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ABSTRACT  

 
Every day, an increasing number of Internet of Everything (IoE) devices generate enormous volumes of data. Cloud 

computing provides processing, analysis, and storage services to handle these kinds of large data quantities. The increasing 

latency and bandwidth consumption are unacceptable for real-time applications such as smart healthcare devices, online 

gaming, and video monitoring. In order to tackle the rise in latency as well as bandwidth usage in cloud computing 

technology, FC (Fog Computing) has been developed. At the periphery of a network, FC offers networking, processing, 

storage, and analytics functions. Since FC is still in its infancy, scheduling jobs and allocating resources are two of its major 

issues. With the help of this innovation, there are resource limitations on the fog devices at the network's edge. 

Consequently, choosing a fog node for a job's assignment and scheduling is crucial. The energy usage and application 

request response time can be decreased with an intelligent and effective work scheduling algorithm. This research presents a 

novel Quality of Service Priority Tuple Scheduling (QoSPTS) scheduler that maximizes network capacity and latency while 

supporting service provisioning for the IoE. Presented here is a case study showing the effective management of IoE device 

requirements, efficiently allocating resources across fog devices, and optimizing scheduling to enhance quality of life. 

Taking energy efficiency and latency into account as performance measures, here, using iFogSim to compare the suggested 

scheduling algorithm to other methods. According to the findings, the suggested scheduler's latency and network bandwidth 

improved by 34% and 18%, respectively, in comparison with the FCFS (First Come First Serve) approach. 
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1.0 INTRODUCTION 

The term Internet of Things (IoT) is known as a broad environment made up of different common things connected via 

heterogeneous networks, including vehicles, farms, factories, computers, appliances, and animals. Through the usage of 

networks and algorithms, IoTs have enabled these objects to carry out valuable tasks without requiring human intervention 

[1]. Initially, the IoT was primarily concerned with integrating intelligence into physical objects. However, Cisco later 

expanded on this idea to create the IoE, which prioritizes connecting people, processes, data, and objects to create intelligent 

connections. Through the facilitation of People-to-Machine (P2M), Machine-to-Machine (M2M), and People-to-People 

(P2P) communications, the IoE model aids in the automation of human tasks. 

 

IoE systems that use Cloud-Centric IoT architecture for processing, analytics, as well as storage include smart traffic, smart 

farming, and smart healthcare monitoring [2].  Long delays are typically experienced by CIoT data centers since they are 

generally located many steps away from a source node. It is assumed that by 2020, the world's connected device count is 

anticipated to increase from 5.4 billion in 2019 to 1 trillion in 2025 [4]. Vast amounts of data will be created as a result, 

more than the cloud can handle, which will cause extended latency times and network congestion. Even now, low latency is 

a prerequisite for latency-sensitive, certain real-time, and geographically dispersed IoT applications, like virtual reality, 

smart traffic surveillance, smart healthcare monitoring, and others, which cannot be efficiently handled by cloud computing 

[5].  Many strategies, like edge computing, mobile computing, FC, and so on., have been put out to get over these CIoT 

restrictions by offering networking, storage, processing, and decision-making capabilities close to the node of source or 

end-user application [6].  

 

Of all the suggested strategies, fog computing is one that has received the most interest lately. By enabling computation, 

networking, decision-making, FC is a distributed computing model that falls in line with cloud computing. The “Sense 

Process Actuate Model” (SPAM) is mostly utilized in FC. Sensors in SPAM detect and gather information, which is then 

sent to fog devices for processing. The outcomes are routed to actuators for action after processing. Some of the data that 
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fog nodes forward to the cloud is used for longer-term analytics processing and storage management. Devices that could 

function as fog nodes include smartphones, smart gateways, internal modems, switches, routers, cellular base stations, and 

more [7]. Such devices are limited in computing power, storage capacity, bandwidth, and power and have varied 

architectures. Applications utilizing fog computing in real-time need a quicker response time than those that can tolerate 

delays. Consequently, many applications should contend for these few resources. One of the main issues in FC is resource 

management because fog applications are latency-sensitive and resource-constrained [8]. As a result, choosing how to 

allocate resources and schedule jobs is crucial. In smart systems, it is desirable to have quick and timely replies from work 

scheduling that is done well. For instance, in a system of smart healthcare, prompt notification of a patient's status is 

necessary to preserve their life [9]. To optimize the use of these diverse and resource-constrained fog devices, an effective 

job scheduling algorithm must be developed [10]. The ultimate goal is to reduce reaction times and network utilization 

while maintaining energy efficiency [11]. 

