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ABSTRACT

Considering the recent advancements made in internet speed and the development of cloud services, along
with the various benefits offered by the cloud such as reliability and convenient accessibility, it becomes
necessary to incorporate additional features like flexibility and efficient resource utilization. However, in
pursuit of these enhancements, data owners encounter challenges related to outsourcing and safeguarding
sensitive data against unauthorized access.Researchers have discovered that segmenting data according
to its sensitivity level can prevent data leakage and improve performance. This is achieved by encrypting
the partition containing sensitive data along with portions of non-sensitive data using both vertical and
horizontal partitioning techniques. A secure data outsourcing method is suggested, which involves a hybrid
approach combining horizontal and vertical partitioning. This method employs a set of predefined rules
during the query request process, utilizing Query Binning (QB) and metadata from hybrid partitioning.
Data encryption is performed using the AES algorithm in compliance with the proposed rules. The
effectiveness of this approach is verified through experiments conducted with generated sample data
sets. Results demonstrate that our proposed approach surpasses the security performance of the PANDA
approach, ensuring non-linkability and indistinguishability security requirements are met.
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1. INTRODUCTION

The outsourcing of data presents a range of vulnerabilities, with the secure and efficient retrieval of
outsourced data posing a significant challenge. Among the critical security concerns is the sensitivity of
the data, which demands careful examination.Traditionally, data owners have faced two primary options:
either refrain from outsourcing data entirely, regardless of its sensitivity, which is both inflexible and inef-
ficient, or encrypt all data stored in the cloud to protect sensitive information, albeit at a potentially high
cost.In the pursuit of bolstering data security against various attacks, strategies like data partitioning
have been put forth [1, 2, 3, 4, 5, 6, 7, 8, 9]. These methods involve the segmentation of a dataset into
multiple subsets based on the sensitivity of the data.
In the contemporary landscape, safeguarding data against unauthorized access, particularly sensitive in-
formation, is a paramount concern for data owners. However, the imperative to exploit cloud features,
enabling ubiquitous access to services and data while optimizing costs and enhancing reliability, often
necessitates data outsourcing. This paradigm shift also fosters the advancement of parallel and distributed
computing capabilities.Amidst the challenges posed by data outsourcing, researchers are actively seeking
innovative solutions to fortify security measures. Among these, data partitioning emerges as a promising
strategy, wherein a dataset is fragmented into smaller subsets based on specific attributes or values, no-
tably sensitive data. These subsets are then dispersed across diverse data centers, potentially spanning
various geographical locations. Several distinct methodologies for data partitioning have been devised,
encompassing approaches such as Data Sensitivity Partition, Frequency of Use Based Partition, and
Space-Based Partition. Researchers have diligently explored a spectrum of techniques and strategies to
delineate partitioning categories, aiming to heighten security protocols and shield sensitive data from
breaches.This research endeavors to delve into the intricacies of different partitioning techniques, eluci-
dating the methodologies that researchers have crafted to delineate partitioning categories. It sheds light
on how these methodologies have been instrumental in fortifying security measures and safeguarding sen-
sitive data. Furthermore, the study proposes a novel hybrid data partitioning approach poised to elevate
both security and performance benchmarks.

Two prevalent methods for data segmentation are horizontal partitioning and vertical partitioning. The
selection between these methods hinges on two key factors: the intended purpose of the partitioning and
the specific objectives of the system owner, be it augmenting security, performance, or both [3, 10].



In the realm of data security, it is imperative to incorporate features such as non-linkability and ciphertext
indistinguishability to fortify information protection [2, 11]. Figure 1 delineates the encryption algorithms
requisite for ensuring these properties.

• Non-linkability: Ensuring that adversaries remain unaware of the relationship between any en-
crypted and plaintext values.

• Ciphertext indistinguishability: Preventing adversaries from discerning any relationships among
encrypted values.

