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Abstract: Emotional expressions, comprising both verbal and non-verbal cues, communicate 

an individual's emotional state or attitude to others. To understand the complex human 

behavior, it is essential to analyze physical features across multiple modalities. Recent research 

has extensively focused on spontaneous multi-modal emotion recognition for human behavior 

analysis. Nonetheless, accurate Facial Emotion Recognition (FER) is hindered by challenges 

such as partial facial occlusions from random objects and mask-wearing. This paper proposes 

a novel classification method, Pizam-ANFIS-based FER, which addresses these issues by 

incorporating Occlusions and Masks (PAFEROM). The process begins with pre-processing the 

input image, followed by face detection and cropping using the Viola-Jones Algorithm (VJA). 

Skin tone analysis and segmentation of facial parts are performed using Local Structural 

Weighted K-Means Clustering (LSW-KCM). Subsequently, contour formation and edge 

detection via CGED are conducted, leading to feature extraction. The retrieved features' 

dimensionality is reduced using PIGA before being processed by CSE for Action Unit (AU) 

identification. Finally, PizMamdani-Adaptive Neuro Fuzzy Interference System (Pizam-

ANFIS) classifies the identified AUs, and reduced-dimensionality features to determine human 

emotions. Experimental results indicate that the proposed model surpasses existing techniques 

in both efficacy and accuracy, providing a robust solution for FER in the presence of occlusions 

and masks. 
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1.  Introduction 

Facial expressions play a crucial role in human communication by providing essential 

nonverbal information that complements verbal interactions. Studies suggest that a significant 

portion of communication, ranging from 60% to 80%, is conveyed through nonverbal cues. 

These include facial expressions, eye contact, vocal tone, hand gestures, and physical distance 

[1, 2]. Analyzing these facial expressions has garnered significant attention in research, 

particularly in the field of FER. FER technology is increasingly utilized in human-computer 

interaction (HCI) applications, including autopilot systems, education, medical and 

psychological treatments, surveillance, and psychological analysis in computer vision [3]. By 

examining human facial expressions, FER systems aim to detect specific emotions such as 

anger, disgust, fear, happiness, sadness, surprise, and neutral states. The complexity of 

accurately estimating emotions is heightened by the diversity of human facial features and the 

variety of possible emotional expressions [4]. 

Automated facial expression recognition has garnered significant interest in recent years due 

to its broad spectrum of applications [5]. However, achieving high accuracy in recognizing 

facial expressions remains challenging because of their subtlety, complexity, and diversity [6]. 
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A critical aspect of effective facial expression recognition is obtaining precise facial 

representations from the original facial images [7]. This system has two tasks: face detection 

and facial emotion classification. To extract significant and unique facial features, the human 

face is first recognized from the acquired image [8]. Then, the emotion represented by the 

identified face is classified using a FER algorithm. Formerly, researchers have tackled FER 

using various approaches such as the Multi-layer Perceptron Model, k-nearest Neighbors, and 

Support Vector Machines (SVM) [9]. These algorithms extracted information through Local 

Binary Patterns, Eigenfaces, Face-Landmark, and Texture features. Among these techniques, 

neural networks have gained the most popularity and are now extensively employed for FER 

[10]. Currently, advanced classifiers like Artificial Neural Networks (ANN), Convolutional 

Neural Networks (CNN), and Random Forests (RF) are widely used for tasks such as healthcare 

recognition, biometric identification, handwriting analysis, and facial detection for security 

purposes [11, 12]. However, achieving precise emotion classification with state-of-the-art 

classifiers in FER remains challenging due to issues like partial occlusion and the use of masks, 

which often need to be adequately addressed. 

 

1.1 Problem Statement 

Listed below are some of the shortcomings of the existing research approaches used to date: 

1. Although current facial expression classifiers have proven practically flawless in 

analyzing confined frontal faces, they need to improve when analyzing faces that are 

partially obscured or hidden behind masks, which are frequently seen in the wild. 

2. When wearing a face mask that covers the mouth and nose, it is impossible to accurately 

identify facial expressions of emotion. Classifying facial emotions using the half-face 

is more complex and challenging since the mouth area is one of the significant variables 

responsible for emotion detection. 

3. Current FER techniques for masked faces often disregard significant facial areas like 

the forehead. Instead, they isolate only the eye region using landmark detection 

methods, which ultimately reduces the accuracy of the FER system. 

This research suggests an improved FER system using a novel Pizam-ANFIS classifier to 

overcome these issues. The key research objectives of this system are outlined as follows: 

1. A novel Edge Detector has been developed to detect the exact boundaries of organs. 

2. A novel dimensionality reduction model is employed to select the interest features to 

mitigate training time. 

3. A novel neural network is employed 

4.  to categorize the AU present in the mask-covered facial image. 

5. A rule-based novel technique is utilized to classify human emotions.  

The organization of this paper is as follows: Section 2 offers an in-depth review of related 

work, emphasizing significant advancements and challenges within the field. Section 3 outlines 

the proposed methodology and describes the innovative techniques and algorithms. Section 4 

presents and discusses the results of the proposed method, focusing on performance metrics 

and comparative analysis. Lastly, Section 5 concludes the paper by summarizing the findings 

and suggesting potential directions for future research. 

 

2.  Literature Survey 

In the realm of facial emotion recognition (FER), Mehendale et al. [13] proposed a modular 

framework using an AdaBoost cascade classifier for face detection and extracting 

Neighborhood Difference Features (NDF), which were classified with a random forest 



classifier to address false detections. Despite outperforming reference methods on the SFEW 

and RAF datasets, the system's omission of geometric elements led to inaccuracies. Liu et al. 