 

While there have been several proposed work scheduling methods, such as FCFS-based Round Robin, FCFS, delay-priority, 

Concurrent, etc., fog computing job scheduling is still in its early stages [12]. Current algorithms, like Round Robin and 

FCFS, carry out the tasks on the basis of the order in which they arrive. Because of this, they are unable to shorten latency-

sensitive applications' response times. For applications that are sensitive to latency, a scheduling method that can reduce 

average response time as well as network utilization while maintaining optimal energy consumption must be developed. 

Given a thorough and methodical analysis of the optimization of loop latency and enhancement in performance in an FC 

environment. The goal is to offer a thorough and brief summary of the most recent research-related literature [13], [14], 

[15], [16], [17], [18]. 

 

1.1 Objectives and Contributions 

 

The present research offers a novel multi-objective fog scheduler that facilitates IoE service provisioning for applications 

that are sensitive to latency. The goal is to lower latency as well as energy usage while maximizing the usage of fog devices 

that have been present at a network's edge. 

 

The following are the suggested work's main contributions. 

 

1.1.1 Optimization of Loop Latency 

 

Reducing service response time is the most crucial factor in latency-sensitive applications. The jobs on the fog nodes are 

carried out using the suggested algorithm based on their durations. The loop latency is optimized first by carrying out the 

smallest job. 

 

1.1.2  Network Bandwidth Optimization 

 

Network utilization rises with the number of IoE devices linked to every application. As a result, network congestion 

occurs. The effort also aims to optimize network bandwidth to enhance the application's performance. 

 

1.1.3  Energy Efficiency Enhancement and Resource Utilization 

 

The suggested algorithm aims to improve energy efficiency and resource usage for fog devices, which are resource-

constrained and use energy like all other network devices. 

 
1.2 Organization of the Paper 

 

This work's remaining portions are organized as follows. The associated work has been explained in Section II. The design 

framework is explained in Section III. Describe the conception and execution of the suggested technique in Section IV. 

Section V discusses the evaluation and validation of the performance outcome of the experiments. Section 6 concludes the 

points and future prospects of the upcoming projects and opportunities. 

 
2.0 RELATED WORK 

 

The current section examines a few resource management strategies that are currently in use and have been suggested for 

improving fog computing performance. Authors refer to jobs and tasks interchangeably. Most of these optimizations for 

resource management deal with job assignments, while some techniques focus on job scheduling on such resource-

constrained fog devices. The goals of scheduling and allocation of jobs are to maximize network availability, improve 

resource utilization, minimize costs, reduce loop delays, minimize device energy consumption, minimize make-span, and 



lower network utilization. Thus far, algorithms have only been proposed that maximize one or two of the aforementioned 

criteria's parameters. An outline of a few of these suggested methods for job allocation is provided below. 

 

A dependent job allocation technique for fog nodes was proposed by Pham and Huh [19]. Jobs that are dependent on one 

another require data exchange with one another. Workflows or the Directed Acyclic Graph (DAG) are utilized to depict 

dependent jobs. The authors prioritize each task by looking through a DAG, after which they assign these tasks to fog 

nodes. A job is sent to the cloud if the fog nodes are resource-constrained and cannot complete it. Important factors like the 

fog provider's budget and the deadlines for completing processes are overlooked by the writers. Another work image 

placement as well as scheduling approach in FC was presented by Zeng et al. [20]. On a server, the job image is kept for 

storage. The storage servers can be used together for calculations by embedded clients & fog nodes. Tasks are arranged to 

satisfy minimum completion timeframes and optimize user experience. Ni et al. [21] introduced a dynamic resource 

allocation technique that uses “Priced Timed Petri Nets” (PTPNs) to optimize resource usage and user QoS needs based on 

the job completion time as well as the credibility of fog nodes. Pooranian et al. [22] proposed a different task allocation 

method in which they described a resource allocation algorithm based on heuristics to maximize energy utilization. They 

view resource allocation as an issue that is cognizant of the bin packing penalty. Ni et al. [21] suggested an adaptive double 

fitness Genetic Task Scheduling technique to optimize task, make-span, as well as communication cost. The method takes 

into account the computational power, communication expenses, and latency requirements of fog devices to optimize 

performance. Hoang and Dang [23] created a different heuristic-based job scheduling system in an effort to improve 

performance and minimize latency. To allocate jobs to fog regions and clouds, they suggest a fog-based region architecture. 

