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Abstract: The growing need for accurately understanding calorie and nutrient intake highlights the limitations of 

traditional methods for assessing food portions. Advanced computer vision technologies, mainly 3D reconstruction 

methods, provide a more precise and automated approach to estimating food volume. This study focuses on developing 

a cutting-edge system that creates Three-Dimensional (3D) food images using the Structure From Motion-Multi View 

Stereo (SFM-MVS) method. Detailed volume estimation is performed after constructing the 3D model to ensure accurate 

measurements. Using a sophisticated mobile application to capture images from multiple angles, the system undertakes 

a comprehensive 3D reconstruction of food items. This complex process is enhanced by subsequent slicing and 

segmentation, allowing for detailed extraction and precise volume calculation of each food component. The system has 

undergone rigorous testing on various food types, consistently showing a volume estimation error rate below 10%, thus 

significantly improving the accuracy of food volume estimation. This research significantly advances automatic diet 

monitoring and calorie consumption management. By leveraging state-of-the-art 3D reconstruction techniques, the 

system effectively overcomes the limitations of traditional methods, providing a reliable, efficient, and user-friendly 

approach to dietary assessment. Consequently, it supports more effective nutritional planning and health management, 

meeting the growing demand for precise and automated dietary monitoring solutions. The impact of this research is 

extensive, offering considerable benefits for health professionals, nutritionists, and individuals seeking accurate 

nutritional information to support better health outcomes. 
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1. INTRODUCTION 

In recent years, there has been an increase in chronic 
diseases caused by diet, prompting people to raise 
awareness of healthy thinking patterns and strictly regulate 
food intake [1]. Many people use mobile apps to record 
their daily food intake in response to this trend. The result 
of this recording is an image of the food, which is then used 
to analyze the type, nutrient intake, or calories contained in 
the food to be consumed [2]. Knowing the amount of 
nutrients or calories in a food plays a vital role as it can help 
regulate the amount of food consumption and prevent 
potential problems due to over- or under-consumption. 

The rapid development of computer vision technology 
paves the way for researchers to analyze food images [3]. 
In a typical situation, a user takes one or more images of 
their food, perhaps even a video and the system reports the 

associated nutritional or caloric information. Several steps 
must be taken to obtain nutritional information, including 
food detection or segmentation, volume estimation, and 
calorie content assessment. A more profound knowledge of 
food volume is essential in the whole process to get a more 
accurate and precise analysis of nutritional value or 
calories.  

This research proposes a method that can solve the 
challenge of food calorie estimation: volume estimation. 
The proposed method utilizes multiple parameters to 
achieve good accuracy of different types of food with 
various shapes and textures in a reasonable time. It is more 
precise than traditional method that rely only on 2D images 
and can handle the complexity of irregular food shapes, 
which are often challenging in traditional volume 
estimation methods. Several recent attempts have been 
made to automatically estimate food volume using 
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smartphone applications. To achieve this, the proposed 
system must first reconstruct the shape of the food's three-
dimensional (3D) image by taking pictures from different 
angle. Volume estimation using 3D images can simplify 
the steps and make it more realistic to get more accurate 
results. There are 3 stages of volume estimation in this 
study on research:  

1) 3D Reconstruction: In the shape of the 3D food 

image is reconstructed using one or more images 

(views). The SFM-MVS method was used to obtain 

the 3D model. 

2) 3D Slicing: After the 3D model is obtained, slicing 

is performed using Blender until several parts are 

obtained. The slicing results are segmented and then 

continued by counting the number of pixels on the 

object using the Bware method, where each pixel 

generated will be used to determine the surface area 

based on the existing model. 

3) Volume Estimation: Calculate the volume of each 

sliced section using the existing equation. 

2. RELATED WORK 

Puri et al. created a system to improve the accuracy of 
food intake assessment by estimating food volume using a 
3D volume estimation algorithm, Multi-view Dense Stereo 
Reconstruction. The evaluation results show that the food 
recognition module can recognize food types with an 
accuracy of about 85 to 90% and produce an average 
volume estimation error ranging from 2.0% to 9.5%. There 
are still some areas for improvement in this paper, namely 
the inaccuracy in determining volume estimation on foods 
with less texture due to difficulties in dense stereo matching. 
This system also requires user input through voice to help 
the food recognition process; this dependence on user input 
can reduce the efficiency of automation and increase the 
burden on users [4].  

