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Abstract: This study focuses on optimizing Siamese Neural Networks using various distance metrics to enhance 
trademark image similarity detection. Traditional Euclidean methods often fail to detect subtle visual differences, 
leading to less accurate outcomes. This research incorporates Chi-Squared and Manhattan metrics into the network, 
in addition to the conventional Euclidean metric. Using 255 trademark images across five classes, triplet samples 
were created for training and evaluation. The models, which utilized the CNN Xception architecture and a triplet loss 
function, were trained separately with each distance metric. Performance was assessed comprehensively via multiple 
metrics, including accuracy, precision, recall, and F1-Score, to ensure robust evaluation. The results indicated that 
the Chi-Squared metric significantly outperformed the others, achieving an impressive accuracy of 0.96. In 
comparison, the Manhattan and Euclidean metrics achieved accuracies of 0.74 and 0.92, respectively. Notably, the 
Chi-Squared metric improved accuracy by approximately 4.35% compared to the Euclidean metric. These findings 
underscore the critical importance of selecting suitable distance metrics for image similarity tasks, as the choice of 
metric can substantially impact performance. The Chi-Squared metric was particularly effective due to its sensitivity 
to variations in features such as color and texture, which are often pivotal in trademark images. This research 
demonstrates the substantial benefits of incorporating advanced distance metrics into deep learning models for 
trademark similarity detection, providing a more accurate and reliable approach. By highlighting the effectiveness of 
the Chi-Squared metric, this study paves the way for future research to further refine these metrics and explore their 
applications in various domains requiring precise image similarity analysis. Future studies may also consider 
integrating additional metrics or hybrid approaches to further enhance performance and applicability in diverse 
contexts.
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1. Introduction
The protection of intellectual property, 

particularly trademarks, has become increasingly 
significant [1]. Trademarks serve as a vital 
component for businesses, ensuring brand 
recognition and differentiation in a highly 
competitive market [2]. The advantages of owning a 
trademark are manifold. A registered trademark 
grants the owner exclusive rights to use the mark, 
which can inhibit others from using it without 
authorization. This exclusivity helps in building 
brand loyalty and trust among consumers, leading to 
increased business revenue. Moreover, trademarks 
can be valuable assets, appreciating over time as the 
brand grows. They also offer legal protection against 
infringement, enabling companies to pursue legal 
recourse against unauthorized exploitation.

To be eligible for registration, a trademark must 
meet certain criteria. It must be distinctive, meaning 
it should be capable of distinguishing the goods or 

services of one enterprise from those of another. It 
ought not to be misleading, scandalous, or contrary 
to public order and morality. Additionally, it must 
not be generic or merely descriptive without 
acquiring distinctiveness through use. Furthermore, 
the trademark should not conflict with any existing 
registered trademarks. As the volume of digital 
content grows, so does the need for precise and 
effective methods to identify and compare 
trademark images, facilitating the enforcement of 
trademark rights and preventing infringement.

Traditional methods for trademark image 
comparison often rely on manual inspection, which 
is both time-consuming and prone to human error 
[3]. To address these challenges, automated 
techniques leveraging advancements in machine 
learning and computer vision have gained traction. 
Among these, Siamese Convolutional Neural 
Networks (Siamese-CNNs) have emerged as a 
powerful tool for image similarity tasks due to their 
ability to learn discriminative features from paired 
inputs [4].



Siamese-CNNs typically utilize Euclidean 
metric to gauge similarity between feature vectors of 
image pairs. This approach has been effectively 
applied in various domains. For instance, Li et al. 
employed Siamese neural networks with Euclidean 
distance to evaluate disease severity and change 
detection in medical imaging, achieving high 
correlation with expert rankings [5]. Similarly, Li, 
Yan, and Lu used Euclidean distance in a Siamese 
network to learn similarity metrics for linear 
features in geospatial data, demonstrating higher 
precision and accuracy compared to traditional 
methods [6].