A 2-level resource scheduling approach was suggested by Sun et al. [24]. Both fog nodes within the same cluster and 

different fog clusters receive the same allocation of resources. To schedule resources across fog nodes in the same cluster 

for multi-objective optimization, they utilize the theory of improved Non-Dominated Sorted Genetic Algorithm II. The 

authors claim that they achieve more stable work performance and short delays. Liu et al. [10] extracted association rules 

using an a priori technique. The task is then scheduled to a fog device by combining the produced rules with the task's least 

completion time. They assert to shorten typical wait times and execution times. FC is intended to support a broad range of 

applications. These applications may be delay-tolerant or latency-critical. Reducing loop delay is the most crucial factor for 

latency-critical applications. Another method for scheduling jobs on a latency-critical application uses the FCFS scheduling 

algorithm, as documented in Gupta et al.’s work [4]. On fog nodes, they utilize the FCFS algorithm to compute loop delay, 

energy consumption, and network usage. They demonstrate how placing modules on edge is far superior to placing them on 

cloud. 

 

Bittencourt et al. [12] examined resource allocation in FC by utilizing 3 scheduling policies—(i) concurrent, (ii) FCFS, and 

(iii) delay-priority—to analyze various application types. The algorithms are used for two distinct kinds of applications: (i) 

“Electro Encephalo Graphy Tractor Beam Game” (EEGTBG) and (ii) Video Surveillance. While the 2nd application is 

almost real-time, the first is delay-tolerant. To demonstrate that resources should be distributed based on the mobility 

requirements of the application, loop latency as well as network utilization was calculated. In order to lower costs and total 

response times in FC, “Choudhari et al. [25] suggested a prioritized job scheduling approach. A job's priority is defined by 

its deadline when it is received. A job is placed in the fog layer using its computed priority. There is disregard for other 

crucial goals like network utilization and energy consumption. Additionally, Bitam et al. [26] employed the bio-inspired 

Bees Life Algorithm (BLA) as an optimization method for job scheduling. The method was applied to fog nodes to 

distribute jobs optimally. Comparing the suggested approach against the “Particle Swarm Optimization” (PSO) algorithm, it 

was discovered that the above had worse run-time as well as memory allocation values. In addition, Gai and Qiu [27] 

optimized resource allocation & Quality of Experience (QoE) using Reinforcement Learning (RL). In order to create cost 

mapping tables and allocate resources as efficiently as possible, they suggested two RL algorithms. A cluster of fog nodes 

had been set up to respond to every user request and fulfill detailed goals, like delay. 

 

Zhang et al. [28] suggested a “Double Deep Q-Learning” (DDQ) model to lower energy consumption in edge computing. 

Through the use of DDQ, the paradigm calculated the Q-value for every “Dynamic Voltage and Frequency Scaling” 

(DVFS) technique. To keep the gradient from vanishing, “Rectified Linear Units” (ReLu) was utilized as the activation 

function rather than the Sigmoid function. A genetic method was presented by Nguyen et al. [29] to optimize job scheduling 

in the cloud-fog environment. Their goal was to shorten work execution times. Every chromosome signifies a task assigned 

to a node. To generate a new population, crossover and mutation were employed. In comparison to BLA and Modified PSO, 

the authors asserted that their outcomes were superior. Using the iFogSim simulator, Rahbari and Nickray recently built the 

“Greedy Knapsack-Based Scheduling” (GKS) algorithm for work scheduling [30]. They used the EEGTBG and Video 

Surveillance to test their system. They asserted to have achieved better outcomes when comparing their execution cost as 

well as energy usage with FCFS, concurrent as well as delay priority scheduling. The authors, however, disregarded 

network utilization, which is a crucial factor. 

 



Mai et al. [31]  employed deep reinforcement learning for “Real-Time Task Assignment” (RTTA) by training a neural 

network using evolutionary techniques for reinforcement learning in order to schedule real-time jobs. Just a small number of 

methods have taken into account multi-objective optimization for work scheduling because FC is still in its early stages. 

The solutions that have been provided do not have the same efficiency in work scheduling when it comes to simultaneously 

preserving energy as well as delay in FC as does the proposed methodology [32]. Here, putting into action a job scheduling 

strategy for latency-sensitive applications in fog computing to optimize performance and delay. 

 
3.0 DESIGN FRAMEWORK 

 

Because FC acts as a mediator between source nodes and the cloud, it expands on cloud computing. As seen in Fig. 1, FC 

architecture is dispersed, hierarchical, as well as bi-directional, comprising several layers. The cloud layer is at the top, fog 

devices are in the intermediate layers, and smart devices with sensors as well as actuators are at the bottom of the IoE layer. 

