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Abstract 

The process of feature selection (FS) plays a crucial role in optimizing model performance in 

machine learning. It achieves this by reducing data dimensionality and eliminating irrelevant 

features. This study evaluates the effectiveness of the Differential Evolution Sailfish 

Optimizer (DESFO) in FS using Transfer functions and Machine learning classifiers. The 

DESFO algorithm is tested with both V-shaped and S-shaped transfer functions across 

various classifiers, such as k-nearest Neighbors (k-NN), Support Vector Machine (SVM), and 

Random Forest (RF). The study conducted experiments on 14 benchmark datasets from the 

UCI Machine Learning repository, illustrating that using DESFO with either type of transfer 

function notably improves classification accuracy and computational efficiency. The findings 

indicate that V-shaped transfer functions perform well in situations requiring precise feature 

selection, whereas S-shaped transfer functions show outstanding generalization capabilities. 

When inspecting the mean accuracy, DESFO-RF with V-shaped V4 and DESFO-SVM with 

S-shaped V4 configurations outperform all other transfer functions in 10 of the 14 

benchmarks. Regarding the mean Fitness functions, DESFO-RF with V-shaped V1 and 

DESFO-SVM with S-shaped V3 is superior in 8 of the 14 benchmarks. Moreover, considering 

the number of selected features, DESFO-RF equipped with an S-shaped V1 stands out in 8 of 

14 benchmark datasets. 
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1. Introduction: 

Machine learning (ML) algorithms use features, or measurable aspects of the observed 

process, for classification. The feature count in ML applications has grown from tens to hundreds 

over time. Addressing the challenge of irrelevant and redundant variables, Feature Selection (FS) is 

a technique that helps in understanding data, reducing computational needs, overcoming the curse 
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of dimensionality, and improving prediction accuracy. Supervised learning algorithms utilize data 

as a matrix [1]. Optimizing high-dimensional datasets often requires reducing these datasets. This 

can be achieved by finding a similar matrix with fewer features, making it easier to use. 

Dimensionality reduction simplifies the process by focusing on discoveries with fewer columns. 

Additionally, selecting appropriate features can lower measurement costs and enhance problem 

understanding [2]and [3]. 

Due to its numerous benefits, FS is widely used in real-world applications, particularly in 

classification and regression problems. It has effectively addressed challenges in various domains, 

such as microarray analysis, image classification, facial recognition, and text classification [4]. 

Feature selection in (ML) involves using various statistical methods such as filters, 

wrappers, and embedded methods. The filter method is a preprocessing step that selects features 

based on specific criteria without considering their effect on the algorithm's performance [5] and 

[6]. On the other hand, wrapper methods evaluate feature subsets based on the accuracy of a given 

predictor and use search strategies to yield nested subsets of variables [7]. Finally, embedded 

methods perform variable selection during the training process and are specific to certain learning 

machines, making it impossible to separate the learning and (FS) steps [8]. Methods for (FS), such 

as wrappers or embedded methods, involve utilizing nonparametric algorithms like decision trees, 

support vector machines, and neural networks [9].  

 Over the past few decades, numerous techniques have been introduced for classification. Some 

of the most commonly utilized methods include K-Nearest-Neighbors (KNN), artificial neural 

networks (ANNs), support vector machines (SVMs), and ensembles of classification trees like 

random forest (RF) [10]. 

  ML  algorithms are found to be more precise when compared to statistical techniques such as 

logistic regression or discriminant analysis, particularly when the input datasets have varying 

statistical distributions or when the feature space is complicated [11] and [12]. In recent times, with 

the increase in computational power, MLAs have gained more attention, leading to an improvement 

in the quality of pattern recognition systems. Hence, most classification studies report that RF, 

KNN, and SVM are the top classifiers, as they achieve high accuracies [13]. 

 Numerous advanced literature reviews have emphasized the difficulties faced in (FS) across 

diverse (ML) domains. As per Zhigljavsky [14], FS is likely a combinatorial optimization problem 

that falls under the NP-complete category because of the exponential increase in potential solutions 

with adding more dataset features. This makes it challenging to find feature subsets that are close to 

optimal. FS has been classified as an NP-hard problem that exhibits an exponential increase in 

computational time with complexity [15] and [16]. As a result, considerable attention has been 

given to using metaheuristic (MH) algorithms, which effectively optimize diverse scenarios [17]. 

 There are four main types of algorithms used in MH: SI algorithms, EA, PhA, and Human-

based algorithms [18] and [19]. SI algorithms are based on animal behaviors and swarms, such as 

particle swarm optimization (PSO) and ant colony optimization (ACO), and are commonly used in 

vehicle routing and FS applications. The Artificial Bee Colony (ABC) algorithm is another type of 

SI algorithm [20]. Evolutionary algorithms (EA) are designed to replicate the natural process of 

evolution, including mutation and selection. Examples of such algorithms include Genetic 

Algorithm (GA) and Differential Evolution (DE. Physical laws inspire some algorithms in the field 

of PhA. These algorithms include BBBC, GSA, and MVO. Algorithms based on human behaviors, 

like TBLA, SELOA, sine cosine algorithm, and volleyball Premier League Algorithm, are designed 
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to optimize various processes [21]. MH algorithms follow a similar pattern that involves two key 

phases: exploration and exploitation. These algorithms randomly generate operators to explore the 

problem space during the exploration phase. In the exploitation phase, they attempt to find the best 

solution by balancing these phases. This approach helps prevent getting stuck in local optima traps. 

 When dealing with the (FS) tasks, it becomes crucial to incorporate Transfer functions (TFs). 

According to various studies, TFs are highly recommended for several reasons. To begin with, TFs 

are not bound to any particular algorithm and don't influence an algorithm's search behavior. 

Furthermore, the algorithm's computational complexity remains unaffected since the TF is 

computed for each solution in every iteration. Finally, using a TF can enhance both exploration and 

exploitation [22], [23] and [24]. 

1.1. motivation  

 The (DE) algorithm was proposed by Storn et al.[25] As a stochastic search approach that 

operates on populations. It is a practical and straightforward approach for globally optimizing 

continuous search, and it has also been utilized in diverse fields. The Sailfish Optimizer (SFO) was 

created and introduced by Shadravan et al. [26]. It depends on the behavior of a flock of sailfish 

hunting a flock of sardines. It imitates their hunting strategy by attacking the flock of sardines and 

retrograding after capturing their prey. This algorithm operates on the principle of population and 

aims to optimize performance. It has become well-liked in optimization because of its efficiency 

and robustness. Consequently, this paper introduces a hybrid technique named DESFO algorithm 

with eight (TFs) and three (ML) classifiers, which combines both algorithms for (FS). 

 To apply the DESFO algorithm to solve an FS problem, a mapping function must change 

continuous values obtained by the DESFO algorithm into binary values of either 0 or 1. These 

binary values represent the decision variables [27]. (TFs) [24] determine how quickly the decision 

variables (DV) value range from 0 to 1 and vice versa.  

 In ML, k-nearest Neighbor (k-NN), Random Forest (RF), and Support Vector Machine (SVM) 

are commonly used (ML) classification algorithms. This study uses DESFO as a search 

optimization approach to identify the most relevant features. As fitness evaluators, it employs 

various classifiers, including k-NN, RF, and SVM. Using these evaluators, a new wrapper FS 

method is composed [27]. 

 Meta-heuristics have been quite successful in (FS). However, many existing methods have 

focused solely on the k-NN classifier while neglecting the SVM in several instances. The Random 

Forest (RF) technique has received minimal focus, even though SVM and RF generally produce 

superior results compared to k-NN in a variety of classification tasks [28] and [29]. 

1.2. Contribution  

 This paper proposes applying the DESFO algorithm, Transfer functions (TFs), and three (ML) 

classifiers. It introduces innovative contributions, which are summarized as follows: 

1. The DESFO algorithm is described by incorporating and replicating DE and SFO. 

2. The method utilizes eight (TFs), specifically the V-shaped and S-shaped functions, to convert 

position values into binary values. 

3. The DESFO algorithm is used for wrapper (FS) in supervised classification. 

4. The performance of DESFO with (TFs) and classifiers is assessed using measures such as the 

mean of fitness, accuracy, and the mean count of features chosen. 
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5. The proposed DESFO algorithm's performance is evaluated using K-NN, RF, and SVM 

machine learning classifiers with the mentioned metrics.  

 

1.3. Structure 

 Section 2 discusses the latest findings and critiques in art and literature. Section 3 outlines the 

prior research conducted. Section 4 describes the methods behind the newly proposed DESFO 

algorithm, including using the eight (TFs) and other related procedures. Section 5 showcases the 

outcomes of experiments, comparing the performance of the multi variants of the DESFO 

algorithm with (TFs) and (ML) classifiers. Finally, Section 6 summarizes the conclusions of the 

study. 

