches
for addressing cooperative multi-agent problems. It offers
detailed explanations, discusses challenges, and underscores
connections among various papers. Additionally, the article
covers emerging research areas, real-world applications, and
MARL research environments, while in [12], the paper
provides an overview divided into three main parts, it first
examines training schemes for multiple agents, followed
by an analysis of agent behavioral patterns in cooperative,
competitive, and blended scenarios. The third part addresses
challenges unique to the multi-agent domain and reviews
methods used to address them. Moreover, in [13] a thorough
analysis of multi-agent reinforcement learning algorithms is
discussed, categorizing them based on features and offering
a detailed taxonomy. It explores application fields, pros and
cons, and compares algorithms in terms of nonstationarity,
scalability, and observability, while discussing common
benchmark environments.

The landscape of Multi-Agent Reinforcement Learning
has witnessed remarkable advancements recently, marked
by the introduction of innovative algorithms designed to
tackle the complexities of cooperative and competitive
multi-agent environments. However, due to the vast array
of MARL algorithms available, only a select few will
be presented. In [14], this study addresses the challenge
of state uncertainty in practical multi-agent reinforcement
learning (MARL) implementations, introducing the Markov
Game with State Perturbation Adversaries (MG-SPA) model
and proposing a robust multi-agent Q-learning (RMAQ)
algorithm with convergence guarantees, along with a robust
multi-agent actor-critic (RMAAC) algorithm, demonstrat-
ing their efficacy in handling high-dimensional state-action
spaces and outperforming existing methods in scenarios
with state uncertainty. In [15], the authors introduced
RACE, a hybrid framework combining Evolutionary Algo-
rithm (EA) and MARL to address challenges in collabora-
tion, low-quality reward signals, and high non-stationarity,
achieving improved convergence, robustness, and signal
quality in various tasks compared to other algorithms. Also
the authors of [16], introduces a distributed zeroth-order
policy optimization method for Multi-Agent Reinforcement
Learning that enables agents to compute local policy gradi-
ents using only partial state and action data, reducing com-
munication overhead and improving learning performance,
with numerical experiments demonstrating enhanced sam-
ple efficiency against the existing one-point estimators. In
[17], this paper addresses the computational inefficiency
in Population-based Multi-Agent Reinforcement Learning
(PB-MARL) by proposing a solution that employs a state-
less central task dispatcher and stateful workers, facilitating
parallelism and efficient problem-solving. The proposed
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framework, MALib, integrates a task control model, inde-
pendent data servers, and a streamlined representation of
MARL training methods, offering enhanced computational
efficiency.

In the UAVs field, MARL approaches have been applied
in diverse ways, showcasing their versatility and effective-
ness in addressing a wide range of challenges and objec-
tives. The authors in [18] presented a novel method to maxi-
mize data offloading efficiency from terrestrial base stations
(BSs) using multiple unmanned aerial vehicles (UAVs). By
jointly optimizing UAV trajectories and user association
indicators under quality-of-service (QoS) constraints, the
method aims to enhance user association with UAVs. Lever-
aging multi-agent reinforcement learning, each UAV oper-
ates independently, fostering cooperative behavior among
them. Extensive simulations validate the effectiveness of the
proposed technique, showing higher performance than both
Q-learning and particle swarm optimization. In the same
context, another paper [19] also introduces a novel approach
to UAV cellular communication using multi-agent learning
techniques enabling multiple UAVs to learn from each other
through communication and interaction with the environ-
ment, providing better coverage compared to conventional
terrestrial base station (BS) deployment. Also in [20], the
authors introduce a novel graph-attention multi-agent trust
region (GA-MATR) reinforcement learning framework to
address the multi-UAV assisted communication problem.
Utilizing multiple UAVs to maximize data offloading ef-
ficiency from terrestrial BSs by jointly optimizing UAV
trajectories and user association indicators under QoS con-
straints, validated through simulations and demonstrating
superior performance over benchmark techniques.