While effective, Euclidean distance might not 
consistently capture the nuances of visual similarity, 
especially in cases where image variations are 
subtle. To enhance the performance of 
Siamese-CNNs in trademark image similarity tasks, 
exploring alternative distance metrics such as 
Chi-Squared and Manhattan distances is essential. 
Previous studies have shown that Manhattan 
distance can improve similarity matching in medical 
questions, yielding better accuracy compared to 
Euclidean distance [7]. Additionally, incorporating 
Chi-Squared distance in a Siamese network 
framework has demonstrated significant 
improvements in image trademark similarity 
analysis, capturing more complex visual features 
[8].

This study explores the use of Chi-Squared, 
Manhattan, and Euclidean distance metrics within 
Siamese-CNN frameworks for analyzing trademark 
image similarity. Our goal is to assess and contrast 
the capabilities of these metrics in accurately 
capturing the similarities among trademark images, 
delivering an in-depth evaluation of their 
performance.

Through the investigation of these varied 
distance metrics, the research aims to advance the 
field of trademark image comparison. It provides 
valuable perspectives on the most effective methods 
to increase the precision and efficiency of automated 
systems for detecting trademark image similarity. 
The results of this study could enhance mechanisms 
for trademark protection, offering significant 
benefits to businesses and legal frameworks in 
protecting their intellectual property rights.

2. Methods
The method for detecting trademark similarity 

utilizing a Siamese neural network is depicted in 
Figure 1.

Figure 1. Research methods

The procedure initiates with the gathering and 
preparation of the initial dataset. The raw data is 
subject to preprocessing steps to maintain quality 
and uniformity, including steps like normalization 
and augmentation. Triplet samples, which consist of 
an anchor, a positive, and a negative image, are then 
selected from this preprocessed data. Subsequently, 
the dataset is divided into training, validation, and 
testing subsets

In the training phase, the Siamese neural 
network undergoes training using the training 
subset, where it is refined to optimize a similarity 
metric through the use of triplet loss. The validation 
subset serves to monitor the model's performance 
during training and to adjust hyperparameters as 
necessary. Following the training phase, the network 
is evaluated using the testing subset to gauge its 
overall performance. In this study, the network 
employs triplet loss alongside a specific distance 
metric, such as the chi-square distance, to process 
the data.

Ultimately, the efficacy and accuracy of the 
model in recognizing visual similarities between 
trademarks are assessed. The aim of this approach is 
to forge an efficient model capable of detecting 
trademark similarities utilizing the methodology 
based on the Siamese neural network.

2.1. Dataset
The initial phase entailed assembling a dataset 
consisting of 255 trademark images sourced from 
Google Image and registered in the Indonesian 
Intellectual Property Database (Pangkalan Data 
Kekayaan Intelektual). These images were 



organized into five distinct classes, along with an 
additional set of 55 testing images. Within each 
class, the dataset included one anchor image, 20 
positive images that are visually similar to the 
anchor, and 20 negative images that differ 
significantly. For convenient access and integration 
with Google Colab, all images were saved on 
Google Drive, each within a folder designated by its 
respective class. Figure 2 illustrates samples of the 
trademark images used in the study.

Figure 2. Trademark image

2.2. Data Preprocessing
Pre-processing measures were implemented to 

purify and prepare the data for subsequent 
examination. This included adjusting the images to a 
consistent size of 128x128 pixels and standardizing 
their pixel values to comply with the neural 
network's input requirements. The resizing step 
guarantees uniformity in image dimensions, which 
simplifies processing efforts. Additionally, the 
normalization step adjusts the pixel values to a scale 
that is most conducive to neural network 
functionality, thereby improving the model's 
efficiency and expediting its convergence rate [10].

2.3. Triplet Sampling
During the Triplet Sampling step, the data was 

arranged into groups of three images known as 
triplets. Each triplet included an anchor image, a 
closely related positive image, and a distinctly 
different negative image. The formation process 
involved constructing all potential combinations of 
these positive and negative images, totaling 400 
unique triplet pairs for each category. This 
methodology was intended to enrich the training 
dataset, thereby bolstering the neural network’s 
ability to accurately identify similarities and 
differences among trademarks [12].