Xu et al. proposed a method to estimate food volume 
from images taken with mobile devices. The approach uses 
3D reconstruction and camera calibration to create 3D 
graphical models of each food type, which are then 
projected back onto the image plane for volume estimation. 
Essential steps include the creation of 3D models from 
various viewpoints during the training stage, the 
determination of translational and elevational parameters 
relative to the camera coordinates through calibration, and 
the projection of the 3D models back onto the image plane. 
Experimental results show that this method can calculate 
the volume of food with good accuracy and reliability. 
However, there are some drawbacks: this method relies 
heavily on the accuracy of camera calibration to determine 
geometric parameters, and calibration errors may reduce 
the accuracy of volume estimation. In addition, the 
segmentation quality of the resulting image still affects this 
method, although it is more resistant to noise than template-
based methods. The 3D reconstruction and volume 

estimation processes involved are also more complex and 
require more excellent computational resources compared 
to traditional methods [5]. 

Dehais et al. introduced a system specifically designed 
to measure food portions. This research utilizes a three-
stage system and applies SURF and RANSAC methods to 
calculate portion sizes using images captured from mobile 
devices. The first stage involves understanding the 
configuration of two pictures taken from different 
viewpoints; the next stage includes creating a solid 3D 
model of the two images, and the third stage is extracting 
the volume of food items on the 3D model. The 
performance evaluation of the system shows an average 
error below 10%, with an execution time of about 5.5 
seconds per dish antenna. This method has some 
drawbacks that need to be noted, namely that it relies 
heavily on the firm and varied texture of the scene to detect 
critical points and perform dense reconstruction. Foods that 
have little or no texture cannot be reconstructed accurately 
[6]. 

In this study, a technique was used to measure food 
intake using a wearable camera. This technique combines 
Simultaneous Localization and Mapping (SLAM), a 
modified convex husk algorithm, and a 3D mesh object 
reconstruction technique to measure food volume 
accurately. The research evaluation results show that the 
average volume estimation errors range from 11.7% to 
19.2% statically and 16.4% to 27.9% in real-time 
measurements. Several drawbacks need to be considered, 
namely limiting the accuracy of the system in measuring 
the volume of food with irregular or asymmetrical shapes, 
reliance on the convex hull reconstruction method, which 
tends to overestimate the volume of objects due to its 
sensitivity to noise and outliers and the Simultaneous 
Localization and Mapping (SLAM) method used produces 
a sparse map that often loses essential information due to 
the limited viewing angle during image capture. This can 
lead to errors in food volume estimation. [7].  

Recently, a researcher faced challenges in estimating 
food volume due to the diverse nature of food and its 
multiscale characteristics. This approach requires only a 
front view of the reference for food volume estimation. The 
strategy involves optimizing the bounding box and 
converting the height, width, and area of the food from 
pixel-level to absolute values with high precision. 
Experimental results demonstrate the effectiveness of the 
proposed method in predicting food volume, with the 
average absolute error of each food type being less than 
4.5%. This result shows that the model is robust in 
estimating the volume of irregularly shaped food. 
However, there are some drawbacks in that the method 
relies heavily on using a Rubik's cube as a reference in the 
image to measure food volume. This reliance limits the 
flexibility of the technique as the user must always have a 
Rubik's cube for accurate measurement, which is only 
practical in some situations. The experiments conducted in 
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this paper are limited to five types of food, so the external 
validity of the method needs to be further tested with 
various other types of food to ensure the generalization of 
the results [1]. 

Cai et al. 3D structure from 2D images is a highly 
complex process that requires expertise with often limited 
results. Therefore, this study performs 3D reconstruction 
on objects such as sculptures using SFM, PMVS, and PSR 
methods, where high-quality and textured 3D models can 
be recovered automatically. The results show that the 
proposed system outperforms state-of-the-art approaches 
regarding accuracy and completeness [8]. 