Figure 1: Properties of outsourcing data encryption algorithm

2. RELATED WORKS

Due to the escalating significance of data security, particularly in today’s environment, numerous compa-
nies and organizations are embracing cloud-based solutions. However, apprehensions regarding potential
risks like data leakage, security breaches, and privacy infringements associated with cloud data stor-
age persist. Consequently, researchers have devised an array of techniques to fortify database security
and optimize query performance. Within existing literature, safeguarding sensitive data has been ad-
dressed through methodologies such as data partitioning.Many researchers have turned to encryption as
a shield for data, employing techniques such as Searchable Encryption. Recently, data partitioning tech-
niques have integrated encryption to fortify database security and forestall data leaks during queries. In
essence, data partitioning serves as a multifaceted solution, elevating both data security and performance
[2, 3, 12, 13, 14, 15, 16].Data has been segregated into sensitive and non-sensitive categories using data par-
titioning, employing both vertical and horizontal strategies. A groundbreaking technique dubbed "Query
Binning (QB)" has been introduced to bolster security against inference attacks like frequency count and
workload skew attacks, facilitating joint query processing across sensitive and non-sensitive data. These
methodologies enhance performance, fortify security, and mitigate the peril of data leakage. Nonethe-
less, the current approach struggles to accommodate multiple criteria values in queries [2, 3, 16].Vashi et
al. proposed a symmetric encryption technique to uphold data privacy during Privacy-Preserving Data
Mining (PPDM) [13]. This method entails implementing encryption on vertically partitioned data based
on its sensitivity, employing various encryption algorithms to encrypt sensitive attributes across distinct
relations simultaneously. The efficacy of this approach was demonstrated through its application to three
datasets of varying sizes. Additionally, four symmetric encryption techniques (AES, DES, Rijndael, and
RC2) were employed on sensitive attributes, yielding superior privacy results compared to utilizing a
single encryption algorithm on each partitioned relation.Omran et al. introduced an algorithm aimed
at thwarting the leakage of sensitive data and preserving privacy within cloud-stored database relations
[15]. Their model concentrates on secure data management in cloud databases, employing two approaches
to data partitioning: attribute relationship-based partitioning and sensitivity-based partitioning. They
proposed a model for managing the outcomes of the partitioning process, involving the storage of parti-
tioned relations in a data center. This model can be implemented in a single cloud data center for optimal
performance and security, or the partitioned relations can be dispersed across multiple data centers in dif-
ferent locations to bolster security, albeit without addressing potential performance implications.Omran
et al. [15] introduced innovative data partitioning methodologies aimed at facilitating query processing
on encrypted databases in the cloud. Their work delved into enhancing query processing efficiency while
simultaneously fortifying database relations against potential leaks or attacks in a cloud environment
through encryption. Central to their approach was the concept of designing encrypted databases capa-
ble of executing SQL queries on encrypted relations without necessitating decryption processes. This
paradigm shift ensured that queries could be handled directly on encrypted data stored in the cloud,
with the subsequent decryption of query results occurring at the client side. Moreover, the researchers
devised four distinct techniques for indexing and partitioning data: frequency of use based partitioning,
space-based partitioning, Mondrian or bisection tree based partitioning, and histogram based partition-
ing.Efficiency evaluations of the first three techniques were juxtaposed with histogram-based partitioning
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to gauge their effectiveness. These indexes and partitions played a crucial role in query processing, enabling
the selection of relevant data segments from the cloud. The researchers explored the storage of index data
on either the cloud or on-premises servers alongside encrypted database relations, thereby reducing overall
processing time. This encompassed data transfer time from the cloud to the query requester site, as well
as the time required for data decoding and processing at the requester end. Furthermore, these techniques
facilitated comparisons between encrypted and unencrypted relations, with analysis focusing on runtime
and the number of tuples retrieved across relations with varying tuple sizes. The findings underscored
the superior efficiency of encrypted relations employing frequency-of-use-based and bisection-tree-based
partitioning methodologies.In tandem with data partitioning techniques, researchers have investigated
inference attacks to discern how adversaries target encrypted databases and exploit potential information
leaks [5]. Naveed et al. scrutinized inference attacks against encrypted database (EDB) systems utilizing
property-preserving encryption (PPE) schemes such as CryptDB. Their study encompassed a series of
attacks aimed at recovering plaintext from ciphertext encrypted using deterministic encryption (DTE)
and order-preserving encryption (OPE) schemes for database attributes. Notably, four well-known at-
tacks including frequency analysis and sorting were considered. Experimental evaluations were conducted
on electronic medical records (EMR) data sourced from 200 U.S. hospitals, assuming that adversaries
had steady-state access to the EDB and auxiliary information about the system or data. Results high-
lighted the vulnerability of sensitive information when adversaries possessed background knowledge about
EDB data and properties. Specifically, the attacks succeeded in recovering substantial portions of patient
records, exceeding 80% when OPE encryption was utilized for attributes like age and disease severity,
and over 60% when DTE was applied to attributes such as sex, race, and mortality risk.

3. PROPOSED APPROACH

The proposed research model is outlined in Section 3. Section 3.1 introduces the hybrid data partitioning
model, delineating the approach for partitioning relations. In Section 3.2, the proposed model is elaborated
upon, providing insights into its design and implementation. The query binning technique, a pivotal aspect
of the research, is elucidated in Section 3.3. Finally, Section 3.4 delves into the encryption technique
employed within our approach.