2. Related Work 

 

  Mafarja et al.[22] introduced the Binary Dragonfly Algorithm (BDA). The BDA's essence is 

a Transfer Function (TFs) that transforms continuous search spaces into discrete ones. This study 

introduced S-shaped and V-shaped TFs to the BDA and evaluated them on eighteen UCI datasets. 

The key innovation for balancing exploration and exploitation is the creation of dynamic S-shaped 

and V-shaped TFs to fine-tune the step vector's impact. 

  Faris et al. [30] introduced a new binary version of the Salp Swarm Algorithm (BSSA) and 

two new SSA-based FS strategies. The first converts SSA to binary using eight TFs, and the second 

presents a crossover operator to improve exploration. Their effectiveness was tested on 22 UCI 

datasets against five FS techniques. 

  Too et al. [31] introduced a binary version of the HHO algorithm, named BHHO, to address 

the (FS) challenges in classification problems. The new BHHO algorithm incorporates either an S-

shaped or V-shaped (TFs) for transforming continuous variables into binary form. Furthermore, 

they developed another variant, the quadratic binary Harris hawk optimization (QBHHO), to 

improve BHHO's efficacy. To evaluate the performance of these proposed algorithms, the study 

utilized twenty-two datasets from the UCI (ML) repository. 

  Mafarja et al. [32] introduced a model named HBALO; this methodology merges 

QuickReduct and CEBARKCC with the binary ant lion optimizer, refining initial random solutions 

with two filter techniques. After enhancement, the BALO algorithm selects the optimal solution. 

Tested on 18 UCI datasets, this binary approach was benchmarked against recent methods. 

  Chen et al. [33] introduced an enhanced version of the dragonfly algorithm. The approach 

improves the dragonfly algorithm by incorporating a BDA-DDO that adjusts step size adaptively 

and introduces a novel differential operator for quicker convergence. It includes a directed variant 

for targeted searches and an adaptive method to diversify populations, tested successfully on 14 

UCI datasets. 

  Chantar et al. [34] introduced an advanced binary grey wolf optimizer (GWO) incorporated 

into a wrapper FS strategy for addressing issues in classifying Arabic texts. This modified binary 

GWO is employed as a wrapper-based (FS) method. The effectiveness of this method was assessed 

across various learning models, such as decision trees, K-nearest neighbor, Naive Bayes, and SVM 

classifiers. Three public Arabic datasets were used for evaluation to determine the performance of 

different BGWO-based wrapper approaches. 

 

  Prudhvi et al. [35] introduced an approach combining Binary PSOGSA with a Radial Basis 

Neural Network, utilizing a unique fitness function for effective FS. This ensures minimal features 
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while balancing sensitivity and specificity. It proved efficient in selecting optimal features when 

applied to healthcare and finance datasets. 

   

  Hussien and colleagues [36] developed a binary version of the Whale Optimization 

Algorithm (BWOA) for efficient FS and classification. The algorithm converts whale positions into 

binary with an S-shape sigmoid function. The method simplifies dimensions and employs a K-NN 

classifier for feature validation. 

  Fatahi et al. [37] introduced an improved version of the Binary Quantum-based Avian 

Navigation Optimizer Algorithm; IBQANA updates the Binary Quantum-based Avian Navigation 

Optimizer for better Feature Subset Selection in medical data, fixing past inefficiencies. It 

introduces the Hybrid Binary Operator (HBO) for accurate binary transitions of continuous values 

and the Distance-based Binary Search Strategy (DBSS) for improved search efficiency and faster 

convergence by blending exploration and exploitation with a variable probability approach to 

dodge local optima. 

 

3. Preliminary work 

 

3.1 DESFO Algorithm 

  The No Free Lunch Theorem (NFL) [38] indicates that an algorithm capable of optimally 

solving all optimization issues does not exist. An algorithm's capability for FS varies with the 

dataset, indicating a need for better metaheuristic approaches to tackle FS challenges efficiently. 

The DESFO algorithm introduced by Azzam et al. [39], which combines Differential Evolution 

(DE) and Swarm Fish Optimization (SFO), aims to improve FS and classification accuracy, 

addressing an unmet need in current research. 

3.1.1 DE 

   Storn et al. [25] Presented the (DE) algorithm, which is recognized for its effectiveness 

among Evolutionary Algorithms and is notable for quick convergence and simplicity. Utilizing 

just three parameters: Population size (NP), Crossover rate (Cr), and Scaling Factor (F), DE 

effectively solves a wide array of optimization problems. It starts with an initial solution set, 

generating new solutions by modifying existing ones based on the weighted differences between 

pairs of other solutions, also known as mutant solutions. The (DE) algorithm has proven effective 

and has been embraced for addressing optimization problems in diverse domains [40]. 

  

 The primary operators and the overall architecture of DE algorithm are listed as follows: 

 

3.1.1.1 Mutation: 

  In every iteration (t), Differential Evolution (DE) uses a mutation operator to create a new 

donor vector or (mutant) vector for each solution. This operator chose three candidate solutions 

randomly, Emphasizing that a mutant or donor vector is created by multiplying the difference 

between two vectors by a scale factor as shown in Eq. (1), followed by adding this scaled 

difference to a third solution [25]. 

 𝑉𝑖,𝐺+1 = 𝑥𝑟1,𝐺 + 𝐹(𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺)                                           (1) 

 

   

Where three unique integers 𝑟1, 𝑟2, 𝑎𝑛𝑑 𝑟3 are chosen at random, each lying within the range of 1 

to NP, and NP is integer and positive, which is four or more. Moreover, these integers’ values are 

distinct from the current index, denoted as i. 
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 After that, the differential amplification (𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺)   is boosted by a constant factor F, which 

can vary between [0, 2]. 

 

3.1.1.2  Crossover: 

  After mutation, a new (trial) vector offspring is created from the solution using a crossover 

search operator. The exponential and binomial operators are commonly employed as direct 

crossover search methods. It's important to note that this applies to every decision variable denoted 

by (DV) j. Where (𝑟𝑎𝑛𝑑 ≤ 𝐶𝑟), as the Eq. (2): 

 

      𝑢𝑖,𝑗,𝐺 = {
𝑢𝑖,𝑗,𝐺     𝑖𝑓 𝑟𝑎𝑛𝑑 (𝑗) ≤ 𝐶𝑟  𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑                         

      𝑥𝑖,𝑗,𝐺    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
′   𝑗 = 1,2, …𝐷                                  

 (2) 

 

A value of 𝑟𝑎𝑛𝑑 (𝑗), denoted as the "jth evaluation" and chosen at random, is chosen randomly in 

the range of [0, 1]. This process guarantees to acquire a minimum of one trial vector for the design 

variable (DV).    𝐶𝑟 Indicates crossover rate is crucial for determining the variable count, is sourced 

from the (donor vector), and it is ensured that 𝑉𝑖,𝐺+1provides at least one parameter to 𝑢𝑖,𝑗,𝐺 

 

3.1.1.3 Selection: 

  An operator for selection is used to identify the best solution by comparing the objective 

function values of both the parent and the offspring. If the offspring exhibits a decreased objective 

function value, it is retained for future iterations. Conversely, if this is not the case, the parent 

vector remains in the current generation and is generated by adapting Eq. (3). 

𝑥𝑖,𝐺+1 = {
𝑢𝑖,𝐺     𝑖𝑓 (𝑓(𝑢𝑖,𝐺) ≤ (𝑥𝑖,𝐺))         

   𝑥𝑖,𝐺    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              
            (3)   

 

 

To decide whether to include it in the new generation (G + 1), 𝑥𝑖,𝐺+1which is the trial vector is 

compared to the target vector 𝑥𝑖,𝐺 by applying the greedy criterion. Should the (trial vector) 

𝑥𝑖,𝐺+1yield a cost function value lower than that of the target vector  𝑥𝑖,𝐺 , then the trial vector 

𝑥𝑖,𝐺+1 takes the place of the target vector   𝑥𝑖,𝐺    . Otherwise, the value of the original target vector 

is maintained. 

 

3.1.2 SFO 

  Shadravan et al [26]. Introduced an innovative algorithm known as the (SFO), in which the 

injured sardine that showcases the optimal fitness value is marked, pinpointing its location by 

(𝑃𝑠𝑟𝑑𝑖𝑛𝑗
𝑖  ) during 𝑖𝑡ℎ iteration. With every iteration, both the sardines's and sailfish's locations are 

adjusted. For the iteration, it revises the position of a sailfish by utilizing information from the 

sailfish named (elite fish) 𝑃𝑆𝑙𝑓𝑏𝑒𝑠𝑡𝑖 and the (injured sardine’s fish) according to a predetermined 

criterion. 