This research's essential contribution lies in applying 
the Structure from Motion - Multi-View Stereo (SFM-
MVS) method to 3D reconstruction. This method allows 
the system to build 3D food models from multiple 
viewpoints, reducing the volume estimation errors that 
often occur with 2D image-based methods and making it 
should be in handling irregularly shaped foods. SFM-MVS 
also excels in addressing the issue of low texture on food 
and does not heavily rely on the accuracy of camera 
calibration. This reduces the likelihood of errors caused by 
calibration inaccuracies and makes the method more 
flexible and easier to apply in various imaging conditions. 
Another advantage of the SFM-MVS method is its ability 
to overcome the limitations of convex-based approaches 
like those used in Simultaneous Localization and Mapping 
(SLAM) techniques. The SLAM method generates sparse 
maps and often misses critical information because of the 
limited viewpoints during capture. Conversely, the SFM-
MVS method can create denser and more detailed 3D 
models or maps by utilizing camera poses from multiple 
perspectives. 

3. METODHOLOGY 

The system proposed in this study consists of two main 
stages: 3D image reconstruction and volume estimation, as 
shown in Figure 1. Testing was done using Python 
programming language and slicing process using the 
Sketchup application. The system began with the process 
of taking a series of images of the food from different 
angles. For each disk analyzed, images were taken from 
various vertical viewing angles using an iPhone Xr 
smartphone. For each disk analyzed, photos were taken 
from various vertical viewing angles using an iPhone Xr 
smartphone. The smartphone is equipped with a 12-
megapixel rear camera featuring a wide-angle lens, 
1080p/30 or 60 fps (3024 x 4032 pixels) optical image 
stabilization, and advanced HDR capabilities. This step is 
essential to ensure that the data obtained is consistent and 
accurate. Consistency in the distance and angle at which the 
images were taken ensures that every detail of the food is 
captured, which is crucial for accurate 3D image 
reconstruction. 

This research meticulously ensures the data collected is 
sufficiently high quality to facilitate the 3D image 

reconstruction by maintaining a stable shooting distance 
and consistent angle. This methodological consistency is 
crucial as it minimizes unwanted variations in the dataset, 
which could otherwise compromise the accuracy and 
integrity of the resulting 3D model. Additionally, this 
rigorous approach significantly simplifies the feature-
matching process inherent in the reconstruction method. By 
capturing images from carefully controlled and consistent 
angles, these images algorithmic analysis and processing 
become more straightforward and reliable. Consequently, 
the reconstruction algorithm can more efficiently identify 
and match features across different viewpoints, leading to 
more accurate and coherent 3D models. This enhanced 
precision improves the overall quality of the 3D 
reconstruction and ensures that the models generated are 
robust and dependable for subsequent analysis and 
applications. 

 

Figure 1. System Design 

This research for 3D image reconstruction uses 
the Structure From Motion-Multi View Stereo (SFM-
MVS) method, with several stages. These stages include 
feature extraction and matching, outlier removal, camera 
pose estimation and triangulation, bundle adjustment, and 
Multi-View Stereo (MVS). After obtaining the 3D model, 
volume estimation is carried out by slicing the 3D model 
and then segmenting it, then calculating the volume in the 
part of each slicing that has been segmented. The last step 
is to sum the volumes of each acquired slice to get the 
overall volume of the food item. Figure 2 offers further 
details on each stage of the process. 
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Figure 2. Block Diagram of Volume Estimation  

A. 3D Reconstruction 

1) Feature Extraction and Feature Matching 

Extracting features from each image, these features are 

used to identify the same features in different images using 

the SIFT Algorithm [9]. SIFT was first introduced in 1999 

[10][8] and has become famous for its uniqueness and 

invariance to scale, rotation, and lighting changes. Unlike 

the Harris Algorithm [11], which relies on image 

parameters such as viewing angle, depth, and scale in the 

image, SIFT can detect features independently by 

converting image data into invariant coordinates. This 

makes SIFT very reliable under various image capture 

conditions.  
The SIFT algorithm consists of four main steps: 

building a scale space, extracting key points, assigning 
principal directions, and generating feature point 
descriptors [12]. First, it creates a scale space by filtering 
images at various scales to find extreme points in the scale 
space. This step is essential for detecting stable feature 
points at multiple scales and extracting critical points from 
the image. These key points location are in the image that 
show significant local variations and tend to remain stable 
despite changes in scale or rotation of the image. Third, 
assign a principal direction to each key point based on the 
local gradient around it. This principle direction allows the 
feature descriptor to be rotationally invariant. Fourth, it 
generates feature point descriptors, vectors that describe 
the local neighbourhood around each key point. These 
descriptors then match features extracted from pairs of 
interconnected images. The main idea is to  

Filter out the extreme points in the scale space, thus 
finding stable feature points. Finally, local features from 
the pictures are extracted around each stable feature point 
to form a local descriptor and use it in future 
matching  [13]. It can be seen in Figure 3 (a) the feature 

detection on the Yellow Cake and Figure 3 (b) the feature 
matching of the two Yellow Cake images.  