Another aspect in the UAVs domain that has been ex-
plored using MARL, as described in [21], a paper that intro-
duces a UAV-aided mobile edge computing (MEC) frame-
work employing a multi-agent deep reinforcement learn-
ing algorithm, specifically Multi-Agent Deep Determinis-
tic Policy Gradient (MADDPG), to optimize geographical
fairness, UAV UE-load fairness, and overall energy con-
sumption for user equipments (UEs), showcasing superior
performance compared to traditional algorithms. In [22], the
study investigates dynamic resource allocation in UAV com-
munication networks, employing a multi-agent reinforce-
ment learning framework that optimizes long-term rewards
without inter-UAV information exchange, demonstrating
enhanced performance with balanced exploration and ex-
ploitation parameters. The proposed approach achieves a
favorable balance between performance improvements and
the overhead of exchanging information, as opposed to a
scenario where UAVs exchange complete information.

Several papers incorporating MARL approaches have
recently emerged on the topics of path following and
swarm formations, as in [23], where the authors intro-
duce a decentralized Multi-Agent Deep Reinforcement
Learning (MADRL) method using maximum reciprocal

reward, leveraging Pointwise Mutual Information (PMI)
neural network to capture dependencies among UAVs, and
proposing the Reciprocal Reward Multi-Agent Actor-Critic
(MAAC-R) algorithm for cooperative tracking policies in
UAV swarms, demonstrating enhanced cooperation and
scalability in unknown environments compared to baseline
algorithms. Also in [24], the authors present a model for
cooperative air combat maneuvers involving multiple UAVs
based on bidirectional recurrent neural networks (BRNN)
and actor-critic architecture under the framework of multi-
agent reinforcement learning, demonstrating the model’s
effectiveness in achieving cooperative tactical maneuver
policies that provide UAVs with situational advantages and
tactical success in air combat scenarios. Another study
[25], that presents an autonomous tracking system for a
UAV swarm to localize a radio frequency (RF) mobile
target, utilizing omnidirectional received signal strength
(RSS) sensors and an enhanced multi-agent reinforcement
learning technique to optimize real-time target tracking,
demonstrating superior performance in searching time and
successful localization probability compared to standard Q-
learning and multi-agent Q-learning algorithms.

While most studies have predominantly focused on ap-
plying Multi-Agent Reinforcement Learning approaches in
swarm intelligence, path planning, collision avoidance, task
allocation, communication networks, and target tracking, a
gap in the exploration of MARL’s potential in low-level
control systems has not been investigated, particularly in the
domain of quadrotor flight. To the best of our knowledge,
MARL has primarily been utilized in high-level control
strategies within swarm and multi-UAV contexts, neglect-
ing its potential to revolutionize the control of individual
quadrotors. By extending its traditional usage and exploring
the application of collaborative intelligent agents in en-
hancing quadrotor attitude control systems, in this paper
we aim to unlock new possibilities to enhance stability,
maneuverability, and responsiveness at the fundamental
level of quadrotor flight.

B. Quadrotor dynamics
The dynamics of the quadrotor UAV model as shown

in Figure 1 are crucial for understanding its behavior and
control, and can be effectively described using the Euler-
Lagrangian formulation. This formulation provides a sys-
tematic approach to set the equations of motion governing
the quadrotor’s rotational and translational motion [26].

The translational motion of a quadrotor along the x, y
and z axes is influenced by the forces generated by its
propellers. Considering the quadrotor as a rigid body, the
equations of motion can be expressed as:


ẍ = U1

m (cos(φ)sin(θ)cos(ψ) + sin(φ)sin(ψ))
ÿ = U1

m (cos(φ)sin(θ)sin(ψ) − sin(φ)cos(ψ))
z̈ = U1

m (cos(φ)cos(θ)) − g
(1)
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Figure 1. Quadrotor body and inertial frames.

The rotational motion of the quadrotor involves its
angular velocities about the body-fixed axes. The moments
induced by the propellers induce rotational acceleration,
which can be described as:


φ̈ =

−(Jzz−Jyy)
·

θ
·

ψ+U2

Jxx

θ̈ = −(Jzz−Jxx)
·

ϕ
·

ψ+U3
Jyy

ψ̈ =
−(Jyy−Jxx)

·

ϕ
·

θ+U4

Jzz

(2)

By deriving and solving these equations, one can gain
insights into the quadrotor’s behavior and design control
strategies for achieving desired maneuvers and stability
across the following control inputs:


U1 = b(Ω2

1 + Ω
2
2 + Ω

2
3 + Ω

2
4)

U2 = lb(Ω2
4 −Ω

2
2)

U3 = lb(Ω2
3 −Ω

2
1)

U4 = d(Ω2
1 −Ω

2
2 + Ω

2
3 −Ω

2
4)

(3)

Where the symbols used: m, g, and l represent the
quadrotor’s mass, gravitational acceleration, and half-length
respectively. Jxx, Iyy, and Izz denote inertial tensor of the
symmetric body around x, y and z axis. Additionally, d and
b are the drag and thrust factors, Ωi correspondingly refer
to the the speed of each rotor i and Ui represent respectively
the lift force, the moments of roll, pitch and yaw.