In each iteration, the locations of sailfish and sardines are updated, and the new position is 

represented by  𝑖 +. The (elite) and the (injured) are responsible for adjusting a sailfish's position to 

a new one, represented by 𝑃𝑆𝑙𝑓
𝑖+1  as shown in Eq. (4) 
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𝑃𝑆𝑙𝑓
𝑖+1 = 𝑃𝑆𝑙𝑓𝑏𝑒𝑠𝑡

𝑖 − 𝜎𝑖 (𝑟𝑛𝑑 ∗
𝑃𝑆𝑙𝑓𝑏𝑒𝑠𝑡
𝑖 + 𝑃𝑠𝑟𝑑𝑖𝑛𝑗

𝑖

2
− 𝑃𝑆𝑙𝑓

𝑖 )        (4) 

Where 𝑟𝑛𝑑 ∈ (0,1)  is determined randomly, and  𝜎𝑖 is a coefficient derived by Eq. (4): 

𝜎𝑖 = (3 ∗ 𝑟𝑎𝑛𝑑 ∗ 𝑃𝑟𝐷 − 𝑃𝑟𝐷)                                         (5) 
 

In every iteration, the density of prey   𝑃𝑟𝐷  , indicative of the available prey count, is calculated 

using Eq. (6). As the prey count diminishes with group hunting activities, the value accordingly 

decreases. 

 

𝑃𝑟𝐷 = 1 −
𝑁𝑆𝑙𝑓

𝑁𝑆𝑙𝑓 − 𝑁𝑠𝑟𝑑
                                                            (6) 

 

 

The numbers for sailfish and sardines are denoted by 𝑁𝑆𝑙𝑓  𝑎𝑛𝑑 𝑁𝑠𝑟𝑑, respectively, and can be 

determined using Eq. (7): 

 

    𝑁𝑆𝑙𝑓 = 𝑁𝑠𝑟𝑑 ∗ 𝑃𝑟𝑐𝑒𝑛𝑡                                                        (7) 

 

𝑃𝑟𝑐𝑒𝑛𝑡  Represents the population of sardine that comprises the original population of sailfish.The 

initial amount of sardines is assumed to be higher than the initial amount of sailfish 

In each iteration, the locations of the sardines are adjusted following Eq. (8): 

 

𝑃𝑆𝑟𝑑
𝑖+1 = 𝑟𝑎𝑛𝑑 ∗ (𝑃𝑆𝑙𝑓𝑏𝑒𝑠𝑡

𝑖 − 𝑃𝑆𝑟𝑑
𝑖 + 𝐴𝑇𝐾)                      (8) 

 

The old and new locations of the sardine are denoted by   𝑃𝑆𝑟𝑑
𝑖  and 𝑃𝑆𝑟𝑑

𝑖+1, respectively. Meanwhile, 

the representation of the strength of the sailfish's attack  𝐴𝑇𝐾 at one-by-one iteration is determined 

by Eq. (9): 

 

𝐴𝑇𝐾 = 𝐴 ∗ (1 − (2 ∗ 𝑖𝑡𝑟 ∗ 𝑘))                                (9) 

 

ATK plays a pivotal role in dictating how many sardines adjust their positions and how far they 

move. Reducing ATK can facilitate the convergence of search agents. The determination of the 

quantity of sardines adjusting their positions and variables number related to the sardines are 

calculated using Eq. (10) and (11): 

 

 

𝛾 = 𝐴𝑇𝐾 ∗ 𝑁𝑆𝑟𝑑                                                        (10) 
 

𝛿 = 𝐴𝑇𝐾 ∗ 𝑣                                                              (11) 
 

Where (𝑁𝑆𝑟𝑑) denotes the sardines and (𝑣) refers to the variables, whenever a sardine exceeds a 

sailfish fitness level, the sailfish will change its location to pursue the sardine. However, this results 

in the sardine being eliminated from its population. 
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3.2 Transfer (Mapping) Functions (TFs) 

 

   The DESFO algorithm generates a solution consisting of continuous values; it can't be 

directly applied to a (FS) problem without modifications. Thus, a mapping or (transfer) functions 

are required for converting continuous values to binary format, 0 or 1. (TFs)[24] Dictate how 

decision variables transition between 0 and 1. When choosing a TF for converting continuous 

values to binary, several key factors need to be considered: 

 

 Values derived from the (TF) should fall between 0 and 1, indicating the agent's likelihood of 

altering its present position. 

 Should the alarm value warning (alarm) value fall below the safety threshold ST, the 

likelihood of the TF changing its current position in the subsequent iteration should increase. 

This is under the assumption that an agent with a warning (alarm) value exceeding ST is 

likely veering too far from the best solution. 

 In case the warning (alarm) value is low, the TF should offer a low likelihood of altering the 

current position. 

 As the alarm value approaches ST, the TF-induced likelihood should increase, encouraging 

agents to correct their course and quickly return to their previous best position in future 

iterations. 

The concepts demonstrate the significant ability of TFs to convert the ongoing search process 

into binary form for each Y, as described by Eq. (12): 

 

(𝑦𝑖,𝑗
𝑡+1)

𝑏𝑖𝑛
=

{
 
 

 
 {
−(𝑦𝑖,𝑗

𝑡 )
𝑏𝑖𝑛
 𝑖𝑓 𝑟𝑛𝑑 < 𝑇𝐹(𝑦𝑖,𝑗

𝑡+1)

(𝑦𝑖,𝑗
𝑡 )

𝑏𝑖𝑛
 𝑖𝑓 𝑟𝑛𝑑 > 𝑇𝐹(𝑦𝑖,𝑗

𝑡+1)
 𝑖𝑓 𝑇𝐹 𝑖𝑠 𝑉 − 𝑠ℎ𝑎𝑝𝑒

{
0 𝑖𝑓  𝑟𝑛𝑑 < 𝑇𝐹(𝑦𝑖,𝑗

𝑡+1) 

1 𝑖𝑓 𝑟𝑛𝑑 > 𝑇𝐹(𝑦𝑖,𝑗
𝑡+1)

 𝑖𝑓 𝑇𝐹 𝑖𝑠 𝑆 − 𝑠ℎ𝑎𝑝𝑒

        (12) 

 

 

 

   Where, (𝑦𝑖,𝑗
𝑡+1)

𝑏𝑖𝑛
 represents the value in the j-th dimension for individuals in the current 

iteration𝑡 + 1, and 𝑟𝑛𝑑 is a randomly chosen number [0, 1], and 𝑇𝐹(𝑦𝑖,𝑗
𝑡+1) represents the 

probability value determined by employing a specific (TF) to each continuous value of the j-th 

component of agent i. According to Equation (6), we encounter two scenarios: (first) if the TF has 

an S-shape, in case of 𝑟𝑛𝑑 is less than the value of the given probability, the j-th dimension of the 

individual is updated to 0; if not, it is updated to 1; also in case of the TF is V-shaped, then if 𝑟𝑛𝑑 

is less than the provided value of probability, the value of the j-th dimension is inverted; if not, it 

remains the same. Therefore, applying S-shaped and V-shaped TFs, as detailed in Table 1, can 

efficiently convert continuous variables to binary values. 

 

   Table 1 presents two variants or families of (TFs), whereas Figure 1 displays these variants, 

categorizing them into S-shaped and V-shaped (TFs). 
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Figure 1: V-shaped and S-Shaped TF families 

 

Table 1:V-shaped and S-shaped TFs [24] 

V-shaped family V-shaped family 

V-TF 

version 
TF 

S-TF  

version 
TF 

V1 𝑇𝐹(𝑦) = |erf (
√𝜋

2
)𝑦| = |

√2

𝜋
∫ 𝑒−𝑒

−𝑡2𝑑𝑡
(
√2
𝜋
)𝑦

0

| S1 𝑇𝐹(𝑦) =
1

1 + 𝑒−2𝑦
 

V2 𝑇𝐹(𝑦) = |tanh (y)| S2 𝑇𝐹(𝑦) =
1

1 + 𝑒−𝑦
 

V3 𝑇𝐹(𝑦) = |y/√1 + 𝑦
2| S3 𝑇𝐹(𝑦) =

1

1 + 𝑒(−
𝑦
2
)
 

V4 𝑇𝐹(𝑦) = |
2

𝜋
𝑎𝑟𝑐 tan (

𝜋

2
𝑦)| S4 𝑇𝐹(𝑦) =

1

1 + 𝑒(−
𝑦
3
)
 

 

3.3 Machine Learning (ML) Classifiers:  

   In this study, we utilized three of the most effective ML classifiers for FS purposes: K-NN, 

SVM, and RF. Each of these methods is detailed in the subsequent subsections provided. 