The feature-matching process is to matches the 
descriptors extracted from each pair of images. This is done 
to identify the same features in different images, 
establishing relationships between different viewpoints of 
the same object. Accurate feature matching is essential to 
ensure that the resulting 3D model accurately represents the 
original object. The SIFT algorithm has the advantage of 
finding and matching stable features, which is the basis for 
many applications in computer vision, including 3D 
reconstruction. It can be seen in Figure 3 (a) the feature 
detection on the Yellow Cake and Figure 3 (b) the feature 
matching of the two Yellow Cake images. 

 

(a) 

 

(b) 

Figure 3. (a) Feature Detection, (b) Feature Matching 
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2) Outlier Removal  

Appropriate refinement steps are essential to remove 
ambiguities in the point cloud recovered by Structure From 
Motion (SFM). At this stage, we use the Random Sample 
Consensus (RANSAC) method to identify outliers in the 
data set and remove them from feature matching. The 
RANSAC-based method serves as the basis [14]; as a 
hypothesis and verification framework, RANSAC 
randomly takes a small sample from the initial matching 
and repeatedly estimates the fundamental matrix.  

The RANSAC method is often used in image 
processing and computer vision to identify and remove 
outliers from data sets. Outlier removal with RANSAC is 
an iterative process that focuses on identifying and using 
data that fits the expected model. This is especially useful 
when the data contains a lot of noise or outliers that can 
affect the analysis or modelling performed. By applying 
RANSAC, we can minimize the influence of inappropriate 
data, thereby improving the accuracy and reliability of the 
resulting model. The RANSAC process involves several 
key steps: 

1) It randomly selects a small subset of the data and uses 
this subset to estimate an initial model. 

2) It tests the model against the entire data set to identify 
points that fit the model (inliers) and those that do not 
(outliers). This process is repeated several times with 
different subsets to find the best model with the most 
significant number of inliers. 

3) The best model is optimized by using all identified 
inliers. 

However, choosing the RANSAC parameters carefully, 
such as the fit threshold and the number of iterations, is 
essential. The threshold determines how closely the data 
must fit the model to be considered an inlier. In contrast, 
the number of iterations determines how often the subset 
selection and testing process is repeated. Proper parameter 
selection is essential to ensure the best results are obtained, 
and the resulting model is accurate and reliable. 

The Random Sample Consensus (RANSAC) method is 
highly effective in scenarios where the data is replete with 
outliers, and its application can markedly enhance the 
quality of the resulting model. To understand the outlier 
removal process using RANSAC, refer to the illustration in 
Figure 4, which delineates the steps involved in identifying 
and excising outliers from the matching feature dataset. By 
integrating the RANSAC method into the Structure From 
Motion (SFM) process, we can significantly refine the 
point cloud, rendering it cleaner and more precise. This 
improvement in data quality directly translates to a higher 
fidelity in the 3D reconstruction outcomes. The application 
of RANSAC ensures that erroneous data points are 
effectively filtered out, thereby optimizing the accuracy 
and reliability of the reconstructed 3D models. This 
method's robustness in handling noisy datasets makes it an 

indispensable tool in computer vision and 3D modelling, 
ultimately leading to superior model quality and enhanced 
interpretability of the reconstructed scenes. 

 

 

Figure 4. Outlier Identification 

3) Camera Pose Estimation and Triangulation 

Camera pose estimation and Triangulation are two 
important steps in the Structure From Motion (SFM) 
process to reconstruct 3D objects from 2D images.  By 
using feature matching information, Pose Estimation [15] 
is used to predict and track the location of objects in the 
image by looking at specific combinations of pose and 
object orientation. Triangulation process is finding the 
intersection of two lines in a space. The triangulation 
process [16] in SFM determines each feature match's point 
(coordinates) in 3D space. 