C. Multi-agent Reinforcement learning Formulation
Multi-Agent Reinforcement Learning (MARL) extends

the success of single-agent reinforcement learning to scenar-
ios involving more than one autonomous entity interacting
in shared environments. Unlike single-agent RL, MARL

introduces challenges related to non-stationarity and the
combinatorial nature of interactions among agents. Agents
in a multi-agent system must learn policies while adapting
to the dynamic behaviors of others, adding complexity
to the learning process. This collaborative or competitive
aspect necessitates advanced algorithms capable of handling
the intricacies and uncertainties inherent in multi-agent
environments.

Figure 2. MARL framework.

MARL approach aims to enhance the collective reward
achieved by a group of agents and can be represented
as a Markov game involving a community of N agents
(Figure 2). Markov Decision Processes (MDPs) are charac-
terized by sequential decision-making, where actions impact
both the immediate rewards of the agent and the future
states of the environment. The state variable, s ∈ S ,
represents the environment’s current state. For each agent
i = {1, ...,N}, the action and observation spaces are pre-
sented respectively with Ai ∈ A = {A1, ..., AN} and Oi ∈ O =
{O1, ...,ON}. At each time step t, given a state st, agent i
receives a local observation oi and subsequently, interacts
with the environment following a random policy denoted as
πϕi , by taking action at ∈ A and receiving immediate reward
Rt+1, the environment moves from the current state st ∈ S
to the next state st+1 ∈ S . Correlating with the action and
the state, the rewards attributed to independent agent i are
denoted by ri. The objective of each agent is to maximize
the expected return Ri =

∑T
t=0 γ

trt
i , where T is the final time

step, and γ is a discount factor.

Similar to the case of a single agent, the ability to
acquire the optimal stochastic policy or the optimal Q-value.
However, because of the dynamic nature of each agent’s
policies during training, the environment undergoes non-
stationarity from the viewpoint of any independent agent. In
essence, P(st+1|st, ai, πϕ1 , ..., πϕN ) , P(st+1|st, ai, π

′

ϕ1 , ..., π
′

ϕN )
with any πϕi , π

′

ϕi , causing the loss of the underlying



5

assumption of a Markov Decision Process. This suggests
that each agent’s experience encompasses varied co-player
policies, preventing the fixing of these policies for training
an agent. Therefore, any endeavor to train such models
leads to fluctuations during the training procedure, posing
a significant challenge in model training.

To address this challenge, a commonly employed strat-
egy is the utilization of a fully observable critic. This ap-
proach involves incorporating the actions and observations
of all agents into the critic, ensuring the environment’s
stability despite alterations in the policies of other agents.
In simpler terms, even if πϕi , π

′

ϕi , the probability of
transitioning to a new state remains equal when other agents
alter their policies. This approach allows for the creation of
either one central critic in fully cooperative scenarios or
N critic models when each agent observes a local reward.
In both cases, the fully observable critic resolves the non-
stationarity issue, serving as an effective guide for local
actors.

3. MARL CONTROL SYSTEM
In this section, we delve into the intricacies of the

quadrotor control system, explore the innovative approach
for quadrotor attitude control, and examine the neural
network architecture and reward function employed in this
work.

A. MARL attitude control system
The quadrotor, emblematic of under-actuated systems,

intricately balances its movement across six degrees of
freedom using only four control inputs. While the high-level
controller orchestrates the quadrotor’s position and altitude,
it is the low-level controller that serves as the backbone of
precise maneuvering and stabilization.