3.1 Hybrid Data Partitioning Model

A trusted on-premises Database (DB) housing data in plaintext format executes queries and forwards
query requests to an untrusted DB located on the cloud. Within this context, consider a relation R
comprising attributes A1, A2, ..., An, encompassing both sensitive and non-sensitive tuples, denoted as
t1, t2, ..., tm. The determination of attribute sensitivity is vested in the DB owner, who establishes rules
dictating whether a tuple is deemed sensitive based on values associated with certain attributes.Employing
a hybrid technique, the DB owner partitions relation R into multiple relations based on the sensitivity
of the data. This technique involves dividing each original tuple into a maximum of three tuples, with
each divided tuple allocated to a separate relation. The first tuple segment houses values from attributes
marked as sensitive, while the second segment comprises values from attributes marked as non-sensitive.
The remaining values, found in the third tuple segment, may encompass a mix of sensitive and non-
sensitive data, rendering its classification as sensitive or non-sensitive ambiguous.The DB owner proceeds
to outsource relations containing non-sensitive data to the cloud in plaintext format. However, tuples from
relations containing sensitive data undergo encryption using a non-deterministic encryption mechanism
before being outsourced to the same cloud. In our proposed model, the DB owner must maintain metadata,
such as a mapping relation, which associates the original tuple ID with the new tuple IDs in each of the
divided relations. This metadata plays a crucial role in formulating queries appropriately, leveraging the
Query Binning (QB) technique proposed in [2].On the cloud, an untrusted DB hosts the partitioned
relations, executing queries and furnishing responses to the trusted on-premises DB.

3.2 Proposed Model

To explain query execution within our model, let’s consider a query denoted as σ over the relation R, where
a predicate p is represented as σp(R). This query is executed on the trusted DB without any restrictions
on the number of attributes in the WHERE condition clause. The output of the query comprises four
attributes: -

• Tuple ID: Represents the original ID assigned to each tuple.



• IDE :Denotes the tuple ID serving as the primary key in the new relation for sensitive data(RE).

• IDP : Indicates the tuple ID acting as the primary key in the new relation for non-sensitive(RP).

• IDPE : Signifies the tuple ID stored in either the relation RPE in plaintext or relation REP in the
encrypted form.

Following this, the query process divides the execution of σp(R) into four sub-queries. Each sub-query,
as depicted in Equation 1, is dispatched to an untrusted DB for execution. Subsequently, the results of
these sub-queries are returned to the Trusted DB. Within the trusted DB, two sub-queries ((RP _E and
RE_P ))exhibit identical schemas, necessitating a union operation. This union result is then subjected to
join operations with RP and RE . Specifically, the query #sigma on a relation Rs executed as described
in Equation 1.

σp(R) = σp(RE) 1 σp(RP ) 1 σp(RP _E)⊔σp(RE_P ) (1)

Let’s illustrate the proposed hybrid data partitioning model through an example. Consider Table 1, which
represents an Employee relation R.Here,ai (1 ≤ i ≤ 6)denotes an attribute in the relation, indicating
the i-th attribute. Similarly, tj (1 ≤ j ≤ 8)represents the j-th tuple in the relation.The database owner
designates the password attribute values as non-outsourced data, while deeming the salary attribute values
and all department attribute values corresponding to the "Marketing" department as sensitive.Following
the application of the hybrid partitioning algorithm, metadata is generated, as illustrated in Table 2. This
metadata comprises four attributes, as described previously. It’s noteworthy that the data type of IDE ,
IDP , and IDP _E attributes is a unique identifier data type, generating unique key values consisting of
36 characters.

Table 1: Employee relation

Attributes No
a1 a2 a3 a4 a5 a6

Tuple No ID Name Department Salary Location Password
t1 1 Ali IT 1,000 Jerusalem ********
t2 2 Intisar Marketing 900 Jerusalem ********
t3 3 Mahmoud IT 1,200 Hebron ********
t4 4 Susan Marketing 1,500 Ramallah ********
t5 5 Sultan Marketing 1,450 Bethlehem ********
t6 6 Kazem HR 1,050 Nablus ********
t7 7 Alaa Marketing 1,460 Bethlehem ********
t8 8 Ahmad HR 980 Nablus ********