 

3.3.1 K-Nearest Neighbor classifier (k-NN):  

 

   The k-nearest Neighbor (k-NN) classifier [41] is widely recognized for its power in pattern 

recognition and ML fields. Its ease of implementation makes it a preferred choice over more 

complex supervised learning techniques [42]. K-NN is widely used in fields like healthcare, 

forestry, image/video analysis, and finance for its ability to classify patterns. It works by creating 

classification rules from training data, and it assigns labels to unlabeled data in test sets based on 

the nearest training samples. Choosing the right "k" is crucial for its accuracy and is typically 

found through trial and error. In the empirical studies conducted, the k-NN classifier, utilizing a 

Euclidean distance metric, is tested with a k value of 5 [43] and [22], and the chosen feature 

subsets are evaluated for their effectiveness. 
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3.3.2 Random Forest classifier (RF):  

  The Random Forest (RF) [44] algorithm is an ML classifier widely used in various 

computing tasks such as label distribution learning, action recognition, detection, visual tracking, 

facial expression analysis, image classification, and time series forecasting. It consists of multiple 

decision trees and is known for its robustness against data labeling errors, ability to handle 

multiple classes, FS support, parallel computation, minimalism in tuning parameters, and efficient 

handling of numerical and categorical data. RF remains popular for its simplicity, interpretability, 

computational efficiency, and its method of improving classification by breaking down data into 

smaller subsets for optimized learning[45], [46], and [47]. 

RF algorithm performance, particularly for real-time applications, is affected by the number of 

trees and their maximum depth. A hyper-heuristic approach can optimize these parameters, 

enhancing speed and accuracy. In tests, using ten estimators with a maximum depth of 5 showed 

significant improvements in classification accuracy. Despite some drawbacks, the RF model's 

capability to accurately model complex relationships demonstrates its value. 

3.3.3 Support Vector Machine classifiers (SVM): 

  The Support Vector Machine (SVM) algorithm [48] stands as a prominent wrapper-based 

classifier utilized in data science, known for effectively segregating multiple classes. The 

technique relies on using hyper-planes to separate different groups. A significant benefit of SVM 

is its ability to provide reliable accuracy with low computational effort. It achieves this by 

applying a non-linear function, ϕ, to shift the original data into a higher dimensional space, where 

it seeks to linearly divide the data along a hyper-plane that maximizes separation margins between 

classes. However, challenges include choosing the proper base function and fine-tuning its 

parameters [49]. Finding the optimal decision plane essentially becomes an optimization problem, 

where a kernel function is tasked with determining the most suitable higher-dimensional space for 

achieving linear division of categories via a non-linear transformation. 

 

4. Methodology of the proposed DESFO 

  This study introduces a method that combines eight (TFs), including V-shaped and S-shaped 

families, with the DESFO, merging the DE and SFO algorithms. This approach for FS uses K-NN, 

RF, and SVM in several steps: initialization, position updates, binary mapping or conversion, and 

fitness assessment. The DESFO algorithm runs for 100 iterations, split between DE and SFO at 50 

iterations for both. Initially, DE takes the lead for the first 50 iterations, focusing on optimizing to 

find the best solution, which is then further refined by SFO to improve classification accuracy by 

selecting relevant features. Each phase is described in detail in subsequent sections. 

 

4.1 Initial Population Generation 

The initial stage of applying the DESFO algorithm involves creating a starting set of Y 

positions, symbolizing possible solutions within a space defined by D dimensions. The size of this 

population is established based on a particular formula as shown in Eq. (13): 

𝑌 = 𝑅𝑜𝑢𝑛𝑑(10 + 2 ∗ √𝐷).                                             (13) 

Y represents the overall count of positions, whereas D symbolizes the dimensionality of the 

issue. The matrix describing positions is defined as follows: 
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𝑘 =

[
 
 
 
𝑘1,1, 𝑘1,2, … 𝑘1,𝑝
𝑘2,1, 𝑘2,2, … 𝑘2,𝑝
⋮          ⋮       ⋱    ⋮ 
𝑘𝑌,1, 𝑘𝑌,2, … 𝑘𝑌,𝑝]

 
 
 

 

 

The solution 𝑗𝑡ℎ  is denoted by, where j stands for the component. Initially, the population, 

symbolized by 𝐾, is created within specific boundaries as follows in Eq. (14): 

𝐾𝑖
𝑢 = 𝑢(0,1) ∗ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵                            (14) 

 

4.2 Position Update in DESFO algorithm 

 

One must employ the formulas for DE and SFO algorithms for position updating, detailed in 

sections 3.1.1 and 3.1.2. Following the update, the position is subject to binary values, as 

outlined in section 4.3. 

 

4.3 Binary converting 

 

Converting continuous positional values to binary is important to using the FS method 

effectively. This is because the DESFO method calculates positional values and works 

differently than FS's binary structure. FS uses a binary vector to mark selected features with 1s 

and unselected ones with 0s. The number of elements in this vector equals the number of 

features in the initial dataset. 

 (TFs) in Table 1 have been employed with the DESFO. The value of the position obtained is 

symbolized by  𝑃  , with a position in DESFO deemed to have a legitimate TF output if it is 

below 0.64 and lies within the interval [0, 1]. The prescribed method for updating the position 

in DESFO follows the Eq. (15): 

 

𝑃𝑖
𝑏𝑖𝑛 = {

1,  𝐼𝑓 𝑟𝑛𝑑 < 𝑣(𝑃𝑖)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                  (15) 

 

4.4 Fitness Evaluation 

 

Balancing feature set size and accuracy is crucial. A smaller feature set requires more precise 

classifiers like k-NN, RF, and SVM but risks reducing accuracy due to fewer features[49]. This 

implies a trade-off between the feature set size and the selection of optimal features, indicating 

a balance might be necessary between accuracy and feature set magnitude. 

 

When evaluating an algorithm's performance, it's important to consider the balance between 

accuracy and feature size, as expressed in Eq. (16): 

 

𝐹𝐼𝑇 = 𝛼1 ∗ (1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) + 𝛼2 + |
|𝐷∗|

|𝐷|
|                (16) 

The two coefficients, α1 and α2 representing the weight coefficients, are present in the specified 

equation. α1 varies in the range from 0 to 1. α2 is obtained by subtracting α1 from 1. The 

coefficients were established after comprehensive experimentation, and they expressed the 
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proportion of chosen features relative to the total feature count in the initial dataset. The symbol 

|D*| represents the number of the chosen features, whereas |D| signifies the entire features present 

within the initial dataset. 

 

4.5 The flowchart of DESFO :  

 

 Figure 2 shows, the steps and procedures of the DESFO algorithm.  

  

  

 

 

Figure 2: DESFO flowchart 
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4.6 Analysis of DESFO complexity: 

To analyze the DESFO algorithm's complexity, delving into the computational processes involved is needed.  

Breakdown of Complexity to the following: 

1. Initialization: 

- Establishes NP individuals, each showcasing D. 

- Complexity: O x (NP×D). 

 

2. Steps in the DE Algorithm: 

a. The Mutation phase: 

 

- In the mutation phase, each individual selects three distinct individuals and calculates the 

difference between their vectors. 

- Complexity per individual: Total complexity for this mutation phase: O × (NP×D). 

b. The Crossover Phase: 

 

- Each undergoes a crossover based on a CR probability. 

- Complexity: O × (NP×D). 

c. The Selection phase: 

 

- Calculating their fitness level is necessary to decide between the target and trial vector. 

- Complexity: O × (NP). 

 

Updates on the SFO Algorithm: 

1. Position Adjustment: 

- Every Sailfish adjusts its position considering the locations of the leading and the weaker 

sardines. 

- Generation complexity: O × (NP) 

 

2. Binary transferring and fitness assessment: 

a. Binary transferring: 

- The D characteristics of all the NP elements are converted from a numerical value into a 

binary representation using specific transformers (TFs). 

Overall complexity: O × (NP×D)  

b. Fitness assessment: 

- The method to evaluate performance varies with the classification algorithm applied, 

whether it be k-NN, RF, or SVM. This might be influenced by the amount of attributes D, 

The complexity: O × (NP × f (D)), where f (D) represents the computational complexity for 

the assessment of a single entity. 

The overall complexity for all generations, 𝑀𝑎𝑥𝐺𝑒𝑛𝑠 is  

 (𝑀𝑎𝑥𝐺𝑒𝑛𝑠 × (3 × 𝑁𝑃 × 𝐷 + 𝑁𝑃×𝑓 (𝐷))) 
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5. Results and analysis 

 

The experiments and results analysis using the DESFO algorithm are demonstrated in this 

section. 

 

5.1 datasets Overview 

To thoroughly assess and confirm the effectiveness of the methods introduced in this paper, 

we utilized 14 diverse, multi-scale benchmark datasets from the UCI data repository [50] spanning 

various domains (such as biology, politics, electromagnetic, gaming, physics, chemistry, and 

artificial intelligence) in all our experiments. These datasets play a crucial role in effectively 

substantiating the techniques proposed in this study, considering the varying numbers of instances 

and features they contain. The specifics of these datasets are presented in Table 2. 