Camera position estimation can be done using various 
techniques, including feature matching methods between 
different images to determine the relative movement of the 
camera from one image to another. This allows us to 
understand how the camera motion and changes orientation 
when taking images from different angles, which is 
important for building an accurate 3D model of the 
observed object.   

Camera position triangulation is calculating the 3D 
positions of points on the observed object based on the 
information obtained from the images taken by the camera. 
The goal is to determine the actual position of those points 
in 3D space corresponding to the observed 2D image. 
Triangulation involves matching features between images 
to assess the viewing angles and relative distances between 
the observed points and then using this information to 
calculate the exact 3D coordinates of the points. With the 
combination of Pose Estimation and Triangulation, we can 
understand how SFM reconstructs 3D objects from 2D 
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images. Post Estimation helps track the movement or 
transformation of objects in an image or video, while 
Triangulation helps determine the accurate 3D position of 
the observed points. These two processes are work together 
to produce a precise 3D model of the natural world based 
on the visual information obtained from 2D images. 

Pose Estimation involves analyzing sequential images 
to predict changes in the position and orientation of objects, 
while Triangulation uses viewpoint and distance 
information to determine precise 3D positions. Combining 
these two techniques allows SFM to produce accurate and 
detailed 3D reconstructions of observed objects, enabling 
more in-depth analysis and visualization. Camera position 
estimation and Triangulation are critical components in 
SFM that will allow the reconstruction of 3D objects from 
2D images, providing a powerful tool for various 
applications in computer vision and image analysis. 

4) Bundle Adjustment 

Bundle Adjustment [17] is the last process in the 

Structure from Motion (SFM) workflow and plays a vital 

role in fine-tuning the 3D reconstruction. The main 

objective of this process is to fine-tune the camera pose 

and sparse point cloud by minimizing the re-projection 

errors that result from an improper matching process. This 

helps to improve the quality of the generated 3D structure 

and optimize the camera parameters within the SFM 

framework. 

Bundle Adjustment can be formulated as a non-linear 

least squares problem to minimize the re-projection error. 

Re-projection occurs when a 3D point projected back onto 

an image is not aligned with the actual position of the point 

on the original image, thus causing errors. By reducing 

these errors, the quality and accuracy of 3D reconstruction 

can be significantly improved. 

This process handles a set of corresponding 3D-2D 

points, expressed as  {𝑋𝑖, 𝑥𝑖𝑗}  where 𝑋𝑖  represents the 

coordinates of a point in 3D space, while 𝑥𝑖𝑗  is the 

projection of that point on the image taken by the jth 

camera [8]. Bundle Adjustment optimizes camera 

parameters that include camera position and orientation 

(camera pose) and intrinsic parameters such as focal length 

and lens distortion. In addition, the process also fine-tunes 

the position of the sparse point cloud, which is a 3D 

representation of matching feature points found in the 

input images, to ensure that they are optimally aligned 

with their re-projection on all pictures.  

As with the Levenberg-Marquardt method, this 

process is performed iteratively to solve most non-linear 

minor square problems. This iteration continues until the 

re-projection error reaches a local minimum or no longer 

changes significantly. By minimizing the re-projection 

error, Bundle Adjustment improves the overall accuracy 

of the 3D reconstruction, ensuring that the resulting 3D 

model is a highly accurate representation of the real world. 

In addition, this process also helps to maintain geometric 

consistency between the various images, ensuring that all 

photos are optimally aligned with the 3D model. By 

optimizing the camera parameters, Bundle Adjustment 

ensures that all cameras in the dataset contribute optimally 

to the 3D reconstruction, thus improving the quality and 

accuracy of the final model. Figure 5 shows a flowchart of 

the Bundle Adjustment process, demonstrating how each 

component interacts with each other to achieve optimal 3D 

reconstruction. 

 
 

Figure 5. Bundle Adjustment Process 

5) Multi-View Stereo (MVS) 

The Multi-View Stereo (MVS) technique effectively 

solves the limitation of sparse feature matching points in 

Structure from Motion (SFM) in 3D reconstruction. When 

SFM suffers from sparse point clouds and unsatisfactory 

rebuilding due to the lack of matching points, MVS can be 

an instrumental next step [18].  