2.4. Data Splitting
The dataset consists of 400 triplet pairs, 

strategically split into training and validation subsets 
with proportions of 80% and 20%, respectively. This 
translates to 320 triplet pairs dedicated to training 
and 80 pairs set aside for validation. Such a 
distribution is vital for the model’s development, as 
the training subset allows the model to learn and 
adapt to data patterns effectively. Meanwhile, the 

validation subset is critical for controlling 
overfitting, offering a separate data pool to monitor 
and evaluate the model's performance continuously 
during training. This thoughtful partition not only 
ensures comprehensive training but also aids in 
rigorously assessing the model’s ability to perform 
reliably on new data. Adjustments based on the 
validation outcomes enhance the model’s accuracy 
and general reliability, leading to a robust and 
broadly applicable machine learning model [13].

2.5. Model Training
In the training phase, a Siamese Neural Network 

employs a triplet loss function that leverages 
distance metrics such as Chi-Squared, Manhattan, 
and Euclidean. The function is designed to train the 
model to reduce the distance between the anchor 
and its corresponding positive image and increase 
the distance between the anchor and the negative 
image. This mechanism ensures effective learning 
by differentiating between similar and dissimilar 
items [14].

Euclidean Distance is one of the most commonly 
used distance metrics. The Euclidean distance 
between two feature vectors 𝑋 and Y is defined as 
the straight-line distance (hypotenuse) connecting 
two points in n-dimensional space. This metric 
measures the direct distance between two points in 
Euclidean space [15]. The smaller the Euclidean 
distance, the more similar the two vectors are [16]. 
Euclidean distance calculation uses the following 
Eq.
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and 𝑌, and 𝑛 is the dimension of the vector.
Manhattan Distance, also known as city block 

distance or taxicab distance, measures the distance 
between two points by summing the absolute 
differences of their coordinates [17]. This metric 
measures the total absolute distance between the 
components of two vectors [18]. It is often used in 
contexts where movement is restricted to straight 
lines and vertical or horizontal directions. The 
calculation of Manhattan distance is performed 
using the following equation.
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𝑌, and 𝑛 is the dimension of the vector. Manhattan 



distance is often used in contexts where movement 
is restricted to straight lines and vertical or 
horizontal directions, such as in city layouts.

Chi-Squared Distance is primarily used in 
statistical contexts and image processing. It 
measures the difference between two distributions 
by comparing each element of the vectors, 
normalizing the difference by the average value of 
the two elements [19]. This metric accounts for the 
magnitude of the difference relative to the combined 
size of the two elements. It is particularly useful in 
situations where we want to emphasize relative 
differences between elements with low values. The 
following equation is used to compute the 
Chi-Squared distance.
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and 𝑌, and 𝑛 is the dimension of the vector. This 
formula is very useful in situations where we want 
to emphasize the relative difference between 
elements with low values, because it takes into 
account the magnitude of the difference relative to 
the combined size of the two elements.

The objective of the triplet loss function is to 
contract the distance between the anchor and the 
positive example while expanding the distance 
between the anchor and the negative example, 
maintaining a margin denoted by 𝛼 [20]. This 
calculation of triplet loss is governed by a specific 
equation.

(4)𝐿(𝐴, 𝑃, 𝑁) = 𝑚𝑎𝑥(0, 𝐷(𝐴, 𝑃) − 𝐷(𝐴, 𝑁) + α

In this formulation, 𝐷 symbolizes the distance 
metric, which can be Chi-Squared, Manhattan, or 
Euclidean. 𝐴 stands for the Anchor, 𝑃 for the 
Positive, and 𝑁 for the Negative, with a fixed 
margin, 𝛼, of 1.0. The function operates by 
increasing the distance between the Anchor and 
Negative while decreasing the distance between the 
Anchor and Positive. This approach effectively 
prompts the model to develop representations that 
distinctly segregate different data classes, enhancing 
its discriminative capability.