Table 2: Metadata table for relation R

Tuple No Tuple ID IDE IDP IDP_E
t1 1 848CC055...A 43AACEF7...P F0D9C43C...R
t2 2 DF8BC1A8...C 2CF79E45...O 485F36AB...J
t3 3 03E47A30...E 1AC4E44F...Y CAF5A05C...Q
t4 4 5E1A2955...A 990D4BF7...I 17EDA383...8
t5 5 EF036F92...F BA921C43...G F1859688...Y
t6 6 CB1CCD4D...K 4276A931...K A03E7373...D
t7 7 116DB16E...H 10E7C843...U 14C0E88B...X
t8 8 F2220062...P 892285C5...D 05B4FA48...Z

The Employee relation may be stored on the cloud as follows: Relation-1 contains all sensitive values in
the Salary attribute, securely encrypted and represented in Table 3. Meanwhile, Relation 2 houses non-
sensitive values, storing them in plaintext format across attributes marked as non-sensitive, as showcased
in Table 4.Additionally, Relation 3 encompasses tuples containing sensitive data, specifically those where
the Department attribute equals "Marketing". These sensitive values are encrypted and delineated in
Table 5. On the other hand, Relation 4 caters to sensitive values in the Name and Location attributes,
confined to instances where the Department is "Marketing". These values are stored in plaintext format,
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as outlined in Table 6.Therefore, sensitive data housed in Relation 1 and Relation 3 (refer to Table 3 and
Table 5) undergo encryption before being transmitted to an untrusted database. Conversely, Relation 2
and Relation 4 (refer to Table 4 and Table 6), comprising exclusively non-sensitive data, are conveyed in
plaintext format. The partitioning process operates at the tuple level, triggered to execute the partitioning
code each time a tuple insertion, modification, or deletion operation occurs, as delineated in Algorithm 1
and visually depicted in Figure 2.

Table 3: Relation 1

Attributes No IDE a4
Tuple No ID Salary
t1 848CC055...A E(1000)
t2 DF8BC1A8...C E(900)
t3 03E47A30...E E(1200)
t4 5E1A2955...A E(1500)
t5 EF036F92...F E(1450)
t6 CB1CCD4D...K E(1050)
t7 116DB16E...H E(1460)
t8 F2220062...P E(980)

Table 4: Relation 2

Attributes No IDP a2 a5
Tuple No ID Name Location

t1 43AACEF7...P Ali Jerusalem
t2 2CF79E45...O Intisar Jerusalem
t3 1AC4E44F...Y Mahmoud Hebron
t4 990D4BF7...I Susan Ramallah
t5 BA921C43...G Sultan Bethlehem
t6 4276A931...K Kazem Nablus
t7 10E7C843...U Alaa Bethlehem
t8 892285C5...D Ahmad Nablus

Table 5: Relation 3

Attributes No IDP_E a3
Tuple No ID Department

t2 CAF5A05C...Q E(Marketing)
t4 17EDA383...8 E(Marketing)
t5 A03E7373...D E(Marketing)
t7 05B4FA48...Z E(Marketing)

Table 6: Relation 4

Attributes No IDP_E A3
Tuple No ID Name
t1 F0D9C43C...R IT
t3 485F36AB...J IT
t6 F1859688...Y HR
t8 14C0E88B...X HR



Figure 2: Insert tuple trigger and the partitioning computation

The example showcases the hybrid approach, proposed as the solution in this research. Relations depicted
in Table 3 and Table 4 are vertically partitioned. The former holds all values encrypted, pertaining to
sensitive attributes, while the latter stores plaintext values associated with attributes containing solely
non-sensitive data.Conversely, the relations showcased in Table 5 and Table 6 undergo horizontal parti-
tioning. In the former, sensitive values are encrypted, encompassing tuples containing at least one sensitive
value. Meanwhile, the latter houses plaintext values corresponding to the remaining attributes devoid of
any sensitive data.

Continuing with Example 1, let’s consider a query σ: SELECT Name, Department from Employee where
location = N’Jerusalem’. Initially, in the trusted DB, the query σlocation = N‘Jerusalem(R) is executed
on relation R. Following Algorithm 2, the results of this query are then joined in the Metadata relation.
Subsequently, four queries are generated and dispatched to the Untrusted DB as follows:

• σIDe in (query results)(RE) executes on RE relation.

• σIDp in (query results)(Rp) executes on Rp relation.

• σIDp_E in (query results)(Rp_E) executes on Rp_E relation.

• σIDE_P in (query results)(RE_P ) executes on RE_P relation.

The query result is sent back to trusted DB, and SQL operation is per-formed as presented in Equation-1.
Initially, the queries are sent and executed. A UNION operation is conducted between σp(RP _E) and
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σp(RE_P ).Subsequently, the output is utilized in the join operation of σ(RP ) and σ(RE).This process
facilitates the retrieval of tuples1 t1 and t2. Figure 3 and Algorithm 2 elucidate the query request process.