 
                                                 Fig. 1. Fog Architecture 
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Thing to Thing Link (T2T) 



3.1 IoE Layer 

 

The IoE layer comprises smart devices that are operated by sensors and actuators. Heart rate monitor watches, cameras, 

smart traffic lights, smart eyewear, GPS sensors in cars, smart home sensors, and other sensors gather unprocessed 

environmental data, transform it into signals, as well as send it to fog nodes for additional processing. As seen in Figure 1, 

there are 2 different kinds of communication links allowing devices to communicate with one another in the IoE layer: T2T 

and F2T linkages. The T2T communication link allows the neighboring IoE devices to communicate with one another via 

Bluetooth, Zigbee, and WiFi. These Internet of Everything devices can connect to higher-level fog nodes via an F2T 

communication channel. 

 

3.2 Fog Layer 

 

The “fog layer serves as a mediator between the cloud and end devices. It allows for a high degree of interaction and 

independent evolution between layers by loosely integrating the cloud and IoE layers connected to the fog. The fog layer 

serves as an intermediary that facilitates communication between devices and the cloud while handling certain processing 

tasks locally. This is particularly valuable in scenarios where quick decision-making and low-latency responses are critical, 

like in IoT applications, smart cities, industrial automation, and healthcare. The fog layer efficiently makes usage of the 

cloud services above even though serving as the backbone of the underlying IoE platform. The fog layer is made up of 

several fog devices, including routers, switches, cellular base stations, and proxy servers, that have varying degrees of 

processing, storage, and networking capacity. A cloud server is used to connect these servers. As seen in Figure 1, fog 

nodes in the fog layer utilize an F2F link to interact with other fog nodes and an F2T link to communicate with IoE devices. 

 

3.3 Cloud Layer 

 

The cloud represents the highest tier of the architecture. It gathers information from networking devices for data analysis 

and long-term behavior, then sends the findings back to fog devices so that additional actions are taken as needed. The 

cloud layer in computing signifies a pivotal tier within the overarching architecture of cloud computing. This model 

revolutionizes the provisioning and access to computing services by leveraging the internet for the on-demand availability 

of shared resources. Sensors are utilized in FC applications to sense and gather data from the Internet of Everything devices 

using the Sense-Process-Actuate-Model (SPAM) architecture. After the data has been processed by fog devices, the 

outcomes are communicated to actuators so that actions can be taken. Four “Peer-to-Peer” (P2P), client-server, or cluster 

approaches can be used by these applications to facilitate nodal cooperation [33], [34]. The “Distributed Data Flow” (DDF) 

model is followed in the development of these systems, which are created as Directed Acyclic Graphs with various 

modules. An input module in a Directed Acyclic Graph receives input, processes it, and then forwards the output to another 

module. 

 
4.0 CONCEPTION AND EXECUTION 

 

While some fog computing applications are delay-tolerant, others are latency-sensitive. These applications provide 

dynamic, variable-length workloads that occasionally call for priority execution at both the edge and the cloud. In a 

heterogeneous environment, applications compete for the limited resources of diverse devices. These jobs are distributed to 

different fog nodes and carried out there. When using the FCFS technique in conjunction with a basic round-robin (RR) 

algorithm for job scheduling in FC, all jobs are given equal priority, which causes workloads with short burst times to 

respond more slowly. On the other hand, the fog computing paradigm seeks to reduce network traffic, waiting times, and 

response times. As a result, the following goals must be included in the design along with the implementation of the job 

scheduling algorithm in fog: 

 

i. Optimization of loop latency 

ii. Energy efficiency enhancement and resource utilization 

iii. Network bandwidth optimization 

 
4.1 Case Study 

 

IoE devices' ubiquitous nature makes it possible to monitor various healthcare system operations. An increasingly 

significant architectural component for ubiquitous computing is fog computing [35], [36]. Cloud-based solutions in e-

healthcare cause longer latency, which is intolerable in emergency situations. By utilizing FC, a large portion of healthcare 

computing tasks can be accomplished by adjacent fog nodes, with smaller delays and increasing availability [37]. 

 



There are various use case types for smart healthcare applications; some are critical, while others can wait [38], [39]. For 

instance, information on a patient is gathered and stored for a future examination by a doctor. Delays may be tolerated and 

this kind of data storage as well as retrieval is not very crucial. However, in certain situations- like when a patient is in a 

severe condition data analysis is needed to produce emergency notifications. These kinds of operations are more latency-

sensitive since a delayed response to an emergency signal may endanger the life of the patient. 

 

These are the 3 different application use cases that make up a smart healthcare case study. 