This research employs the Xception architecture 
within a Siamese Neural Network, featuring three 
identical subnetworks that share weights. Each 
subnetwork includes a sequence of convolutional 
layers followed by pooling layers and fully 
connected layers. A key feature of the Xception 
architecture is its use of depthwise separable 

convolutions. This technique is celebrated for its 
effectiveness and robustness in feature extraction, 
making it a critical component of the network’s 
design [21].

Using identical hyperparameters for a fair 
comparison, the models were assessed concurrently 
with the Chi-Squared, Manhattan, and Euclidean 
distance metrics [22]. This method highlights the 
influence of each metric on improving the 
performance of the models. The details of the 
specific hyperparameters used in this evaluation are 
meticulously outlined in Table 1, ensuring 
transparency and replicability of the assessment 
process.

Table 1. Hyperparameters of model
Hyperparameters Value

Batch Size 128
Epoch 15

Optimizer Adam
Learning Rate 0.001

Upon completion of its training, the model 
operates by mapping new inputs into a predefined 
feature space. Within this space, the distances, as 
learned from the training process, serve to determine 
the similarity or dissimilarity of the inputs. This 
determination is based on the criteria established by 
the triplet configuration, effectively using the 
learned distances to categorize inputs relative to 
each other.

2.6. Evaluation Metrics
Ultimately, the model's performance is evaluated 

through several metrics, including the confusion 
matrix. This matrix is an essential instrument for 
gauging the accuracy of a classification model. It 
visually presents the count of both correct and 
incorrect predictions in a structured table format, 
providing a clear depiction of the model's predictive 
capabilities. This matrix is particularly valuable in 
binary classification tasks. It consists of four 
elements: True Positives (TP), where the model 
correctly predicts the positive class; True Negatives 
(TN), where it correctly predicts the negative class; 
False Positives (FP), cases where the model 
incorrectly predicts the negative instance as 
positive; and False Negatives (FN), where it fails to 
recognize a positive instance, marking it as negative 
[23]. These elements help quantify the number of 
correct and incorrect predictions made by the model, 
facilitating the calculation of performance metrics 
such as accuracy, precision, recall, and the F1-score.



Once the confusion matrix is obtained, the 
following metrics will be calculated: accuracy, 
precision, recall, and F1-Score, according to the 
specified formulas.

(5)𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃+𝑇𝑁)
(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)

(6)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
(𝑇𝑃+𝐹𝑃)

(7)𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
(𝑇𝑃+𝐹𝑁)

(8)𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

Accuracy measures the overall correctness of the 
model and is calculated as the ratio of correct 
predictions (both true positives and true negatives) 
to the total number of cases examined. 

Precision assesses the accuracy of positive 
predictions made by the model and is defined as the 
ratio of true positive predictions to the total number 
of positive predictions (true positives plus false 
positives). 

Recall, also known as sensitivity, measures the 
ability of the model to identify all relevant instances 
within a dataset. It is calculated as the ratio of true 
positives to the sum of true positives and false 
negatives, indicating how many actual positives 
were correctly identified. 

The F1-Score is a harmonic mean of precision 
and recall, providing a single score that balances 
both the precision and the recall. It is particularly 
useful when dealing with imbalanced datasets, 
where one class is significantly underrepresented. 
The F1-Score is calculated as 2 times the product of 
precision and recall divided by the sum of precision 
and recall, offering a measure of the model's 
accuracy in terms of both precision and recall.

This comprehensive approach, from data 
preparation to detailed evaluation, ensures a robust 
assessment of the model's ability to differentiate 
between various classes of trademark images.

3. Result and Discussion
This section presents the results of the Siamese 

Neural Network models trained using Euclidean, 
Manhattan, and Chi-Squared distance metrics. It 
includes a detailed analysis and comparison of the 
performance of these models, focusing on key 
metrics such as accuracy, precision, recall, and 
F1-score.