Table 2: Overview of the data collections utilized in our research. 

Benchmark #. Records #. Features Domain 

BreastCancer 699 9 Biology 

BreastEW 569 30 Biology 

Exactly2 1000 13 Biology 

IonosphereEW 351 34 Electromagnetic 

KrVsKpEW 3196 36 Game 

Lymphography 148 18 Biology 

M-of-n 1000 13 Biology 

PenglungEW 73 325 Biology 

SonarEW 208 60 Biology 

Tic-tac-toe 958 9 Games 

Vote 300 16 Politics 

WaveformEW 5000 40 Physics 

WineEW 178 13 Chemistry 

Zoo 101 16 Artificial 

 

 

5.2 Evaluation metrics  

 

  The evaluation of The DESFO algorithm's effectiveness is carried out through eight (TFs) 

(both V-shaped and S-shaped) and involves the use of three highly regarded ML classifiers: K-NN, 

RF, and SVM. These evaluations are performed individually across 30 trials for each benchmark. 

Specific metrics are used to assess the (FS) approach. 

 

 Mean accuracy:  

  Conducting the procedure independently across 30 iterations can establish the precise rate of 

data categorization (    𝑀𝑒 ). 

𝑀𝑒𝑎𝑛𝑎𝑐𝑐 =
1

30

1

𝑚
 ∑∑𝑚𝑎𝑡𝑐ℎ(𝑃𝐿𝑟 , 𝐴𝐿𝑟

𝑚

𝑟=1

30

𝑘=1

)                              (17) 

Where 𝑀𝑒𝑎𝑛𝑎𝑐𝑐  symbolizes the mean accuracy, whereas m represents the total number of samples 

within the testing subset. The symbol PLr denotes the predicted class label for a given sample, 
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while ALr represents the reference class label. A specific function, named match (PLr, ALr), is 

used to compare these two labels. If PLr matches ALr, the match (PLr, ALr) function returns a 

value of 1; if they do not match, the value is 0. 

 Mean fitness:  

  The (𝑀𝑒𝑎𝑛𝐹𝑖𝑡) is utilized to assess the average outcomes of fitness obtained by 

implementing the suggested method across 30 separate trials. The optimal outcome is represented 

by the smallest value, which is determined by evaluating the fitness as follows: 

          𝑀𝑒𝑎𝑛𝐹𝑖𝑡 =
1

30
∑ 𝑓∗

𝑘 ,                                                             (18)30
𝑖=1  

The symbol (𝑀𝑒𝑎𝑛𝐹𝑖𝑡) represents the average fitness value, whereas 𝑓∗
𝑖   signifies the optimal 

fitness result achieved in each iteration in the 30 i-th iterations. 

 

 Mean selected number of features:  

  The metric symbolized by (𝑀𝑒𝑎𝑛𝐹𝑒𝑎𝑡) stands for the mean number of selected features, 

calculated by independently executing the method 30 times and is described as follows: 

 

𝑀𝑒𝑎𝑛𝐹𝑒𝑎𝑡 =
1

30
∑

|𝑑∗
𝑖 |

|𝐷|
,

30

𝑖=1

                                                          (19) 

In the given context, where  |𝑑∗
𝑘|indicates the chosen attributes and the count of attributes in the 

optimal solution for each of the i-th iterations, with "|D|" representing the total of feature number 

utilized from the benchmarks. 

Python is utilized to execute operations within a computer system setup that includes a CPU, 

specifically an Intel i7 processor, 16 GB of RAM, and an NVIDIA GTX 1050i GPU. 

 

5.3 DESFO behavior assessment utilizing eight TF: 

 

  DESFO was initially developed for continuous optimization and required adaptation for 

discrete space searches. Its effectiveness was evaluated using eight different transformation 

functions on 14 benchmark datasets to address the FS problem. 

  The various TFs underwent evaluation using DESFO alongside k-NN, RF, and SVM 

classifiers, focusing on the mean accuracy (𝜇𝐴𝑐𝑐), mean fitness value (𝜇𝐹𝑖𝑡), and average number of 

selected features 𝜇
𝐹𝑒𝑎𝑡

. The outcomes of these evaluations are detailed in Tables 2 through 10. 

  The methods were developed using eight transcription factors (TFs), which are categorized 

into two groups: four V-shaped TFs labeled as Vv1, Vv2, Vv3, and Vv4, and four S-shaped TFs 

named Sv1, Sv2, Sv3, and Sv4. Thus, in the subsequent discussions, the proposed techniques are 

referred to as “DESFO-TF,” with TF representing any of the eight TFs mentioned. The 

abbreviations W,T, and L found at the bottom of the tables denote the number of times each method 

wins, ties, or loses in comparison to the other competitors. Through the examination and 

comparison of the results mentioned, the most suitable DESFO variant for each classifier will be 

determined based on the TF that shows the best performance for that particular classifier. 
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5.3.1 Evaluation of DESFO-TFs using the k-NN classifier: 

Table 3 presents the 𝜇𝐴𝑐𝑐of DESFO across eight TFs, utilizing the k-NN classifier. DESFO-

Vv4 significantly outperformed in 8 of the 14 datasets, and DESFO-Vv3, DESFO-Sv1, DESFO-Sv2, 

and DESFO-Vv1 following closely behind, excelling in 7, 7, 7, and 6 of 14 datasets, respectively. As 

a result, when considering the mean accuracy, DESFO-Vv4 is ranked highest among the evaluated 

methods. 

Table 4 presents the mean Fitness Value 𝜇𝐹𝑖𝑡 for DESFO across eight TFs, utilizing the k-NN 

classifier. It was noted that DESFO-Sv4 demonstrated notable performance in 7 out of the 14 

datasets, and DESFO-Vv3, DESFO-Sv3, and DESFO-Vv1 followed closely, showing significant 

results in 6, 6, and 5 out of 14 datasets, respectively. Hence, when considering the mean fitness 

values, DESFO-Sv4 is the top-performing method among all the TFs methods. 

Table 5 presents the mean features selected 𝜇𝐹𝑒𝑎𝑡  for DESFO across eight TFs, using the k-

NN classifier for analysis. Both DESFO-Sv1 and DESFO-Sv4 demonstrated remarkable 

performance in 7 out of the 14 datasets reviewed. Following them closely were DESFO-Sv3 and 

DESFO-Vv4, each showing significant outcomes in 6 and 5 out of the 14 datasets, respectively. 

Therefore, based on the average features selected, DESFO-Sv1 and DESFO-Sv4 emerge as the 

leading methods among all the TFs considered. 

 

Table 3: The mean Accuracy 𝜇𝐴𝑐𝑐 results Using the eight TFs and K-NN with DESFO  

Benchmarks Eval-Metric V-v1 V-v2 V-v3 V-v4 S-v1 S-v2 S-v3 S-v4 

BreastCancer 𝜇𝐴𝑐𝑐 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 
BreastEW 𝜇𝐴𝑐𝑐 0.9649 0.9649 0.9649 0.9649 0.9649 0.9649 0.9658 0.9649 
Exactly2 𝜇𝐴𝑐𝑐 0.7970 0.7935 0.7880 0.7935 0.7880 0.7945 0.7870 0.7865 
IonosphereEW 𝜇𝐴𝑐𝑐 0.9310 0.9310 0.9324 0.9324 0.9563 0.9493 0.9493 0.9535 
KrVsKpEW 𝜇𝐴𝑐𝑐 0.9803 0.9788 0.9803 0.9822 0.9789 0.9819 0.9803 0.9814 
Lymphography 𝜇𝐴𝑐𝑐 0.8333 0.8367 0.8433 0.8400 0.8333 0.8367 0.8400 0.8333 
M-of-n 𝜇𝐴𝑐𝑐 0.9995 1.0000 1.0000 1.0000 0.9995 1.0000 0.9995 1.0000 
PenglungEW 𝜇𝐴𝑐𝑐 0.6533 0.6533 0.6600 0.6533 0.7333 0.7067 0.6867 0.7200 
SonarEW 𝜇𝐴𝑐𝑐 0.9786 0.9929 0.9857 0.9857 0.9857 0.9857 0.9952 0.9857 
Tic-tac-toe 𝜇𝐴𝑐𝑐 0.8542 0.8542 0.8542 0.8542 0.8542 0.8542 0.8542 0.8542 
Vote 𝜇𝐴𝑐𝑐 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
WaveformEW 𝜇𝐴𝑐𝑐 0.8445 0.8448 0.8454 0.8480 0.8436 0.8449 0.8453 0.8443 
WineEW 𝜇𝐴𝑐𝑐 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Zoo 𝜇𝐴𝑐𝑐 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

score 

W 

T 

L 

1 

5 

8 

0 

6 

8 

1 

6 

7 

1 

7 

6 

2 

5 

7 

0 

6 

8 

2 

5 

7 

0 

6 

8 
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Table 4:The mean Fitness value𝜇𝐹𝑖𝑡  results Using the eight TFs and K-NN with DESFO  