One of the advantages of MVS is its ability to acquire 

dense point cloud data. MVS can produce a more complete 

and detailed 3D representation because it has richer 

information than the camera pose parameters obtained 

from SFM. In other words, MVS utilizes the camera pose 

information from various viewpoints to identify 

corresponding points in different images more effectively. 

The main purpose of using MVS is to increase the 

density of objects in 3D representations to produce higher-

quality reconstructions, especially on objects with 

complex shapes and good details. By combining stereo 

and multi-view methods, MVS can create more detailed 

and precise 3D models, overcoming the constraint of 

sparse matching points often occurring in SFM. 

In this research, MVS becomes an essential step in the 

3D reconstruction process, especially when dealing with 

objects with a high level of complexity. We can obtain 

more satisfactory and accurate reconstruction results by 

utilizing the advantages of both SFM and MVS. 3D 

reconstruction results and the process can be seen in 

Figure 6. 
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Figure 6. 3D Reconstruction 

B. Volume Estimation 

1) Slicing 3D Model of Food Object  

Slicing is the process of cutting or separating an object 
into smaller parts. This process facilitates further analysis 
and processing of the sliced parts. Slicing techniques can 
be used in various ways, physically using cutting tools or 
digitally using computer software to cut 3D models into 
thin layers. In this study, slicing is done using Sketchup 
software. 

After slicing, the next step is segmentation. 
Segmentation involves grouping pixels or other minor 
elements in an image or object based on specific 
characteristics, such as color, brightness, texture, or shape. 
The primary purpose of segmentation is to identify and 
separate different parts or components in an image or 
model. By performing segmentation, different parts of an 
object can be analyzed independently, allowing for more 
precise examination and processing. Segmentation is 
essential in image analysis, object recognition, and 
computer vision. 

When the segmentation process is complete, the next 
step is calculating the number of pixels in each segmented 
object using the Bware method. The Bware method, or 
"Binary Area," is often used in image processing to extract 
objects based on their specific pixel values. This technique 
helps to identify and quantify areas of interest in an image 
by counting pixels that meet specific criteria. 

The pixel count results obtained using the Bware 
method are then used to determine the object's surface area. 
Surface area is an essential parameter in 3D object analysis, 
providing detailed information about the object's size, 
shape, and overall dimensions. Understanding surface area 
is essential for various applications, including quality 
control, material usage estimation, and physical properties 
analysis. More details can be seen in Figure 7 to understand 
this process visually. This figure illustrates the steps 
involved in slicing and segmentation, providing an 
overview of the workflow and highlighting the importance 
of each step in the context of 3D object analysis. Figure 7 
shows an image of a whole loaf of bread that has been 
sliced and then segmented, and the number of pixels is 
determined. Through this visualization, we can more easily 
understand how each stage contributes to the desired result. 

   

(a) 

 

(b) 

Figure 7. (a) Slicing Process, (b) The number of pixels in an image 

2) Calculating the Volume of Each Slicing Section 

Calculate the volume of each part of the slicing result 
using equation (1). If there are five parts, calculate the 
volume of the five parts using equation (1). 

𝑉𝐵𝑛= A(px) × q   (1) 

𝑉𝐵 = Is the volume of each part, q= Height/thickness 
based on pixels, and A(px)= Surface area based on pixel 
function.  

To get A(px), use equation (2). 

 (2) 

The unit used is 𝑚𝑚2, so each pixel must also have its 
length determined in mm. To determine the length of 1 
pixel using equation (3). 

                                     (3) 

Thus, calculating the volume of each part involves: 

• Measuring the length of 1 pixel. 

• Calculating the surface area based on the number 
of pixels. 

• Using the height or thickness value based on the 
pixels. 

These steps can be applied iteratively for each part resulting 
from the slicing process, as mentioned in the condition 
where there are five parts. 

3) Calculating the Food Volume 
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Calculating the volume is the last step in the process, 

combining the results of the previous sections. The volume 

of each part has been obtained, and then the estimated 

volume of the entire food object is to add up all the 

volumes of each part that have been received. Here is the 

formula for calculating the volume of the whole object: 

V = 𝑉𝐵1 + 𝑉𝐵2 + 𝑉𝐵3 + 𝑉𝐵4 + …… + 𝑉𝐵𝑛 

V = ∑ 𝑉𝐵𝑖
𝑖
1   (4) 

Where V = is the volume of the whole food object, 𝑉𝐵 = 

the volume of each slicing section, and i= the number of 

pieces.  