At the heart of the low-level controller lies a network
of RL agents trained in a full cooperation configuration to
maintain a steady orientation, ensuring that the quadrotor’s
roll (φ), pitch (θ), and yaw (ψ) angles remain consistent
amidst dynamic environmental conditions by adeptly in-
terpret input commands (U2, U3, U4) to achieve precise
adjustments in the quadrotor’s moments. These adjustments
are calibrated to synchronize with the high-level controller’s
directives, allowing for seamless integration between atti-
tude control and overall navigation as illustrated in Figure 3.
Applying this approach is pivotal in achieving stability and
precision in flight and overcoming the coupled dynamics
issue of the quadrotor system.

For this critical task that necessitates policies with
high-dimensional and continuous action space capabilities,
we have selected the Twin Delayed Deep Deterministic
Policy Gradient (TD3), Deep Deterministic Policy Gradient
(DDPG), Soft Actor-Critic (SAC), and Proximal Policy
Optimization (PPO) algorithms. Each of these algorithms
brings unique advantages to the table. TD3 is known for
its stability and performance in continuous control tasks,
making it well-suited for precise attitude control in dynamic

Figure 3. Multi-agent attitude control system.

environments. DDPG, on the other hand, offers efficient
exploration capabilities, allowing the agents to learn robust
policies even in high-dimensional action spaces. SAC stands
out for its ability to handle continuous action spaces with
stochastic policies, providing flexibility and adaptability in
uncertain conditions. Finally, PPO offers a balance between
sample efficiency and simplicity, making it suitable for
online learning scenarios where computational resources are
limited. By leveraging the strengths of these algorithms in a
cooperative formation, the proposed network can effectively
maintain a steady orientation under various conditions,
ensuring the stability and reliability of the advocated control
system.

B. MATD3 algorithm
In this section, we will elaborate a detailed explana-

tion of the MATD3 attitude controller. While the overall
framework applies to all configurations using the same re-
ward function and neural networks architectures, including
MADDPG, MASAC, and MAPPO.

In a multi agent environment, the authors of [27], present
a model-free multi-agent reinforcement RL designed to
address scenarios where agent i, during the time step t, uses
its individual local observation oi, actions ai, and rewards ri.
Their approach encompasses competitive, cooperative, and
mixed cooperative and competitive games. They introduce
the Multi-agent Deep Deterministic Policy Gradient (MAD-
DPG) algorithm, where each agent undergoes training with
a DDPG algorithm. In this setup, the actor πϕi (oi; ϕi), char-
acterized by policy weights ϕi, processes local observations.
Meanwhile, the critic Qµ

θi (with θi represent its weights) has
access to the actions, observations, and target policies of all
agents during the learning phase. Subsequently, each agent’s
critic concatenates all state-actions as input and, utilizing
the local reward, calculates the corresponding Q-value. The
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training process involves optimizing for each of the N critics
the following loss function:

L(µθi ) = Eot ,a,r,ot+1 [(Qθi (st, at
1, ..., a

t
N ; µθi ) − y)2] (4)

with:

y = rt
i + γQθi (ot, ãt+1

1 , ..., ãt+1
N ; µ̃θi )|̃at+1

j =π̃(ot+1
j

) (5)

where ot represents the observation of all agents, µ̃ is the
target critic and π̃ is the target policy. Consequently, the
critic of each agent operates within a stationary environ-
ment, requiring access only to local information.

Building upon the strengths of the TD3 algorithm and
the need for effective multi-agent reinforcement learning,
in [28] authors introduced the Multi-Agent TD3 (MATD3)
algorithm, in witch it retains the utilization of twin Q-
networks to enhance the deterministic policy in a multi-
agent context. MATD3 extends this concept to accommo-
date the interactions and dependencies between multiple
agents, each agent denoted as agent i, maintains its own
actor πϕi (oi; ϕi) with policy weights ϕi and observing its
local environment.

Figure 4. Multi-agent TD3 attitude control system.

The quadrotor’s attitude control architecture presented
in Figure 4 aims to enable each agent to understand the
collective dynamics and decisions of the entire group. The
critics of the Roll, Pitch, and Yaw agents collectively
consider not only their individual local observations and
actions but also integrate insights from the target policies,
actions, and observations of all agents in the system. This
fosters a cooperative learning process using a Centralized
Training, Decentralized Execution (CTDE) mode. It is
worth noting that the Centralized Training, Centralized

Execution (CTCE) mode also can be employed for this
particular MARL application, where the agents are not
distributed entities and communication between them can
be easily guaranteed. However, the size of the agent and
precisely the actor network has to be relatively larger to
accommodate centralized execution. This approach essen-
tially converges to a single-agent configuration, where one
RL agent generates the three control inputs U2,U3 and U4.