3.1. Result
After image preparation and pre-processing steps, 
the images are randomly organized into triplet 
sampling, resulting in 400 triplet image pairs 

derived from 20 positive and 20 negative images. 
An example of the triplet sampling results can be 
seen in Figure 3.

Figure 3. Result of triplet sample

The triplet samples were trained using Siamese 
Neural Network models with Euclidean, Manhattan, 
and Chi-Squared distance metrics. Figure 4 presents 
the training loss over 15 epochs for three distance 
metrics—Chi-Squared, Manhattan, and 
Euclidean—employed in a Siamese neural network. 

Figure 4. Accuracy comparison

Analyzing the Euclidean distance metric, 
represented by the green line, it is evident that the 
training loss begins at a relatively high level but 
decreases steadily in the initial epochs, reflecting the 



network's initial learning phase and increasing 
prediction accuracy. Significant reductions in 
training loss are observed between epochs 2 and 4, 
suggesting substantial learning progress. From 
epochs 4 to 6, the loss stabilizes with minor 
fluctuations, indicating a phase where the network's 
performance is maintained with little further 
improvement. Between epochs 6 and 10, the loss 
shows a slight peak around epoch 8 but continues to 
decline overall, possibly due to fine-tuning 
adjustments made by the network. In the final 
stages, from epochs 10 to 15, the training loss 
consistently decreases, demonstrating continuous 
refinement and improved accuracy in measuring 
image similarity. The overall trend for the Euclidean 
metric shows a steady reduction in training loss, 
highlighting its effectiveness in enhancing the 
Siamese neural network's performance over time. 
Euclidean training loss on the Siamese neural 
network is shown in Figure 5.

Figure 5. Training loss of Euclidean Distance

In contrast, the Manhattan distance metric, 
depicted by the red line, exhibits a high initial 
training loss that decreases over time but with more 
pronounced fluctuations. Rapid initial learning is 
evident in the sharp decrease in training loss during 
the early epochs. However, significant variability is 
observed between epochs 4 and 8, indicating periods 
of instability and adjustments for overfitting. Post 
epoch 8, the training loss generally trends 
downward, although with notable spikes, suggesting 
that while the Manhattan distance is effective, it 
experiences more instability compared to the 
Euclidean metric. By epoch 15, the training loss for 
Manhattan distance approaches a level similar to 
that of Euclidean, indicating its potential 
effectiveness, albeit with a greater need for 
stabilization over more epochs. The results of 
training loss using Manhattan are shown in Figure 6.

Figure 6. Training loss of Manhattan Distance

The Chi-Squared distance metric, shown by the 
blue line, starts with a high training loss and exhibits 
considerable fluctuations throughout the epochs. 
The initial sharp decrease in training loss indicates 
early learning progress, similar to the other metrics. 
However, from epochs 2 to 8, the Chi-Squared 
metric demonstrates substantial variability with 
frequent peaks and troughs, reflecting instability in 
the learning process. After epoch 8, although the 
training loss decreases, it continues to fluctuate, 
indicating gradual but inconsistent learning. By the 
end of the 15 epochs, ss training progresses, the loss 
stabilizes at a reduced value, but the path to this 
point is more erratic compared to both Euclidean 
and Manhattan metrics. This suggests that while the 
Chi-Squared metric can achieve a comparable 
performance level, it is less stable and predictable 
throughout the training process of the model. Figure 
7 displays the training loss graph, which utilizes the 
Chi-Squared metric.

 Figure 7. Training loss of Chi-Squared Distance

Figure 8 illustrates the accuracy results from 
testing conducted during the training phase.