V = 𝑉𝐵1  + 𝑉𝐵2  + 𝑉𝐵3  + 𝑉𝐵4  + …… + 𝑉𝐵𝑛 , for 𝑉𝐵1 

entered is the volume value of the first slicing section, then 

summed with 𝑉𝐵2  the volume value of the next slicing 

section, summed up to the volume of the desired slicing 

section or 𝑉𝐵𝑛 . From the description of the volume 

equation, the volume equation ∑ 𝑉𝐵𝑖
𝑖
1  is obtained, which is 

the Sigma of 𝑉𝐵𝑖  from i=1 to i. “Sigma” refers to the 

summation operation of all slicing section volumes (𝑉𝐵𝑖) 
from i=1 to i, the total number of pieces. 

4. RESULT AND DISCUSSION 

The performance evaluation of the 3D reconstruction 

method to assist the proposed food volume estimation was 

conducted through a series of experiments on ten different 

food dishes. Each primary stage of the process, namely 3D 

reconstruction, cropping, and volume estimation, is given 

a subsection to ensure a comprehensive evaluation. First, 

in the 3D reconstruction stage, images of ten food objects 

were taken using the integrated camera by using iPhone 

Xr, with a resolution of 3024 x 4032 pixels per image, and 

multiple images were taken from different angles for each 

object. This step is essential to obtain enough data to 

perform 3D reconstruction with sufficient detail. The time 

taken to perform 3D reconstruction of each object varies 

depending on the number of images inputted. The greater 

the number of images inserted for each object, the longer 

it takes to generate the 3D model. More detailed 

information can be found in Table 1 for a more in-depth 

understanding.  

After the process 3D reconstruction, cuts are made on 

each reconstructed food object to obtain small parts that 

can be measured for volume separately. This is necessary 

to enable more accurate and detailed volume estimation of 

each part of the object. After the cutting stage, the 

proposed method performs volume estimation for each 

food part. This volume estimation is based on the pre-

constructed 3D data and the information obtained from the 

cutting process. 

Evaluating process of each stage it complite this 

method's performance is carried out carefully and 

systematically, taking into account various aspects such as 

the number of images used, the time required, the accuracy 

of reconstruction, and the accuracy of volume 

estimation. This aims to ensure that the proposed method 

can produce accurate and reliable food volume estimation 

for various kinds of food. 

TABLE I.  3D RECONSTRUCTION TIME BASED ON THE 

NUMBER OF IMAGES 

Food Item 
Number 

of Images 
Time (s) 

Yellow Cake 55 3420 

Risol 38 1320 

Panada 56 3550 

Fried tofu 46 2820 

Fried tempeh 38 1428 

Fried chicken breast 50 3102 

Hard-boiled egg 45 2760 

Milkfish 48 3215 

Nugget 42 2415 

Burger 40 1530 

 Table 2 shows the volume estimation results for the 

ten food items in millimeters. These volumes were 

compared with direct measurements using measuring 

instruments. To determine the accuracy of the volume 

estimation, the estimation error equation in equation (5). 

Error rate =  
|𝑉𝑒−𝑉𝑔|

𝑉𝑔
             (5) 

where 𝑉𝑒  is the estimated volume, and 𝑉𝑔  is the ground 

truth volume or the actual volume obtained from direct 

measurement. Using this equation, we can determine the 

significant difference between the estimated and actual 

volumes to evaluate the reliability and accuracy of the 

method used [19].   

By comparing volume estimation results with direct 

measurements allows us to assess the extent to which the 

developed volume estimation method can produce values 

close to reality. Accurate volume estimation is crucial to 

ensure that further analysis, such as determining calorie or 

nutrient content, can be conducted confidently. By using 

high-precision measuring instruments as a benchmark 

provides a solid foundation for evaluating the performance 

of the proposed estimation method. Additionally, 

calculating estimation errors using the provided equations 

enables the identification of areas where the technique 

may require further refinement to improve its accuracy. 