Algorithm 1 presents the pseudo-code of the MATD3
algorithm tailored for addressing the quadrotors attitude
control system where:

First, the actor and critic networks for each attitude
agent (Roll, Pitch and Yaw agents) along with the replay
buffer are initialized. At the start of each episode, a random
noise for action exploration ϵi is generated, and the initial
state is obtained encompassing the concerned Orientations,
Orientation rates and Orientation errors with:

o = {ϕ, ϕ̇, ϕerror, θ, θ̇, θerror, ψ, ψ̇, ψerror} (6)

Subsequently, episode iterations proceed, and each agent
selects and execute the Roll, Pitch and Yaw moments
[U2,U3,U4] according to its policy, and the total rewards
are given as:

ri = rglobal − ksign(ei.
·

ei)|i=ϕ,θ,ψ (7)

and:
rglobal = −α

√
e2
ϕ + e2

θ + e2
ψ (8)

With k and α positive weights, motivating the agents to
minimize both its specific and global tracking errors. All the
actions, rewards, and observations are stored as transition
sets in the replay buffer R.

During this process, each agent randomly samples a
small subset from the replay buffer to set the target value
of the Q-function into yi, using the minimum critic net-
works Q-value. Thereafter, the parameters θi

1 and θi
2 of

the critic-networks are updated for the selected samples,
along with the policy parameters ϕi of the actor-networks
by maximizing the gradient ascent. Following the update
of the critic and actor networks by each agent, the target-
networks parameters θitarget

n=1,2 and ϕitarget are adjusted to ensure
learning stability by restricting the rate of update for the
target values.

C. Network structure
All the agents employed are identical, with critic net-

works that comprises two pathways. The first path, taking
the state as input, incorporates three feed-forward hidden
layers, each consisting of 128, 128, and 64 neurons, re-
spectively, and the output from this pathway is then merged
with the action pathway, which contains a single hidden
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Algorithm 1 MATD3 algorithm for the quadrotor attitude control system

1: for each agent i do
2: Set actor network πϕi and two critic networks Qθi

1
,Qθi

2
with random weights ϕi, θi

1, θ
i
2 respectively;

3: Set target networks ϕitarget ← ϕi , θitarget

1 ← θi
1 , θitarget

2 ← θi
2 ;

4: end for
5: Initialize the replay buffer R;
6: for episode = 1,Max do
7: Generate random noise: εi ∼ clip(N(0, σ̃), aimin , aimax );
8: Acquire original observations o = {oRoll, oPitch, oYaw};
9: for t = 1,maxtimesteps do

10: Select the control input from the action space of each agent: at
i = πϕi (ot

i) + εi;
11: Execute the actions that represent the roll, pitch and yaw moments respectively:
12: a(t) = [at

1, a
t
2, a

t
3] = [U2(t),U3(t),U4(t)]

13: Calculate the rewards rt
i , and observe ot+1

i ;
14: Store transition (ot, at

1, a
t
2, a

t
3, r

t, ot+1) in R;
15: Update the state s ←st+1;
16: for agent i = 1 to 3 do
17: Sample a random mini-batch of N transitions from R;
18: Calculate target critic Q value:
19: yt

i ← rt
i + γmin[ Q

θ
itarget
n

(ot+1
Roll, o

t+1
Pitch, o

t+1
Yaw, ã

t+1
1 , ãt+1

2 , ãt+1
3 )]n=1,2

20: Update critics:
21: θi

1 ← minθi
1

1
N
∑

[yt
i − Qθ

i
1 (ot

Roll, o
t
Pitch, o

t
Yaw, ã

t
1, ã

t
2, ã

t
3)]2

22: θi
2 ← minθi

2

1
N
∑

[yt
i − Qθ

i
2 (ot

Roll, o
t
Pitch, o

t
Yaw, ã

t
1, ã

t
2, ã

t
3)]2

23: If t mod d then
24: Update ϕ using the DPG:
25: ∇ϕi J(ϕi) = 1

N
∑
∇ϕiπϕi (o

t
i)∇ai Qθi (ot

Roll, o
t
Pitch, o

t
Yaw, a

t
1, a

t
2, a

t
3)|at

i=πϕi (ot
i)

26: Update the target networks:
27: θ

itarget
n ← τθi

n + (1 − τ)θitarget
n |n=1,2

28: ϕitarget ← τϕi + (1 − τ)ϕitarget

29: end If
30: end for
31: end for
32: end for

Figure 5. Critic network.

layer comprising 64 neurons. This integrated structure is
responsible for generating the Q-value specific to each agent
as highlighted in Figure 5.