 

i.  Critical Incident Response System 

 

The Critical Incident Response System is designed to handle vital patient information, like BP, body temperature, and heart 

rate, along with blood glucose, from a variety of bodily sensors in an emergency. Important details regarding the patient's 

condition, such as BP above 150/90 mmHg or blood glucose level above 500mg/dl, are contained in this data and should be 

processed in an emergency. Subsequently, this data undergoes processing and analysis to produce timely notifications that 

are necessary to preserve the life of a patient. 

 

ii.  Medical Appointment System 

 

The Medical Appointment System is an e-healthcare tool that facilitates the timely scheduling and management of patient 

appointments. It reduces the likelihood of scheduling a similar time slot for several patients, making it less crucial. 

 

iii.  Medical Record Management System 

 

A database that holds patient records is called the Medical Record Management System. The patient's personal data, 

medical history, appointments, therapy, and test results are all included in this file. Every time a patient arrives at the 

hospital, the receptionist makes a new record for them to keep in the cloud-based Medical Record Management system. 

 

The following 3 application modules are used to make this smart healthcare case study a fact. 

 

i.  DCPE 

 

The DCPE (Diagnostic Criteria and Patient Evaluation) module, which obtains data from all 3 application modules, is 

placed on a lower-level fog device. It gathers vital information from body sensors, processes it, as well as examines it to 

produce alerts for emergencies. Additionally, it gets data for the medical record management system and medical 

appointment system, but it sends it to the facilitator module. 

 

ii.  Facilitator 

 

A high-level fog device with a facilitator module is installed that receives data from DCPE. In response to appointment 

requests, it creates time slots that are allocated to patients. Patients are informed of this schedule of appointments. It sends 

the medical record of the patient to the medical record database along with some essential data.  

 

iii.  Medical Record Database 

 

Cloud storage is used for this module. This Module can get data from the facilitator for analysis and archiving. It creates 

patterns of patients' medical conditions, hospital visits, and hospital stays, which it then transmits to the facilitator. 

 

The “modules of the case study are shown in Fig. 2. Table 1 lists the maximum CPU lengths of tuples for intermodular 

communication. The CRITICAL tuple must be handled first because it includes the most important information. The 

suggested algorithm chooses the first work to be executed from this list by ranking all of the arrived jobs according to the 

needed a million instructions per second (MIPS). The CRITICAL tuple experiences the least amount of delay since the 

suggested algorithm processes the shortest tuples first. Let's assume that, at a given moment, the tuples CRITICAL(1), 

ORGANIZE(2), and DOCUMENT RECORD(3) arrive at DCPE in the order listed in Table 2. Table 3 shows the tuples' 

waiting times for utilizing FCFS that are CRITICAL, ORGANIZE, and DOCUMENT RECORD. It demonstrates that the 

most critical tuple, CRITICAL, has the least waiting time when utilizing the suggested technique. The ORGANIZE tuple is 

processed next, and the delay-tolerant DOCUMENT RECORD tuple has the longest waiting time. Table 4 displays the 

symbols for the suggested algorithm. Suggested steps of job scheduling algorithm are listed in the” algorithm. 

 

 



Table 1. MIPS requirement for every module 

TYPE OF TUPLE LENGTH OF CPU 

 

ORGANIZE 1250 

CRITICAL 860 

DOCRECDATA 1400 

CRIDATA 450 

MEDCRI 450 

ORGHIS 850 

TIME 110 

MEDREC 650 

DOCUMENT RECORD 3570 

CRIHIS 650 

ORGDATA 450 

MEDORG 450 

DOCRECHIS 850 

ALERT 120 

APPORG 570 

 
Table 2. Arrival sequence of tuples 

3 2 1 2 1 3 1 3 2 

 
Table 3. Tuples waiting time 

TUPLE FCFS PROPOSED ALGORITHM 

DOCUMENT RECORD 6444.4 9480 

ORGANIZE 8125 3588 

CRITICAL 7464.6 2392 

 

 
According to the suggested approach, the organizer determines how long the “waiting list of tuples (WL) is before a fog node, 

which has received a tuple Ti from a sensor or another fog node, examines its length. The scheduler allots processing 

resources to the incoming tuple and it is executed until it is finished if WL is empty. Ti is added to the final list of tuples FL 

and is set to Tf upon completion. Ti is added to the waiting list WL if it is not empty, and the list is arranged according to the 

length of the tuples in increasing order. After a tuple is finished, the organizer chooses the shortest tuple Tmin from the top of 

the WL and assigns VM to it until it is completed. Tmin is added to the completed list of tuples” FL and set to Tf  after it is 

done. 

 
4.2 Complexity Analysis 

 

The suggested algorithm's time complexity is based on the waiting list's (WL) length or N. The “time complexity of the 

suggested technique is O(nlogn), and the space complexity is O(n) since the scheduler sorts this list. 