Figure 3: Query request scenario

It is noteworthy that the partitioning computation takes place concurrently with the insertion of tuples
into the R relation. This approach not only saves time but also avoids the need for performing partitioning
computation for the entire dataset at once, as demonstrated in [2]. Figure 2 illustrates the steps of the
trigger during the insertion of a tuple into the R relation.

3.3 Query Binning Technique

A solution should be proposed in order to avoid the inference attacks in the partitioned computation. The
Query Binning (QB) technique in [2] involves two steps: first, the creation of the query bins. The second
step consists of rewriting the query based on the binning. The QB in the base case can be considered
as a one-to-one relationship between one sensitive tuple and one non-sensitive tuple. Accordingly, this
means that both tuples cannot be sensitive or non-sensitive.As defined in [2], “two numbers, say x and
y, are approximately square factors of number n, where n > 0, if x × y = n, and x and y are equal or
close to each other. That difference between x and y is less than the difference between any two factors,
say x′ and y′, of n such that x′ ×y′ = n”.In our research, the QB uses tuples stored in partitions divided
horizontally to create the binning.In relation to the previous example, to calculate the approximately
square factors, let us consider that n = number of non-sensitive tuples = 4 tuples. According to the
definition of approximately square factors, x = 2 and y = 2, this satisfies the definition of approximately
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square factors. Now we have two sensitive bins and two non-sensitive bins. After creating the bins, we
need to fill them with tuples using the algorithm described in [2] that links between sensitive tuples and
non-sensitive tuples. The results of this operation are shown in Figure-4.

The adversary has access to untrusted DB and also to the transactions log file, which means that when
answering a query, the adversary knows the retrieved encrypted tuples and the complete information
of the retrieved non-sensitive tuples. This information is known to the adversary throw the adversarial
view. Table-7 presents the retrieved tuples without applying the QB technique.To implement the QB
bins technique, adjustments are required in the query request process, as depicted in Algorithm 3, which
outlines the query request workflow with QB. To understand the impact of QB on the query request
results, the adversarial view is altered after the application of Algorithm 3. Table-8 showcases the query
request result for an adversary utilizing the QB technique. In this instance, we maintain the same con-
ditions as in the previous example after applying QB (refer to Figure-4). Employing non-deterministic
encryption for sensitive data ensures ciphertext indistinguishability, meaning an adversary cannot discern
between two ciphertexts [2]. Consequently, the same plaintext values produce two distinct ciphertext val-
ues. Additionally, non-linkability is established in two instances: firstly, within the untrusted database by
assigning unique IDs to each tuple stored in every divided relation, distinct from the original IDs in the
private database; secondly, in the query request process, achieved through query binning (QB). Figure-5
illustrates the security context. In the adversarial view, the adversary has complete access to the Un-
trusted DB and the transactions log file, consistent with Kerckhoffs’s security principle. This implies that
while responding to a query, the adversary can retrieve all SELECT SQL statements, re-execute these
statements, and obtain the encrypted tuples alongside comprehensive information about the retrieved
non-sensitive tuples. This information is accessible to the adversary via the adversarial view. Moreover,
the adversary lacks access to the Trusted DB.

Figure 4: QB of four sensitive and four non-sensitive tuples

Table 7: Queries results, without apply QB

Query value Returned tuples/Adversarial view
Relation 1 Relation 2 Relation 3 Relation 4

Jerusalem E(t1), E(t2) t2 E(t2) t1
Hebron E(t3 ) t3 Null t3
Bethlehem E(t5 ), E(t7) t5 , t7 E(t5 ), E(t7) null

Table 8: Query result using QB

Query value Returned tuples/Adversarial view
Relation 1 Relation 2 Relation 3 Relation 4

Jerusalem E(t1),E(t2), E(t5 ), E(t6) t1,t2,t5,t6 E(t2), E(t5 ) t1,t6
Hebron E(t2),E(t3), E(t5 ), E(t8) t2, t3,t5,t8 E(t2), E(t5 ) t3,t8
Bethlehem E(t2),E(t4), E(t5 ), E(t7), E(t3), E(t8) t2, t3, t4,t5, t7, t8 E(t2),E(t4), E(t5 ), E(t7) t3, t8



Figure 5: Map mind
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3.4 Encryption Technique

The proposed solution adopts the AES encryption algorithm to encrypt the selected bytes. Algorithm 4
outlines the process of applying encryption

4. RESULTS AND DISCUSSIONS

In this section, we outline our experimental setup, followed by an evaluation of our proposed algorithm’s
effectiveness in preventing non-linkability and maintaining indistinguishability properties to resist infer-
ence attacks. Additionally, we compare the performance of our proposed encryption method with similar
and previously published works.