The actor network (Figure 6) for each agent is con-
structed with four feed-forward hidden layers, each con-
taining 10 neurons.

Figure 6. Actor network.

With the exception of the action output layer that
employs a S igmoid activation function, all the layers use
the Recti f ied Linear Unit.
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4. Results and discussion
Using MATLAB software as a simulation platform,

this section presents and analyzes the outcomes of the
proposed approach for the quadrotor attitude control system.
It assesses the efficacy of the top-performing agents in
tracking various predefined trajectories with different levels
of complexity and dynamics. Additionally, we conduct a
comparative evaluation against conventional single-agent
RL, PID, and Backstepping controllers to highlight the
adaptability, stability, and precision of our MARL approach.

For the training setup, the objective is to stabilize the
quadrotor from any given configuration within the physical
limits using the Multi-Agent (MA) based controllers.
The desired state is defined using reference Euler angles
φRe f , θRe f , ψRe f to be tracked as shown in Figure 3.
Three agents, trained through the approach detailed
in section 3, ensure the quadrotor’s adherence to the
orientation commands set by the high-level controller
and produce accurate control inputs U1,U2, and U3.

(a)

(b) (c)

Figure 7. (a) Training sessions of the proposed MARL attitude control system, (b) MA-TD3 best agents performance for stabilisation task (50
random position and orientation initialisation), (c) 3D goal tracking from 50 random initialisation.

The training results summarised in Figure 7.a, shed light
on the convergence and learning capabilities of various
algorithms using the advocated framework. We conducted
a performance comparison of the four algorithms MATD3,
MADDPG, MASAC, and MAPPO, aimed to provide a
comprehensive analysis of different approaches, showcasing
the mean average reward collected by the Roll, Pitch, and
Yaw agents over 500 training episodes.

• The MATD3, emerged as the most efficient and effec-
tive algorithm, demonstrating both speed and stability
in training. The resulting policies exhibited rapid
convergence and consistently achieved high rewards
throughout the training sessions, the validation test
of the obtained policies is shown in Figure 7.b and
Figure 7.c, where the trained controllers handle per-
fectly the stabilisation of the system over 50 random

position and orientation initialisation.

• MADDPG exhibited a two-phase training behavior,
initially achieving stable learning with low collected
rewards before eventually exploring more the ac-
tion space and approximately attaining the MATD3’s
rewards level. While MADDPG’s performance was
inferior to MATD3, the delayed convergence suggests
potential for improvement with longer training dura-
tion or additional fine-tuning.

• The MASAC demonstrated slower convergence but
ultimately achieved higher rewards by the end of the
training session. This behaviour may be attributed to
its emphasis on entropy regularization, which encour-
ages exploration and prevents premature convergence
to suboptimal policies.
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• While the other algorithms successfully converged to
collaborative policies, MAPPO struggled to find ef-
fective cooperation for handling the quadrotor attitude
control. Despite efforts to fine-tune hyperparameters
and exploration strategies, MAPPO’s performance

remained subpar compared to the MATD3,MADDPG
and MASAC. These challenges underscore the impor-
tance of selecting the right algorithm, especially for
complex control tasks like quadrotor control systems.

(a)
(b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. (a) The square trajectory position and orientation tracking, (b) 3D square trajectory, (c) The lemniscate trajectory position and
orientation tracking, (d) 3D lemniscate trajectory, (e) The ellipsoid trajectory position and orientation tracking, (f) 3D ellipsoid trajectory,(g) An

acrobatic trajectory position and orientation tracking, (h) 3D acrobatic trajectory.
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TABLE I. Mean square error (MSE) on the paths displayed in Figure 8.