 

Fig. 3 demonstrates the block diagram of scheduling. In this, a tuple is submitted to the QoSPTS work scheduler when it 

reaches a fog device from a sensor node or another fog device. On the fog device, the Scheduler determines if it is the first  

tuple. In such a case, the received tuple is used. If not, it is added to the queue that ” is kept up to date independently for each 

fog device. Every time a tuple is added, the scheduler sorts this queue. Tuples are added to the finished tuple queue when 

they have finished executing. Subsequently, the scheduler proceeds to choose the shortest tuple from the top of the WL for 

execution. 



 

                  Fig. 2. Case study and its different Modules 

    
Here, utilized the iFogSim toolbox, an improvement over iCloudSim, to develop the suggested approach. Resource 

management strategies in FC and IoE environments can be effectively simulated with iFogSim [4]. In order to construct the 

scheduler, new classes to iFogSim are added, and change a few existing ones. A brief overview of the classes in use is 

provided here. 

 

i. Sensors 

 

IoT sensor simulation can be done with this class. Tuples containing the data from sensor instances can be sent to fog 

devices. To create tuples with varying sizes, utilize this class. 

 

ii. Fog Device 

 

This class's instances are utilized to model various fog devices. The memory, CPU, storage capacity, and uplink & downlink 

bandwidths of every fog device are listed. Multiple-level fog nodes are possible. Using the tuples, every fog node can 

interact with other fog nodes at a higher level as well as devices at the IoE layer. Based on the rising order of MIPS, the 

scheduler can pick which arriving tuples every fog node can process. 

 

iii. Tuples 

 

All of the entities in fog communicate with one another through tuple class instances. The source, destination, and 

processing requirements of each tuple are expressed in MIPS. 

 

iv. QoSPTS Scheduler 

 

Quality of Service Priority Tuple Scheduling (QoSPTS) class is an extension of CloudletScheduler, which is responsible for 

keeping two lists: the finished list (FL) and the waiting list (WL).  All of the tuples on the waiting list are awaiting execution, 

and all of the tuples on the finish list have finished their execution. The smallest tuple is chosen from the WL when a tuple is 

finished. 



 
Fig. 3. Scheduling Block Diagram 

 
Figure 4 illustrates the flow diagram for the QoSPTS (Quality of Service Priority Task Scheduling) algorithm. The process 

begins with the input of multiple tasks. Every task is assigned to a VM (Virtual Machine). Subsequently, the scheduler 

examines the waiting list. If the current tuple is the first one, it is executed immediately. If not, the tuple is added to the 

waiting queue. In addition to the waiting queue, the QoSPTS algorithm sorts the queue based on task priority. The task with 

the minimum value (indicating the highest priority) is selected for execution first. After execution, the task is moved to the 

finished list. Finally, the finished list is displayed, concluding the scheduling process. 

 

Figure 5 illustrates how a tuple sent from a sensor using the Transmit() method is sent via the “Send(tuple) technique to a 

low-level fog device that is connected. When a tuple arrives, the fog device calls a callback function called 

processTupleArrival(). This technique determines if the tuple must be processed at the fog device or if it should be 

forwarded to a higher-level fog device. The SubmitTuple() method is used to send the tuple to the QoSPTS Scheduler if it is 

to be processed by a fog device. The tuple is added to the waiting list (WL) and sorted according to its length using this 

method. The smallest tuple is then chosen by SchedulenextTuple(), and the scheduled tuple is then sent to the fog device for 

execution. The CloudletFinish() method asks the scheduler to run the next tuple after the current one has finished. Using 

this method, the completed tuple is added to the finished tuple list FL. The scheduler then chooses the shortest tuple from the 

head of the waiting” list WL. 

 



 
 

 



 

Fig. 5. Sequence diagram of tuple scheduling in Fog computing paradigm 

5.0  EVALUATION AND VALIDATION OF PERFORMANCE OUTCOME 

 

The current section displays the findings of the suggested QoSPTS algorithm in several settings compared to the most 

advanced FCFS algorithm. Here, three metrics are chosen: mean loop latency, energy utilization, and network utilization. 

Table 5 displays the notations utilized in the different equations. 

 

 
 

5.1 Simulation Environment Setup 

 

Suggested QoSPTS “scheduler algorithm is applied and assessed via a simulated fog environment with the iFogSim toolkit 

[4]. QoSPTS scheduler’s performance is validated through a case study named Smart Healthcare, which is described in 

Section 4.1, to demonstrate the algorithm. There are delay-tolerant and latency-sensitive tuples in this case study. An 

Intel(R) Core(TM) i5-3210M CPU@2.50 GHz computer with 4 GB RAM and a 64-bit Microsoft Windows 10 operating 

system” was used for the entire simulation process. 