4.1 Experimental Tools

The tools utilized for implementing and testing our proposed solution include Microsoft SQL Server 2014
installed on a Windows Server 2012 R2 platform, serving as the database storage and development en-
vironment. Additionally, we employed stored procedures to monitor the performance of query requests
effectively. Furthermore, Microsoft Visual Studio 2015 was employed to develop SQL assembly files respon-
sible for the encryption and decryption processes.The experimental setup specifications for evaluating our
solution encompass a server equipped with an Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz (2 CPUs),
32 GB RAM, and a 512 GB hard disk. This server runs Microsoft SQL Server 2014 and operates on the
Windows Server 2012 R2 Standard 64-bit operating system.

4.2 Proposed Approach Scenario

The practical implementation of the Hybrid partitioning technique involves two distinct database servers
designated for hosting trusted and untrusted databases, respectively. The first server, linked to both the
internet and a private network, serves as the repository for the trusted database. Conversely, the second
server, also connected to the internet, is dedicated to hosting the untrusted database. Devices belonging
to clients are connected exclusively to the private network.Within the trusted databases, two relations
are established to store metadata concerning sensitive attributes and the corresponding values within
original relations. For instance, Table-9 delineates attribute names along with their sensitivity status,
while Table-10 outlines sensitive values associated with the "Position" attribute. These relations play a
pivotal role in the "Apply Data Partitioning" procedure, affording the database owner the flexibility to
add, remove, or modify values as needed.

4.3 Experiment Results and Discussion

The proposed approach undergoes evaluation through a series of experiments involving varying numbers of
tuples retrieved from the database. Initially, the experiments start with 2000 tuples and increment by 2000



Table 9: Sensitive attributes

AttributeName IsSensitive
Employee_Name FALSE
Position TRUE
DOB FALSE
Sex FALSE
MaritalStatus FALSE
Salary TRUE
Location FALSE
Address1 FALSE
Address2 FALSE
Password TRUE

Table 10: Sensitive attributes

AttributeName SensitiveValue
Position Marketing Director
Position Marketing
Position Senior Marketing

until reaching 20,000 tuples. Within each experiment, the number of attributes containing sensitive values
gradually increases to 10. Moreover, these attributes exclusively contain 50% of the sensitive values.In [2],
it was demonstrated that QB offers security against inference attacks and fulfills the criteria of partitioned
data security. The study also establishes that all sensitive bins are associated with non-sensitive ones
based on the fulfillment of data security properties, as indicated by Equation 3 and Equation 4. However,
following the implementation of Hybrid partitioning, a new security concern arises: adversaries may gain
insights and establish links between encrypted values (sensitive attributes) and non-encrypted values
(non-sensitive attributes) belonging to the same tuple. This gap fails to satisfy Equation 2.

PrAdv[Ri ▷◁ Rj |X,AV ] = 0, (2)

Where Ri and Rj ∈ Divided relations on R and ▷◁ is a joining operation using the ID attribute, which
represents the primary key for the divided relation from R.

PrAdv[ei
a= nsj |X] = PrAdv[ei

a= nsj |X,AV ] (3)

Where ei = E(ti)[A] is the encrypted representation for attribute value A for any tuple ti of the relation
Rs, nsj is a value for attribute A for any tuple of relation Rns.

PrAdv[vi
r∼ vj |X] = PrAdv[vi

r∼ vj |X,AV ] (4)

For all vi and vi ∈ Domain(A).

Utilizing distinct keys for each tuple in the untrusted database effectively adheres to Equation 2. It’s
noteworthy that encrypted data remains inscrutable to adversaries as only the database owner pos-
sesses the keys and metadata. The metadata relation remains concealed from adversaries.All experiments
consistently demonstrate that Equation 1’s capability to retrieve the original relation from partitioned
relations on the untrusted database consistently yields 0 tuples. This effectively bridges the gap and up-
holds Equation 2, thereby ensuring the data security property of non-linkability.The initial experiment
under discussion entails a query aimed at retrieving 2000 tuples. Table 11 showcases the experimental
findings, comparing our approach with PANDA. The experiment evaluates query execution performance
to retrieve 2000 tuples, where 50% of the values in sensitive attributes are deemed sensitive.