Trajectory Controller X Y Z ψ

Square
MA-TD3 0.000171 0.0003026 0.02772 0.7982 x 10−5

Single TD3 agent 0.001385 0.0007229 0.02772 2.913 x 10−5

PID 0.001313 0.001313 0.02772 2.138 x 10−8

Backstepping 0.0002831 0.0003845 0.07093 4.418 x 10−40

Lemniscate
MA-TD3 0.001046 0.004755 0.0134 2.247 x 10−5

Single TD3 agent 0.01358 0.01409 0.0134 33.59 x 10−5

PID 0.02287 0.2863 0.0134 0.0001551
Backstepping 0.001209 0.004823 0.0343 2.18 x 10−42

Ellipsoid
MA-TD3 0.002068 0.0003255 9.226 x 10−9 1.256 x 10−5

Single TD3 agent 0.02165 0.006435 9.226 x 10−9 0.00444
PID 0.08643 0.07427 9.226 x 10−9 0.0001013

Backstepping 0.002616 0.001351 7.534 x 10−8 1.111 x 10−42

Acrobatic
MA-TD3 0.001194 0.001151 0.0005283 3.038 x 10−6

Single TD3 agent 0.0142 0.00359 0.0005283 0.01863
PID 0.02408 0.0003556 0.0005283 0.0002218

Backstepping 0.001221 0.005915 0.02669 5.986 x 10−42

The efficiency of the MARL best trained agents is
assessed using the Mean Square Error (MSE) metric (dis-
played in Table I with the lowest MSE recorded for each
path is highlighted in green). Where the MSE of the
Z position for the Backstepping controller has different
values, as it is applied to the overall control system, all
the other approaches are applied in low-level control. This
comparison involved navigating predefined paths, including
square, lamnestic, ellipsoid, and acrobatic trajectories, cho-
sen for their varying complexity and dynamics, as shown
in Figure 8.

The results demonstrated that the MATD3 controller
consistently outperformed the other methods across all
trajectories. Its ability to dynamically adjust policies in
response to complex and varying flight conditions resulted
in superior tracking precision and robustness. This was
particularly evident in the more challenging lamnestic,
ellipsoid, and acrobatic trajectories.

The Backstepping controller also showed strong per-
formance especially for stabilising the yaw angle of the
quadrotor. While it was effective and reliable in simpler
trajectories like the square path, it lacked the dynamic
adaptability seen in the MATD3 controller during more
complex maneuvers. Nonetheless, the Backstepping ap-
proach demonstrated robust control capabilities, making it
a viable option for many practical applications.

The single TD3 agent, showing decent performance in
simpler trajectories that resemble the learning configuration.
Its limited ability to generalize highlighted the need for
further training and refinement to improve its adaptability
and robustness.

The PID controller, while straightforward and easy
to implement, it required meticulous parameter tuning to
achieve enhanced performance, particularly in the more
dynamic and demanding trajectories.

5. CONCLUSION AND FUTURE WORK
While the majority of recent studies focus on collab-

orative control strategies among multiple quadrotors using
Multi-Agent Reinforcement Learning (MARL) techniques
to accomplish tasks like formation flying, path planning,
collision and obstacle avoidance, this study introduces a
novel MARL approach for enhanced quadrotor attitude con-
trol. By employing MARL algorithms, including MATD3,
MADDPG, MASAC, and MAPPO, we investigate the
adaptability and performance of these methods compared
to single-agent RL and various linear and non-linear con-
trollers. Through extensive training and validation phases,
we observed that while all controllers performed similarly in
scenarios resembling the training configurations, the MARL
approach demonstrated superior capabilities and robust-
ness when navigating through complex trajectories such
as lamnestic and ellipsoid paths. Specifically, the MATD3
that exhibited rapid and stable learning, outperforming
other MARL algorithms and benchmark methodologies in
terms of adaptability and tracking performance on paths
featuring high-speed maneuvers and rapid altitude changes.
These results underscore the potential of MARL techniques
for real-world quadrotor applications, where precise and
adaptive control in dynamic environments is critical.

In future work, we intend to assess the performance
of the proposed approach in dynamic and unpredictable
environments, to assess its robustness proprieties. Addition-
ally, we plan to conduct experiments with the developed
control technique on real-world quadrotor platforms to
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validate their effectiveness and performance in practical
applications.
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