Figure 8. Training loss comparison

Examining the Euclidean distance metric, 
denoted by the green line, the testing accuracy starts 
at a moderate level and generally increases over 
time, reflecting the network's enhanced ability to 
correctly identify similar images. The accuracy 
trend shows a steady upward trajectory with minor 
fluctuations, indicating consistent learning progress. 
There is a marked rise in accuracy during the initial 
epochs, followed by a phase of stabilization with 
incremental improvements. After completing 15 
epochs, the model achieves high accuracy using the 
Euclidean distance metric, underscoring its 
effectiveness in optimizing the network's 
performance for image similarity detection.

Similarly, the Manhattan distance metric, 
represented by the red line, also begins with 
moderate accuracy that increases over time. 
However, the accuracy exhibits more fluctuations 
compared to the Euclidean metric, indicating 
periods of both advancement and instability. During 
the initial epochs, there are notable enhancements in 
accuracy, suggesting rapid initial learning. Between 
epochs 4 and 8, accuracy continues to improve but 
with notable variability, reflecting the network's 
adjustments and fine-tuning processes. In the latter 
epochs, the accuracy stabilizes and converges with 
the performance of the Euclidean metric, achieving 
high accuracy by epoch 15. This indicates that while 
the Manhattan distance metric is effective, it may 
require more epochs to attain stable and consistent 
performance.

The Chi-Squared distance metric, depicted by the 
blue line, starts with relatively high accuracy and 
demonstrates significant fluctuations throughout the 
epochs. Despite these fluctuations, the overall trend 
indicates an increase in accuracy, showing the 
network's ability to learn and improve over time. 
The Chi-Squared metric exhibits rapid initial 
learning, with accuracy peaking early and showing 
periodic increases. However, this metric experiences 
more pronounced variability compared to the others, 

with frequent peaks and troughs throughout the 
epochs. By the end of the 15 epochs, the 
Chi-Squared metric reaches a high level of accuracy, 
comparable to the other metrics, but the progression 
is marked by greater instability. This suggests that 
while the Chi-Squared metric can achieve 
comparable performance, it may be less consistent 
during the training process compared to the 
Euclidean and Manhattan metrics.

Table 2. Confusion matrix metrics comparison in 
testing

Metric 
Distance

True 
Similar (%)

False 
Similar (%)

False 
Different 

(%)

True 
Different 

(%)

Euclidean 42.19 7.81 0.00 50.00

Manhattan 45.90 4.10 20.51 29.49

Chi-Squared 50.00 0.00 3.52 46.48

Table 2 features the confusion matrix for this 
model, which uses the Euclidean distance metric. 
The matrix highlights that the model correctly 
classified 42.19% of similar images as True Similar 
and 50.00% of different images as True Different, 
demonstrating balanced performance in 
distinguishing both classes. However, there was a 
7.81% error rate where different images were 
incorrectly classified as similar (False Similar), 
while no instances were misclassified as different 
when they were similar (False Different).

The Manhattan distance metric showed a slightly 
higher accuracy in identifying similar images with 
45.90% (True Similar), but a lower accuracy of 
29.49% for different images (True Different). 
Notably, this metric experienced a higher 
misclassification rate for different images being 
wrongly classified as similar at 4.10% (False 
Similar) and a significant 20.51% error rate where 
similar images were incorrectly classified as 
different (False Different).

Lastly, the Chi-Squared distance metric achieved 
the highest accuracy in correctly classifying similar 
images at 50.00% (True Similar) and maintained a 
good performance with 46.48% accuracy for 
different images (True Different). It exhibited the 
lowest error rates among the three metrics with no 
instances incorrectly classified as similar (False 
Similar) and a minimal 3.52% of similar images 
mistakenly identified as different (False Different).

Table 3 summarizes the accuracy comparison, 
showing that the Euclidean distance metric 
exhibited strong effectiveness with an accuracy rate 
of 92%. This high level of accuracy suggests that 



the metric performs well in correctly classifying 
both similar and different images. The precision 
achieved was 84%, indicating a strong likelihood 
that predictions of similarity by the model are 
accurate. The model achieved a recall rate of 100%, 
effectively identifying every true instance of 
similarity, which resulted in a flawless F1-score of 
1.00. This score indicates exemplary performance, 
with the model excellently balancing precision and 
recall.