In the PANDA experiments, the execution time consistently yields a single value (9.08 seconds) since
there is no variation in the sensitivity status of tuples when the number of sensitive attributes is al-
tered.Equation 5 outlines the methodology for evaluating the enhancement percentage of any proposed
algorithm concerning the existing algorithm.
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Table 11: Query execution experiment results for 2000 tuples, 50% of values are sensitive in each
attribute

Technique

# of Sensitive attributes Our approach

(Seconds)

PANDA

(Seconds)

Enhancement percentage

1 2.89 68%
2 4.00 56%
3 4.97 44%
4 5.54 39%
5 6.10 33%
6 7.09 22%
7 7.52 17%
8 8.33 8%
9 9.49 0%
10 9.88

9.08

0%

Enhancement percentage = (1− proposed algorithm time

presented algorithm time
)×100% (5)

The figure depicted in Figure 6 illustrates the query execution time performance across ten distinct
partitioned relations. These results are based on varying numbers of sensitive attributes present in the
original relation. Each scenario considers 2000 tuples, with 50% of them containing sensitive values, in
both our approach and PANDA. The units of measurement are in seconds.

Figure 6: Query execution experiment results for 2000 tuples, 50% values are sensitive in each
attribute

In general, our approach outperforms the PANDA technique in terms of query execution time across the
same range of attributes. Both methods exhibit prolonged query execution times when all attributes con-
tain sensitive values, notably when the attribute count reaches nine or ten. However, the most substantial
disparity in performance between the two techniques becomes evident when only one sensitive attribute is
present.For scenarios with one or two sensitive attributes, our approach demonstrates significantly faster



query execution times, averaging around 3 to 4 seconds compared to PANDA’s 9 seconds. Similarly, our
approach exhibits higher query execution times when the attribute count exceeds 8, reaching approxi-
mately 9 to 9.5 seconds.Moving on to the second experiment, which involves querying to retrieve 4000
tuples, Table 12 presents the comparative results between our approach and PANDA. These findings
pertain to the query execution performance for retrieving 4000 tuples, with 50% of the values in sensitive
attributes marked as sensitive.

Table 12: Query execution experiment results for 4000 tuples, 50% values are sensitive in each
attribute.

Technique

# of Sensitive attributes Our approach

(Seconds)

PANDA

(Seconds)

Enhancement percentage

1 3.69 78%
2 5.52 67%
3 7.29 56%
4 8.13 51%
5 9.87 40%
6 11.17 32%
7 12.53 24%
8 14.42 13%
9 16.13 2%
10 17.45

16.51

0%

In the PANDA experiments, the execution time remains consistent at a single value (16.51 seconds). This
is because there is no variation observed in the sensitivity status of tuples when the number of sensitive
attributes is altered.Figure 7 illustrates the query execution time performance for ten distinct partitioned
relations, based on varying numbers of sensitive attributes in the original relation. Each scenario involves
4000 tuples, with 50% of them containing sensitive values in both PANDA and our approach. The units
of measurement are in seconds.

Figure 7: Query execution experiment results for 4000 tuples, 50% values are sensitive in each
attribute.

In general, the PANDA technique exhibits longer query execution times compared to our approach across
the given range of attributes. Both PANDA and our approach demonstrate prolonged query execution
times, particularly when all attributes contain sensitive values, which occurs when there are 10 attributes
in total. However, the most notable performance gap between the two techniques occurs when there is only
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one sensitive attribute present.For scenarios where the number of sensitive attributes ranges from 1 to
7, our approach achieves query execution times ranging from approximately 3.5 seconds to 12.5 seconds.
In contrast, PANDA takes around 16 seconds to complete queries within this range. This signifies an
improvement in performance of more than 25% with our approach. Conversely, our approach experiences
higher query execution times when the number of attributes reaches 10.Finally, additional experiments
involve retrieving 4000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, and 20,000 tuples. The results
of all experiments are presented in Table 13. Additionally, Figure 8 illustrates the query execution time
performance for these eight experiments. Each experiment considers a different number of tuples and
ten distinct partitioned relations based on the original relation’s number of sensitive attributes. These
sensitive attributes comprise 50% of tuples with sensitive values in both PANDA and our approach.

Figure 8: Query execution experiments result from 6,000to 20,000 tuples, 50% values are
sen-sitive in each attribute.

In general, the PANDA technique consistently exhibits longer query execution times compared to our



approach across all experiments’ attributes ranges. Both PANDA and our approach tend to consume the
majority of their query execution times when the number of sensitive attributes is nine. However, the
most notable disparity in performance between the two techniques arises when there is only one sensitive
attribute present. Conversely, our approach experiences a slight increase in query execution time when
the number of attributes reaches 10.