Benchmarks Eval-Metric V-v1 V-v2 V-v3 V-v4 S-v1 S-v2 S-v3 S-v4 

BreastCancer 𝜇𝐹𝑖𝑡 0.0201 0.0201 0.0201 0.0201 0.0201 0.0204 0.0201 0.0201 
BreastEW 𝜇𝐹𝑖𝑡 0.0366 0.0369 0.0366 0.0368 0.0355 0.0359 0.0356 0.0356 
Exactly2 𝜇𝐹𝑖𝑡 0.2062 0.2097 0.2154 0.2093 0.215 0.2084 0.2155 0.2161 
IonosphereEW 𝜇𝐹𝑖𝑡 0.0710 0.0714 0.0698 0.0698 0.0443 0.0516 0.0519 0.0472 
KrVsKpEW 𝜇𝐹𝑖𝑡 0.0254 0.027 0.0256 0.0232 0.0267 0.0239 0.0256 0.025 
Lymphography 𝜇𝐹𝑖𝑡 0.1691 0.1659 0.1593 0.1631 0.1694 0.1662 0.1625 0.1691 
M-of-n 𝜇𝐹𝑖𝑡 0.0053 0.0048 0.0049 0.0047 0.0054 0.005 0.0055 0.005 
PenglungEW 𝜇𝐹𝑖𝑡 0.3468 0.3466 0.34 0.3465 0.2646 0.292 0.3127 0.2777 
SonarEW 𝜇𝐹𝑖𝑡 0.0248 0.0109 0.0177 0.0181 0.0174 0.0173 0.0082 0.0172 
Tic-tac-toe 𝜇𝐹𝑖𝑡 0.1544 0.1544 0.1544 0.1544 0.1544 0.1544 0.1544 0.1544 
Vote 𝜇𝐹𝑖𝑡 0.0022 0.0023 0.0023 0.0026 0.0019 0.0019 0.0019 0.0019 
WaveformEW 𝜇𝐹𝑖𝑡 0.1596 0.1592 0.1591 0.1563 0.1607 0.1594 0.159 0.16 
WineEW 𝜇𝐹𝑖𝑡 0.0032 0.0032 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 
Zoo 𝜇𝐹𝑖𝑡 0.0033 0.0033 0.0034 0.0033 0.0032 0.0033 0.0032 0.0032 

score 

W 

T 

L 

1      

2    

11 

0       

2      

12 

1       

3      

10 

3         

3         

8 

3         

4        

7 

0        

3      

11 

1      

5       

8 

0          

5         

9 

 

Table 5: The mean selected Features 𝜇𝐹𝑒𝑎𝑡 results Using the eight TFs and K-NN with DESFO  

Benchmarks Eval-Metric V-v1 V-v2 V-v3 V-v4 S-v1 S-v2 S-v3 S-v4 

BreastCancer 𝜇𝐹𝑒𝑎𝑡 6.000 6.000 6.000 6.000 6.000 6.300 6.000 6.000 

BreastEW 𝜇𝐹𝑒𝑎𝑡 5.700 6.500 5.500 6.300 2.400 3.600 5.100 2.500 
Exactly2 𝜇𝐹𝑒𝑎𝑡 6.800 6.900 7.200 6.300 6.600 6.500 6.000 6.100 
IonosphereEW 𝜇𝐹𝑒𝑎𝑡 9.000 10.40 9.700 9.700 3.500 4.600 5.900 4.000 
KrVsKpEW 𝜇𝐹𝑒𝑎𝑡 21.40 21.50 22.00 20.10 20.80 21.40 21.90 23.80 
Lymphography 𝜇𝐹𝑒𝑎𝑡 7.300 7.500 7.600 8.500 7.900 8.100 7.400 7.300 
M-of-n 𝜇𝐹𝑒𝑎𝑡 6.200 6.300 6.400 6.100 6.400 6.500 6.500 6.500 
PenglungEW 𝜇𝐹𝑒𝑎𝑡 116.2 110.0 112.0 108.2 20.00 52.30 80.60 17.10 
SonarEW 𝜇𝐹𝑒𝑎𝑡 21.80 23.10 21.10 23.60 19.40 18.70 20.90 18.50 
Tic-tac-toe 𝜇𝐹𝑒𝑎𝑡 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 
Vote 𝜇𝐹𝑒𝑎𝑡 3.500 3.700 3.600 4.100 3.000 3.100 3.000 3.100 
WaveformEW 𝜇𝐹𝑒𝑎𝑡 22.80 22.10 24.00 23.20 23.40 23.50 23.20 23.30 
WineEW 𝜇𝐹𝑒𝑎𝑡 4.100 4.100 4.000 4.000 4.000 4.000 4.000 4.000 

Zoo 𝜇𝐹𝑒𝑎𝑡 5.200 5.300 5.400 5.200 5.100 5.200 5.100 5.100 

score 

W 

T 

L 

0         

3        

11 

1       

2     

11 

0         

3       

11 

2          

3         

9 

2         

5        

7 

0          

2      

12 

1         

5       

8 

2           

5          

7 

 

 

5.3.2 Evaluation DESFO-TFs using the RF classifier: 

 

Table 6 presents 𝜇𝐴𝑐𝑐 of the DESFO across eight TFs, utilizing the RF classifier. It was found 

that DESFO-Vv4 significantly outperformed 10 of the 14 datasets, with DESFO-Vv3 and DESFO-

Sv4 closely behind, excelling in 9 and 8 of the 14 datasets, respectively. As a result, when 

considering the mean accuracy, DESFO-Vv4 is ranked highest among the evaluated methods. 
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Table 7 presents the mean Fitness Value 𝜇𝐹𝑖𝑡 for DESFO across eight TFs, utilizing the RF 

classifier. It was noted that DESFO-Sv1 demonstrated notable performance in 8 out of the 14 

datasets, and DESFO-Vv3, DESFO-Sv3, and DESFO-Sv4 followed closely, showing significant 

results in 6, 6, and 5 out of 14 datasets, respectively. Hence, when considering the mean fitness 

values, DESFO-Sv1 is the top-performing method among all the TFs methods. 

Table 8 presents the mean features selected 𝜇𝐹𝑒𝑎𝑡  for DESFO across eight TFs, using the RF 

classifier for analysis. DESFO-Sv1 demonstrated remarkable performance in 8 out of the 14 datasets 

reviewed. Following them closely were DESFO-Sv3 and DESFO-Sv4, each showing significant 

outcomes in 7 out of the 14 datasets for each of them. Therefore, based on the average features 

selected, DESFO-Sv1 emerges as the leading method among all the TFs considered. 

Table 6: The mean Accuracy 𝜇𝐴𝑐𝑐 results Using the eight TFs and RF with DESFO 

Benchmarks Eval-Metric V-v1 V-v2 V-v3 V-v4 S-v1 S-v2 S-v3 S-v4 

BreastCancer 𝜇𝐴𝑐𝑐 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 
BreastEW 𝜇𝐴𝑐𝑐 0.9974 0.9956 0.9930 0.9947 0.9939 0.9939 0.9956 0.9930 
Exactly2 𝜇𝐴𝑐𝑐 0.7650 0.7650 0.7650 0.7650 0.7650 0.7645 0.7650 0.7650 
IonosphereEW 𝜇𝐴𝑐𝑐 0.9704 0.9732 0.9704 0.9732 0.9718 0.9704 0.9704 0.9676 
KrVsKpEW 𝜇𝐴𝑐𝑐 0.9486 0.9469 0.9494 0.9487 0.9467 0.9483 0.9470 0.9484 
Lymphography 𝜇𝐴𝑐𝑐 0.8900 0.8833 0.8933 0.8933 0.8733 0.8833 0.8900 0.8767 
M-of-n 𝜇𝐴𝑐𝑐 0.9935 0.9935 0.9950 0.9950 0.9825 0.9925 0.9870 0.9840 
PenglungEW 𝜇𝐴𝑐𝑐 0.7533 0.7600 0.7467 0.7667 0.7667 0.7533 0.7600 0.7933 
SonarEW 𝜇𝐴𝑐𝑐 0.9167 0.9238 0.9190 0.9286 0.9310 0.9286 0.9238 0.9333 
Tic-tac-toe 𝜇𝐴𝑐𝑐 0.8698 0.8698 0.8698 0.8698 0.8698 0.8698 0.8698 0.8698 
Vote 𝜇𝐴𝑐𝑐 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
WaveformEW 𝜇𝐴𝑐𝑐 0.8174 0.8176 0.8181 0.8197 0.8163 0.8196 0.8193 0.8193 
WineEW 𝜇𝐴𝑐𝑐 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Zoo 𝜇𝐴𝑐𝑐 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

score 

W 

T 

L 

0 

7 

7 

0 

7 

7 

1 

8 

5 

0        

10 

4 

0 

6 

8 

0 

5 

9 

0 

6 

8 

0 

8 

6 

 