 

Three modules- Critical Incident Response System, Medical Appointment System, and Medical Record Management 

System- are used to create tuples of varying lengths. The sensors produce CRITICAL tuples, which are made up of patient’s 

condition data that needs to be processed, examined, and handled as soon as possible. It is less important because the 

Medical Appointment System creates an ORGANIZE tuple with an appointment request as well as the appointment time 

shown after processing. The DOCUMENT RECORD tuple from the medical record management system is delay-tolerant 

since it contains patient data that will be saved on the cloud later. Here, require the quickest alert because CRITICAL tuples 



are the” most important. Calculating latency for end-to-end modules since ORGANIZE tuples are less important and 

DOCUMENT RECORD tuples are latency tolerant. 

 

i. Critical Alert Loop: DCPE->Facilitator->display. 

ii. Medical Appointment Loop: DCPE-> Facilitator ->DCPE->display. 

iii. Medical Record Management Loop: DCPE-> Facilitator -> Medical Record Database. 

iv. History: Facilitator-> Medical Record Database-> Facilitator->DCPE. 

 
Since loop number one is a critical condition, it is the least delay-tolerant. As such, it is the most important. Since loop 

number four requires the patient data to be kept on the cloud for long-term analysis, it can tolerate delays better than loops 

number two and three, which deal with appointment scheduling. 

 
5.2 Parameters Specification 

 

A detailed description of various devices used in the smart healthcare case study is presented in Table 6. During the 

simulation process, five parameter specifications are taken into consideration, using “5 high-level fog devices at level 2 (as 

facilitators). By changing the number of fog nodes (acting as DCPE) at level 1, a thorough evaluation is carried out. Three 

different sorts of tuples- Medical Appointment, Critical Alert, and Medical Record Management- are arriving at level 1 fog 

device. Each of the fog devices is connected with 20, 40, 60, 80, & 100 fog nodes to it at this level, correspondingly. Thus, 

every specification Spec 1, Spec 2, Spec 3, Spec 4, & Spec 5 have 100, 200, 300, 400, & 500 number of fog nodes. 

Additionally, the application modules in the smart healthcare case study are set up with RAM, MIPS, bandwidth, module 

size, and 10 B, 100 B, 10000 B, & 100” B/S, correspondingly. 

 

 
5.3 Mean Loop Latency 

 

To determine “the latency of each module in the loop, employing a control loop. Here, calculates the average CPU time  

used by all tuples of a specific type of tuple in order to calculate the loop latency. Here, equation (1) to calculate the mean 

loop latency. 

 

 

     If the mean CPU time for a specific kind of tuple” has previously 

been calculated 

       (1) 

 

 

Otherwise  

where N is denoted as the “total number of performed tuples of a specific type,  is the ith tuple's ending execution time, 

and  is indicated as the starting execution time. The equation is used to calculate each tuple's latency in equation (2). 

 

                                                                                            (2) 

where tuple set Ʈ is denoted as the current set. Since FCFS is the sole scheduling method that has been implemented in 

iFogSim, comparing the mean loop latency that the suggested QoSPTS scheduler produces with the outcomes of that 

algorithm. The mean loop latency, calculated in milliseconds with FCFS and the suggested multiple scheduling strategies, is 

displayed in Figure 6. The number of nodes is displayed along the x-axis, and the mean application loop ” delay for 450 

simulation times is displayed along the y-axis.  

 



The mean loop latency for the most important loop-the emergency alert-is displayed in Figure 6A. Here, the QoSPTS waits 

are noticeably shorter than the FCFS delays. The delay doesn’t increase as the number of nodes increases when using 

QoSPTS. The mean loop delay for a medical appointment, which is not too severe, is shown in Figure 6B. In this case, 

FCFS outperforms QoSPTS since QoSPTS prioritizes the most important loop more. The mean loop latency for the Medical 

Record Management is displayed in Figure 6C, where the suggested approach once again produces latencies that are lower 

than those of FCFS. When there are more than 450 nodes in an FCFS network, the latency increases significantly. The 

latency for the history of various number of IoE nodes that generates the medical history of the patient is displayed in 

Figure 6D, where the mean loop latency utilizing QoSPTS is less than that of FCFS. Utilizing QoSPTS reduces the delay 

after 450 nodes. 