Overall, as indicated in Table 14, there is a notable enhancement in the performance of query execution
time. It’s worth noting that most of the relations don’t entirely consist of sensitive values.Upon imple-
menting our approach technique, all experimental results consistently demonstrated a direct correlation
between the increase in query execution time and the number of tuples and attributes containing sen-
sitive values. The trend observed across all experiments regarding Hybrid performance reveals that an
increase in the number of tuples leads to a subsequent rise in query execution time. Similarly, an increase
in the number of attributes containing sensitive data also contributes to longer query execution times.
This increase is attributed to the heightened decryption workload, translating ciphertext into plaintext,
which escalates with the growing number of tuples or sensitive attributes. Consequently, this overhead on
query requests is incurred.Moreover, the aforementioned security validation confirms that our proposed
approach is reliable, effective, and capable of thwarting inference attacks. This underscores the utility
of hybrid partitioning data for securing sensitive data while simultaneously enhancing performance.In
general, when the number of sensitive attributes accounts for approximately half of the total attributes in
a relation, our proposed approach surpasses PANDA by over 35% in terms of enhancement percentages.
Furthermore, this enhancement percentage tends to increase with the growing number of tuples in the
original relation.

Table 13: Experiments Results of query execution times (in seconds) for PANDA and our ap-
proach

Number of Attributes that contains 50% sensitive values
# of tuples Technique 1 2 3 4 5 6 7 8 9 10

2000 Our approach 2.89 4.00 4.97 5.54 6.10 7.09 7.52 8.33 9.49 9.88
PANDA 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08

4000 Our approach 3.69 5.52 7.29 8.13 9.87 11.17 12.53 14.42 16.13 17.45
PANDA 16.51 16.51 16.51 16.51 16.51 16.51 16.51 16.51 16.51 16.51

6000 Our approach 4.87 7.01 9.77 11.43 13.59 15.88 18.02 20.66 23.20 25.18
PANDA 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67

8000 Our approach 5.51 8.53 11.84 14.63 17.93 20.40 23.24 26.46 29.83 33.28
PANDA 32.19 32.19 32.19 32.19 32.19 32.19 32.19 32.19 32.19 32.19

10000 Our approach 6.21 10.03 13.89 17.84 21.61 24.93 28.59 32.88 36.58 40.64
PANDA 40.72 40.72 40.72 40.72 40.72 40.72 40.72 40.72 40.72 40.72

12000 Our approach 7.57 11.82 16.49 20.70 25.09 29.80 33.83 38.62 43.90 48.02
PANDA 47.27 47.27 47.27 47.27 47.27 47.27 47.27 47.27 47.27 47.27

14000 Our approach 8.52 13.67 19.02 24.49 29.45 34.58 39.32 45.10 50.40 55.90
PANDA 55.51 55.51 55.51 55.51 55.51 55.51 55.51 55.51 55.51 55.51

16000 Our approach 8.94 15.16 21.88 27.15 34.76 39.14 44.68 51.09 57.23 63.70
PANDA 62.90 62.90 62.90 62.90 62.90 62.90 62.90 62.90 62.90 62.90

18000 Our approach 9.99 16.83 24.15 30.83 37.35 43.55 50.68 57.87 63.89 72.47
PANDA 70.29 70.29 70.29 70.29 70.29 70.29 70.29 70.29 70.29 70.29

20000 Our approach 10.88 19.11 26.22 33.71 41.38 48.63 54.86 64.60 71.86 79.55
PANDA 77.86 77.86 77.86 77.86 77.86 77.86 77.86 77.86 77.86 77.86

5. CONCLUSION

This paper introduces a hybrid approach for data partitioning aimed at securing sensitive data during the
outsourcing process. The proposed approach plays a crucial role in safeguarding sensitive data when it is
stored in an untrusted database. One of its key advantages lies in its ability to enhance query performance
while ensuring the security of sensitive data against inference attacks. Additionally, a novel partitioning
technique called Hybrid data partitioning, which combines vertical and horizontal approaches, is devel-
oped.To achieve robust security, the well-established and secure symmetric encryption algorithm AES
is employed to encrypt sensitive data. The effectiveness of the proposed approach is evaluated through
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Table 14: Average of performance enhancement of our approach

# of Sensitive Attributes
Enhancement

Percentage
1 82%
2 72%
3 62%
4 54%
5 44%
6 35%
7 27%
8 16%
9 6%
10 ∼0%

a series of experiments conducted on partitioning data in an untrusted database. Moreover, compar-
isons with the PANDA technique are presented to provide insights into the performance of the proposed
approach.The experimental results demonstrate the effectiveness of the proposed approach in fulfilling
the key security properties of non-linkability and indistinguishability. Furthermore, the performance of
query execution using the proposed approach outperforms that of the PANDA technique, highlighting its
superior performance in practical scenarios.
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