The Manhattan distance metric demonstrated a 
moderate level of effectiveness, achieving an overall 
accuracy of 74%. Both precision and recall were 
nearly equivalent, at 75% and 74% respectively, 
suggesting a balanced yet modest proficiency in 
accurately identifying and capturing true positives. 
The F1-score, a direct reflection of this balance, 
stood at 0.74, suggesting consistent but less optimal 
performance across these metrics compared to the 
Euclidean distance.

Table 3. Comparison of Euclidean, Manhattan, and 
Chi-Squared

Metric 
Distance Accuracy Precision Recall F1-Score

Euclidean 0.92 0.84 1.00 1.00

Manhattan 0.74 0.75 0.74 0.74

Chi-Squared 0.96 1.00 1.00 0.93

Conversely, the Chi-Squared showed superior 
performance with the highest accuracy of 96% 
among the metrics evaluated. It achieved a precision 
of 100%, indicating that every prediction of 
similarity was accurate. Similarly, the recall was 
also perfect at 100%, showing that the metric 
identified all similar images without fail. The 
F1-score, at 0.93, although slightly lower than the 
perfect scores, still indicates an exceptionally high 
level of performance in both precision and recall.

3.1. Discussion
The evaluation of Siamese Neural Network 

models using different distance metrics yielded 
varying results. The Euclidean distance metric 
model initially showed a decrease in training loss; 
however, a significant increase at the fifth epoch 
raised concerns about potential overfitting or 
instability. Fluctuations in testing accuracy further 
indicated problems with generalizing the features it 
learned. This was corroborated by a confusion 
matrix that showed a high incidence of false 

positives, highlighting difficulties in maintaining 
consistent accuracy.

In contrast, the model utilizing the Manhattan 
distance metric demonstrated more stable outcomes. 
It showed a steady decrease in training loss, 
suggesting smoother learning and better 
generalization, as reflected by higher testing 
accuracies and fewer false negatives.

The Chi-Squared distance metric emerged as the 
most robust, exhibiting rapid and consistent declines 
in training loss, pointing to effective learning 
processes. It also maintained high testing accuracy, 
indicating superior generalization abilities. The 
confusion matrix for this metric revealed minimal 
false negatives and a high count of true negatives, 
affirming its precision. The efficacy of the 
Chi-Squared metric can be attributed to its acute 
sensitivity to variations in image features like color 
and texture. This sensitivity is particularly valuable 
in legal contexts for trademark image analysis, 
where distinguishing subtle differences is essential.

In summary, the Chi-Squared distance metric 
provides substantial advantages in the application of 
Siamese Neural Networks for determining 
trademark image similarity, particularly in legal 
scenarios where minute distinctions are pivotal in 
infringement determinations.

4. Conclusion
This research underscores the significant 

advantages of employing Chi-Squared and 
Manhattan distance metrics in a Siamese Neural 
Network for trademark image similarity analysis. 
The traditional Euclidean distance metric showed 
strong performance, achieving an accuracy of 0.92 
along with high precision and recall scores. In 
contrast, the Chi-Squared distance metric excelled 
with an impressive accuracy of 0.96, attributed to its 
enhanced sensitivity to variations in image features 
such as color and texture, which are crucial for 
distinguishing trademarks effectively. Although the 
Manhattan distance metric was less effective, it still 
attained an accuracy of 0.74. These results highlight 
the importance of selecting appropriate distance 
metrics for specific image comparison tasks, with 
the Chi-Squared distance proving particularly adept 
at managing feature variations. This study 
contributes to the academic field by demonstrating 
the benefits of advanced distance metrics in deep 
learning applications, indicating their potential for 
developing more accurate and reliable automated 
trademark protection systems, and paving the way 
for future advancements in image similarity 
evaluation methods.
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