  

 
Fig. 6. Mean loop latency in milliseconds (ms): (A) “Emergency alert, (B) Medical appointment, (C) Medical record 

management, (D) History of various number of IoE nodes 

 
5.4 Energy Utilization 

 

Here, calculate the energy utilization by a Fog device, , using equation (3) 

 

 
 

                                                                                            (3) 

Any fog device's energy can be calculated by utilizing the power of every host for a predetermined execution period, 

where  is denoted as the variables are the host power during the last utilization, is denoted as the current time,  is 

denoted as the update time” of the previous use, and  is denoted as the current energy consumption. 

 



This section details the cost of using the QoSPTS method on a cloud system in comparison to the FCFS algorithm. The 

equation (4) can be used to compute the total execution cost. 

 

 

   

    (4) 

 

Equation (4) takes into account the following variables:  is denoted as the current cost, current time is shown by , last 

utilization update time is shown by , rate per millisecond is shown by , is denoted as the last utilization, and 

is denoted as the total milliseconds of all hosts. The last use can be calculated as,  where  

is the host's total allotted mips. 

 

The average utilized energy used by the cloud and fog nodes is displayed in Figure 7. The number of nodes is indicated 

along the x-axis, while the” amount of energy used is represented along the y-axis. 

 

 
 

Fig. 7. Average utilized energy in joule (J): (A) Cloud devices, (B) Fog devices 

 
In particular, figure 5 shows the average utilized energy of the cloud component in the architecture. There are two 

observations in this figure. First, for a limited number of participating IoE nodes (<300 nodes), the average energy utilized 

by the QoSPTS algorithm is lower than that of FCFS shown in Figure 7A. Second, when the problem gets bigger, this value 

gets bigger as well. As a result, employing FN (Energy utilized by the device) to lower the energy usage of the server 

utilized to process the request and give adaptive load balancing for the sent workload. Consequently, figure 7B illustrates, 

the average energy utilized by FNs while the suggested technique is lower than when employing the FCFS algorithm. It is 

interesting to note that this figure demonstrates how FNs reduce the average server energy usage to roughly 60% less than 

when the cloud system is used alone. Additionally, the QoSPTS algorithm can act independently on large networks, with a 

value that is comparable to FCFS. 

 
5.5 Network Utilization 

 

Network utilization use is the third evaluation parameter. As “the number of devices rises, so does the network consumption, 

which causes congestion. The application operating on the cloud network performs poorly as a result of this congestion. By 

dividing the load among intermediary fog devices, FC contributes to a decrease in network congestion. The equation (5) is 

utilized to compute the network utilization. 

 

 

 

                         (5) 

 

 

Where  is denoted as size of the network of the ith tuple, Li is indicated as the latency, and N is denoted as the total number” 

of tuples.  



 

Figure 8 compares QoSPTS and FCFS algorithms' network utilization. Number of nodes shown by x-axis and average 

network usage is shown by y-axis over 450 simulations. In comparison with the FCFS algorithm, the results show that the 

technique can save roughly 30% of the network when the node count is less than 300. However, as the node count rises, the 

network saving drops to roughly 20%. 

 

 
Fig. 8. Fog devices Network “utilization in MB (Megabytes) vs. different number of nodes (IoE devices) 

 
The outcomes show that, in comparison with the FCFS, the suggested scheduling method works better in terms of latency as 

well as network utilization. However, when the number of fog nodes is smaller, the average energy utilization of the ” 

proposed technique is slightly greater than that of FCFS. 

 
6.0  CONCLUDING POINTS AND FUTURE PROSPECTS 

 

Due to more and more IoE devices producing massive amounts of data, cloud computing cannot keep up with the demands 

of real-time applications, which include mobility support, low latency, and location awareness. To get around these 

restrictions, a new computing model known as FC has surfaced. It works in conjunction with cloud computing to enable 

analytics, real-time processing, as well as storage capabilities close to the edge device. Fog computing presents a significant 

difficulty in terms of job scheduling because the edge devices have limited resources. 

 

In this research, an effective job scheduling strategy to minimize latency for delay-sensitive applications is designed and 

implemented. Presented an example case study in the healthcare sector to highlight the requirements that IoE devices must 

meet in terms of both delay-sensitivity and delay-tolerates. The suggested approach optimizes energy and network 

consumption, lowers loop latency, and arranges jobs on fog devices according to their duration. 

 

The suggested QoSPTS technique can starve tuples with longer lengths even though it lowers the average waiting time. 

Here, plan to use scheduling techniques such as meta-heuristics, hyper-heuristics, reinforcement learning-based approaches, 

etc. in the future to address this problem. For the purpose of capacity planning these resource-constrained devices, also aim 

to employ an analytical model. 
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