Table 7: The mean Fitness value 𝜇𝐹𝑖𝑡  results using the eight TFs and RF with DESFO  

Benchmarks Eval-Metric V-v1 V-v2 V-v3 V-v4 S-v1 S-v2 S-v3 S-v4 

BreastCancer 𝜇𝐹𝑖𝑡 0.0201 0.0201 0.0201 0.0201 0.0201 0.0204 0.0201 0.0201 
BreastEW 𝜇𝐹𝑖𝑡 0.0366 0.0369 0.0366 0.0368 0.0355 0.0359 0.0356 0.0356 
Exactly2 𝜇𝐹𝑖𝑡 0.2062 0.2097 0.2154 0.2093 0.2150 0.2084 0.2155 0.2161 
IonosphereEW 𝜇𝐹𝑖𝑡 0.0710 0.0714 0.0698 0.0698 0.0443 0.0516 0.0519 0.0472 
KrVsKpEW 𝜇𝐹𝑖𝑡 0.0254 0.0270 0.0256 0.0232 0.0267 0.0239 0.0256 0.0250 
Lymphography 𝜇𝐹𝑖𝑡 0.1691 0.1659 0.1593 0.1631 0.1694 0.1662 0.1625 0.1691 
M-of-n 𝜇𝐹𝑖𝑡 0.0053 0.0048 0.0049 0.0047 0.0054 0.0050 0.0055 0.0050 
PenglungEW 𝜇𝐹𝑖𝑡 0.3468 0.3466 0.3400 0.3465 0.2646 0.2920 0.3127 0.2777 
SonarEW 𝜇𝐹𝑖𝑡 0.0248 0.0109 0.0177 0.0181 0.0174 0.0173 0.0082 0.0172 
Tic-tac-toe 𝜇𝐹𝑖𝑡 0.1544 0.1544 0.1544 0.1544 0.1544 0.1544 0.1544 0.1544 
Vote 𝜇𝐹𝑖𝑡 0.0022 0.0023 0.0023 0.0026 0.0019 0.0019 0.0019 0.0019 
WaveformEW 𝜇𝐹𝑖𝑡 0.1596 0.1592 0.1591 0.1563 0.1607 0.1594 0.1590 0.1600 
WineEW 𝜇𝐹𝑖𝑡 0.0032 0.0032 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 
Zoo 𝜇𝐹𝑖𝑡 0.0033 0.0033 0.0034 0.0033 0.0032 0.0033 0.0032 0.0032 

score 

W 

T 

L 

1      

2     

11 

0       

2      

12 

1       

3      

10 

3         

3         

8 

3         
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3      

11 

1      

5       

8 
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5         
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Table 8: The mean selected Features 𝜇𝐹𝑒𝑎𝑡  results using the eight TFs and RF with DESFO  

Benchmarks Eval-Metric V-v1 V-v2 V-v3 V-v4 S-v1 S-v2 S-v3 S-v4 

BreastCancer 𝜇𝐹𝑒𝑎𝑡 5.000 5.000 5.000 5.100 5.000 5.000 5.000 5.200 
BreastEW 𝜇𝐹𝑒𝑎𝑡 12.70 12.80 12.000 12.20 10.00 9.400 11.10 9.000 
Exactly2 𝜇𝐹𝑒𝑎𝑡 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 
IonosphereEW 𝜇𝐹𝑒𝑎𝑡 15.10 16.00 14.500 14.60 10.50 9.000 14.30 8.900 
KrVsKpEW 𝜇𝐹𝑒𝑎𝑡 15.50 17.90 17.700 17.10 15.90 14.50 15.80 15.20 
Lymphography 𝜇𝐹𝑒𝑎𝑡 9.000 8.500 9.300 9.100 7.300 8.600 8.700 7.700 
M-of-n 𝜇𝐹𝑒𝑎𝑡 6.400 6.400 6.500 6.300 7.000 6.300 6.500 6.700 
PenglungEW 𝜇𝐹𝑒𝑎𝑡 156.2 150.2 142.20 155.6 43.60 81.80 105.5 39.50 
SonarEW 𝜇𝐹𝑒𝑎𝑡 30.20 29.20 29.300 27.60 24.80 17.40 22.90 23.70 
Tic-tac-toe 𝜇𝐹𝑒𝑎𝑡 7.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000 
Vote 𝜇𝐹𝑒𝑎𝑡 3.200 3.200 3.500 3.200 2.000 2.100 2.200 2.000 
WaveformEW 𝜇𝐹𝑒𝑎𝑡 18.70 18.80 18.500 20.90 16.90 17.90 19.30 19.80 
WineEW 𝜇𝐹𝑒𝑎𝑡 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 
Zoo 𝜇𝐹𝑒𝑎𝑡 4.500 4.700 4.600 4.500 4.000 4.200 4.100 4.100 

score 

W 

T 

L 

0         
4      

10 

0 
4 

10 

0          
4       

10 

0 

4 

10 

1 
7 
6 

1 
6 
7 

0 
4 

10 

3 
4 
7 

 

 

5.3.3 Evaluation DESFO-TFs using the SVM classifier: 

Table 9 presents the mean accuracy 𝜇𝐴𝑐𝑐 the DESFO across eight TFs utilizing the SVM 

classifier. It was found that DESFO-Sv4 significantly outperformed in 10 of the 14 datasets, with 

DESFO-Sv1 and DESFO-Sv3 following closely behind, excelling in 9 out of the 14 datasets for both 

of them. As a result, when considering the mean accuracy, DESFO-Sv4 is ranked highest among the 

evaluated methods. 

Table 10 presents the mean Fitness Value 𝜇𝐹𝑖𝑡 for DESFO across eight TFs, utilizing the SVM 

classifier. It was noted that DESFO-Sv3 demonstrated notable performance in 8 out of the 14 

datasets, and DESFO-Sv4 and DESFO-Sv2 followed closely, showing significant results in 7 and 6 

out of 14 datasets, respectively. Hence, when considering the mean fitness values, DESFO-Sv3 is the 

top-performing method among all the TFs. 

Table 11 presents the mean features selected 𝜇𝐹𝑒𝑎𝑡  for DESFO across eight TFs, using the 

SVM classifier for analysis. Both DESFO-Sv2 and DESFO-Sv3 demonstrated remarkable 

performance in 7 out of the 14 datasets for both of them. Following them closely were DESFO-Sv1 

and DESFO-Sv4, each showing significant outcomes in 5 and 6 out of the 14 datasets, respectively. 

Therefore, based on the average features selected, DESFO-Sv2 and DESFO-Sv3 emerge as the 

leading method among all the TFs considered. 
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Table 9:   The mean Accuracy𝜇𝐴𝑐𝑐results using the eight TFs and SVM with DESFO  

Benchmarks Eval-Metric V-v1 V-v2 V-v3 V-v4 S-v1 S-v2 S-v3 S-v4 

BreastCancer 𝜇𝐴𝑐𝑐 0.9786 0.9786 0.9786 0.9786 0.9786 0.9786 0.9786 0.9786 
BreastEW 𝜇𝐴𝑐𝑐 0.9474 0.9474 0.9474 0.9474 0.9544 0.9500 0.9491 0.9526 
Exactly2 𝜇𝐴𝑐𝑐 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 
IonosphereEW 𝜇𝐴𝑐𝑐 0.9662 0.9648 0.9676 0.9662 0.9648 0.9648 0.9676 0.9620 
KrVsKpEW 𝜇𝐴𝑐𝑐 0.9820 0.9833 0.9842 0.9831 0.9847 0.9833 0.9808 0.9850 
Lymphography 𝜇𝐴𝑐𝑐 0.8533 0.8467 0.8533 0.8533 0.8467 0.8500 0.8633 0.8500 
M-of-n 𝜇𝐴𝑐𝑐 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
PenglungEW 𝜇𝐴𝑐𝑐 0.8200 0.8267 0.8400 0.8400 0.9267 0.9000 0.8733 0.9200 
SonarEW 𝜇𝐴𝑐𝑐 0.9476 0.9500 0.9452 0.9429 0.9429 0.9429 0.9429 0.9548 
Tic-tac-toe 𝜇𝐴𝑐𝑐 0.9062 0.9062 0.9062 0.9062 0.9062 0.9062 0.9062 0.9062 
Vote 𝜇𝐴𝑐𝑐 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
WaveformEW 𝜇𝐴𝑐𝑐 0.8767 0.8773 0.8778 0.8768 0.8765 0.8761 0.8777 0.8785 
WineEW 𝜇𝐴𝑐𝑐 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Zoo 𝜇𝐴𝑐𝑐 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

score 

W 

T 

L 

0 

7       

7 

0 

7 

7 

0 

8 

6 

0 

7 

7 

2 

7 

5 
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5 
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7 
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Table 10:   The mean Fitness value 𝜇𝐹𝑖𝑡  results using the eight TFs and SVM with DESFO  