This assessment of reliability and accuracy provides 

valuable insights into how well the volume estimation 

method performs under real-world conditions. The results 

of this analysis not only indicate the existing error level 

but also help identify factors that influence the estimation's 

accuracy. Thus, this research significantly contributes to 

developing better and more reliable methods for food 

volume estimation, which can be applied in various 
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contexts, including automated diet monitoring and 

effectively calorie consumption management. 

TABLE II.  COMPARISON OF THE ACCURACY OF MANUAL 

VOLUME ESTIMATION AND VOLUME ESTIMATION USING 

THE SYSTEM 

Food Item 

Volume (𝒎𝒎𝟑) 

Error 
System 

The 

Ground 

Truth 

Yellow Cake 98.2 92 6.7% 

Risol 163.6 155 5.5% 

Panada 130.7 124 5.4% 

Fried tofu 80.7 84 4.0% 

Fried tempeh 95.3 100 4.7% 

Fried chicken 

breast 
153.2 143 7.1% 

Hard-boiled egg 110.3 116 4.9% 

Milkfish 170.3 159 7.1% 

Nugget 82.5 87 4.1% 

Burger 172.5 162 6.5% 

In table 2 shows detailed data comparing the volumes 

measured using the system with the actual volumes in the 

field for different types of food and the associated 

estimation errors. These results demonstrate the system's 

performance system's performance in various contexts and 

provide a deep insight into its effectiveness. 

The volume estimated by the developed method is 

close to the ground truth volume for most foods tested. The 

new method generally shows good accuracy with an error 

range between 4.0% to 7.1%, which means that the method 

is reliable for most types of food. However, there is still 

some variation depending on the type of food being 

measured. One example of the estimated volume of a 

yellow cake is 98.2 mm³ compared to its ground truth 

volume of 92 mm³, resulting in an estimation error of 

6.7%; this estimation error shows that the method is quite 

accurate in measuring the volume of foods that have 

relatively simple shapes and textures. 

The method performed very well on some food items, 

such as fried tofu and nuggets, with estimation errors of 

4.0% and 4.1%, respectively. These results show that the 

method is very reliable for these items, possibly due to the 

more homogeneous shape and texture of the food, which 

facilitates the volume measurement process. 

There is some variation in the level of accuracy 

achieved by this method. As with the other food types, the 

risol, panada, hard-boiled egg, and burger show moderate 

estimation errors, ranging from 5.4% to 6.5%. These errors 

are still within acceptable limits for many practical 

applications, indicating that the method is quite flexible 

and adaptable to different shapes and sizes of food. 

However, some foods show higher estimation errors. 

Fried chicken breast, for example, has an estimation error 

of 7.1%, and milkfish has an estimation error of 7.1%. 

These higher errors may be due to the more irregular 

shapes and varying densities of these foods, which make 

the volume estimation process more complex. 

Overall, our proposed method showed promising 

performance relatively low estimation errors for most of 

the tested foods. The accuracy of the method demonstrated 

its potential as a more reliable and accurate tool compared 

to traditional dietary assessment methods. The proposed 

new 3D model-based method achieved an average volume 

estimation error of 7.1%. Given that the estimation error 

in traditional dietary assessment methods can exceed 50% 

[20][21], this developed method offers a significant 

improvement. 

 

Figure 8. Accuracy graph of the comparison of volume estimation using 
the system and manual volume estimation 

The graphical representation of this data reinforces 
these findings by clearly visualizing the comparison 
between the estimated volume, the ground truth volume, 
and the percentage error. The graph in Figure 8 shows that, 
although there are variations in the level of accuracy, the 
developed method generally gives better results. 

CONCLUSION 

This study successfully develops and evaluates a 3D 

reconstruction method using the SFM-MVS technique for 

food volume estimation. The proposed method has been 

extensively tested on ten different types of food, 

demonstrating its effectiveness in providing accurate 

volume estimation. 

The results show that the estimated volume is 

generally close to the ground truth volume, with 

estimation errors ranging from 4.0% to 7.1%. This means 

that the developed method is reliable for most types of 

food. 

The 3D model-based method developed in this study 

offers significant improvements over traditional dietary 

assessment techniques, providing a more accurate and 

reliable tool for food volume estimation. Future work 

could focus on refining the method to further reduce 

estimation errors for more complex food items and explore 
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its application in real-time diet monitoring and assessment 

systems. 
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