Benchmarks Eval-Metric V-v1 V-v2 V-v3 V-v4 S-v1 S-v2 S-v3 S-v4 

BreastCancer 𝜇𝐹𝑖𝑡 0.0262 0.0262 0.0262 0.0262 0.0262 0.0262 0.0262 0.0262 
BreastEW 𝜇𝐹𝑖𝑡 0.0548 0.0551 0.0550 0.0548 0.0459 0.0504 0.0518 0.0476 
Exactly2 𝜇𝐹𝑖𝑡 0.2483 0.2483 0.2483 0.2483 0.2483 0.2483 0.2483 0.2483 
IonosphereEW 𝜇𝐹𝑖𝑡 0.0370 0.0384 0.0361 0.0371 0.0380 0.0378 0.0357 0.0409 
KrVsKpEW 𝜇𝐹𝑖𝑡 0.0241 0.0227 0.0220 0.0230 0.0218 0.0229 0.0246 0.0211 
Lymphography 𝜇𝐹𝑖𝑡 0.1495 0.1557 0.1495 0.1493 0.1562 0.1525 0.1397 0.1530 
M-of-n 𝜇𝐹𝑖𝑡 0.0051 0.0048 0.0050 0.0049 0.0051 0.0049 0.0050 0.0052 
PenglungEW 𝜇𝐹𝑖𝑡 0.1812 0.1746 0.1616 0.1616 0.0734 0.1004 0.1275 0.0801 
SonarEW 𝜇𝐹𝑖𝑡 0.0558 0.0536 0.0581 0.0605 0.0602 0.0598 0.0599 0.0487 
Tic-tac-toe 𝜇𝐹𝑖𝑡 0.1017 0.1017 0.1017 0.1017 0.1018 0.1017 0.1017 0.1017 
Vote 𝜇𝐹𝑖𝑡 0.0022 0.0026 0.0020 0.0021 0.0019 0.0019 0.0019 0.0019 
WaveformEW 𝜇𝐹𝑖𝑡 0.1280 0.1271 0.1269 0.1281 0.1284 0.1286 0.1273 0.1272 
WineEW 𝜇𝐹𝑖𝑡 0.0018 0.0018 0.0015 0.0018 0.0015 0.0015 0.0015 0.0015 
Zoo 𝜇𝐹𝑖𝑡 0.0033 0.0033 0.0034 0.0032 0.0033 0.0032 0.0031 0.0032 
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Table 11: The mean selected Features 𝜇𝐹𝑒𝑎𝑡 results using the eight TFs and SVM with DESFO  

Benchmarks Eval-Metric V-v1 V-v2 V-v3 V-v4 S-v1 S-v2 S-v3 S-v4 

BreastCancer 𝜇𝐹𝑒𝑎𝑡 5.000 8.000 5.000 5.000 5.000 5.000 5.000 5.000 
BreastEW 𝜇𝐹𝑒𝑎𝑡 8.200 3.500 8.700 8.000 2.300 2.700 4.200 2.200 
Exactly2 𝜇𝐹𝑒𝑎𝑡 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
IonosphereEW 𝜇𝐹𝑒𝑎𝑡 12.10 11.90 13.80 12.40 10.700 10.00 12.40 10.90 
KrVsKpEW 𝜇𝐹𝑒𝑎𝑡 22.70 22.00 22.90 22.60 24.000 22.70 20.10 22.40 
Lymphography 𝜇𝐹𝑒𝑎𝑡 7.800 7.100 7.800 7.400 8.000 7.200 7.900 8.100 
M-of-n 𝜇𝐹𝑒𝑎𝑡 6.600 6.200 6.500 6.400 6.600 6.400 6.500 6.700 
PenglungEW 𝜇𝐹𝑒𝑎𝑡 97.00 98.70 103.2 102.4 26.400 44.600 68.20 30.30 
SonarEW 𝜇𝐹𝑒𝑎𝑡 23.90 24.70 23.30 23.50 21.700 19.50 19.90 23.20 
Tic-tac-toe 𝜇𝐹𝑒𝑎𝑡 8.000 8.000 8.000 8.000 8.100 8.000 8.000 8.000 
Vote 𝜇𝐹𝑒𝑎𝑡 3.500 4.200 3.200 3.300 3.000 3.000 3.000 3.000 
WaveformEW 𝜇𝐹𝑒𝑎𝑡 23.70 22.50 23.60 24.70 24.500 23.90 24.70 27.50 
WineEW 𝜇𝐹𝑒𝑎𝑡 2.400 2.300 2.000 2.300 2.000 2.000 2.000 2.000 
Zoo 𝜇𝐹𝑒𝑎𝑡 5.200 5.300 5.500 5.100 5.200 5.100 5.000 5.100 

score 

W 

T 

L 

0       
 3      
11 

3     
2      
9 

0        
4       

10 

0       
3    

11 

1      
 4      
9 

2       
5     
7 

2      
5     
7 

1        
5     
8 

 

5.4 The Overall Evaluation and Discussion: 

Table 12 shows the overall evaluation of the DESFO behavior with the eight TFs and ML 

classifiers in terms of the best accuracy, fitness value and selected features results. 

Table 12: The three primary classifiers and their respective top-performing binary versions in the suggested 

DESFO algorithm. 

Classifier Metric Best-performing TF # of superiority Benchmarks   

K-NN 

𝜇𝐴𝑐𝑐 DESFO-V-v4 8 

𝜇𝐹𝑖𝑡 DESFO-S-v1 7 

𝜇𝐹𝑒𝑎𝑡 DESFO-S-v1 and DESFO-S-v4 7 

RF 

𝜇𝐴𝑐𝑐 DESFO-V-v4 10 

𝜇𝐹𝑖𝑡 DESFO-S-v1 8 

𝜇𝐹𝑒𝑎𝑡 DESFO-S-v1 8 

SVM 

𝜇𝐴𝑐𝑐 DESFO-S-v4 10 

𝜇𝐹𝑖𝑡 DESFO- S-v3 8 

𝜇𝐹𝑒𝑎𝑡 DESFO-S-v2 and S-v3 7 

 

Overall, according to Table 12, the optimal combinations of the DESFO variant and three classifiers 

alongside eight TFs have been identified, setting the stage for subsequent experiments in this 

section. The models that emerged as the most effective in terms of 𝜇𝐴𝑐𝑐 are DESFO-Vv4–RF and 

DESFO-S-v4–SVM. When considering the𝜇𝐹𝑒𝑎𝑡, the most effective models identified are DESFO-S-

v1 and DESFO-S-v3. Furthermore, in terms of𝜇𝐹𝑒𝑎𝑡, DESFO-S-v1 stands out as the most effective 

model. 
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6. Conclusion and future works  

 

 In the study, the behavior of the DESFO algorithm is introduced, merging the DE and SFO 

algorithms with eight (TFs) divided into two categories: V-shaped and S-shaped. This merger was 

aimed at improving (FS) strategies. Classifiers such as K-NN, RF, and SVM were employed to 

assess the efficacy of the selected feature groups and determine classification accuracy. This study 

conducted tests across various benchmarks that featured multi-scale features and multi-records to 

prove its success. Results from the three classifiers were juxtaposed against the performances of the 

eight V-shaped and S-shaped (TFs). Evaluation metrics included mean fitness value obtained, mean 

accuracy obtained, and mean number of features selected. The results revealed that considering 

mean accuracy, the DESFO algorithm, when paired with the RF classifier and V-shaped V4 (TFs), 

as well as with the SVM classifier and S-shaped V4 (TFs), performed better than all other 

configurations on 10 out of 14 benchmarks analyzed. For mean fitness functions, the DESFO 

technique performed best with the RF classifier and V-shaped V1 (TFs) and with the SVM classifier 

and S-shaped V3, leading in 8 of the 14 benchmarks. Additionally, in terms of the mean of selected 

features, the DESFO algorithm, combined with the RF classifier and equipped with the S-shaped 

V1, was the standout performer in 8 out of the 14 benchmarks.  

Further exploration into the effectiveness of DESFO for (FS), utilizing various ML algorithms like 

Naive Bayes, Logistic Regression, Decision Trees (DT), and more, is warranted. Due to its 

established prowess in selecting features, the DESFO holds significant potential across multiple 

domains, including Engineering, software cost estimation, the Internet of Things (IoT), networking 

security, healthcare and intrusion detection systems (IDS).  
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