[14] introduced an FER technique that leveraged landmark curvature and vectorized 

landmarks, combining SVM classification with a genetic algorithm for feature and parameter 

selection. While this approach showed balanced performance on the CK+ and MUG datasets, 

image noise impacted the SVM classifier's accuracy. Alreshidi et al. [15] employed Nonlinear 

Principal Component Analysis (NLPCA) for dimensionality reduction and SVM for emotion 

classification, achieving high accuracy but struggling with varying input dimensions. Hassan 

et al. [16] utilized graph mining techniques to identify common sub-graphs within emotional 

classes, enhancing efficiency and accuracy but resulting in a more time-consuming process. 

Hussain et al. [17] developed a deep learning-based FER system structured in three phases: 

face detection, feature analysis using Keras CNN, and emotion classification. Although this 

system demonstrated proficiency, errors in facial landmark detection impacted overall 

accuracy. Houshmand et al. [18] proposed a transfer learning approach with pre-trained VGG 

and ResNet networks for FER under VR headset occlusion, achieving comparable performance 

but needing refinement in preprocessing steps due to  

issues with histogram equalization. 

Monisha et al. [19] introduced a real-time FER system using CNN for classification, 

demonstrating high accuracy but encountering recognition errors due to limited training data. 

Akhand et al. [20] utilized transfer learning within a Deep Convolutional Neural Network 

(DCNN), progressively enhancing FER accuracy but failing to preserve edge information 

crucial for detailed emotion recognition. Saha et al. [21] employed the Cosine Similarity-Based 

Harmony Search Algorithm (SFHSA) for feature selection, optimizing feature vectors and 

improving classification accuracy, albeit with a time-consuming training process. Gautam et 

al. [22] combined HOG and SIFT for feature extraction with CNN for classification, 

outperforming existing methods but struggling with the limitations of 2D data in handling facial 

pose variations. Castellano et al. [23] focused on recognizing emotions from masked faces 

using ResNet, achieving high accuracy with eye region analysis but increasing computational 

demands due to skip connections. Wally et al. [24] developed an Occlusion-Aware Student 

Emotion Recognition system utilizing CNN and FCNN, which faced overfitting issues due to 

limited data. Elsayed et al. [25] showcased a hybrid CNN with LBP for feature extraction in 

masked faces, demonstrating improved recognition but facing challenges with imbalanced and 

noisy data. Mukhiddinov et al. [26] applied synthetic masks to input images, emphasizing head 

and upper facial features for FER, achieving higher accuracy but encountering orientation 

issues with landmark features. Finally, Zhu et al. [27] introduced HDCNet, leveraging a feature 

constraint methodology to mine attention consistency features, improving classification 

accuracy but posing substantial computational demands due to Class Activation Mapping. 
 
 

3. Proposed Framework for FER 

This research proposes a novel Pizam-ANFIS for effective human emotion recognition using 

visual features. Two key processes—face detection and classification—are finished in order to 

identify the facial mood. Features from the face are retrieved and fed into a trained network for 

emotion classification. The block diagram for the suggested model is illustrated in Figure 1. 



 

Figure 1: Schematic of the projected framework 
 

3.1 Pre-processing 
 

In this section, an Image with emotion is taken as input and further injected into the pre-

processing because of the presence of unwanted things. The Input Face Expression Image 

undergoes the pre-processing operation in three stages: image resizing, pixel reduction, and 

normalization. 
 

3.1.1 Image resizing 

The accuracy and computation time of the processing system can be adversely affected by 

unwanted pixels in the input image. The input image (I) is resized to 256×256 pixels using 

bilinear interpolation to address this. This method is particularly recommended for continuous 

data sets lacking distinct boundaries. Bilinear interpolation is a resampling method that 

computes a new pixel value by averaging the four nearest pixel values, weighted by their 

distances. This technique provides a smoother and more precise representation of the image. 

The resized image (Iresize) is, 

 

                                                𝐼𝑟𝑒𝑠𝑖𝑧𝑒 =  
Ψ𝑅S𝐿+ Ψ𝐿S𝑅+ Ψ𝑇S𝐵+ Ψ𝐵S𝑇

Ψ𝑅+Ψ𝐿+Ψ𝑇 +Ψ𝐵                                                (1) 

 

Here, R, L, T, and B are the corresponding distances from the missing pixel, and SL, SR, SB, 

and ST are the left, right, top, and bottom source pixels. 

3.1.2 Pixel Reduction 

After resizing the image, we remove noisy pixels from the resized image (Iresize) by utilizing 

the Discrete Wavelet Transform (DWT). DWT is selected due to its ability to achieve a higher 



compression ratio. This process involves decomposing the image into coefficients (sub-bands) 

and then compared to a set threshold (Tthres). The coefficients that fall below this threshold are 

considered noiseless pixels and are retained in the image. In contrast, those above the threshold 

are identified as noisy pixels and are subsequently removed. This method ensures that only the 

low-low frequency sub-bands, which contain the essential image information with reduced 

noise, are preserved. The resulting pixel-reduced image (Ired) can be represented as follows: 

                                           𝐼𝑟𝑒𝑑 =  {
𝑛𝑜𝑖𝑠𝑦 𝑝𝑖𝑥𝑒𝑙, 𝑖𝑓 (𝐼𝑟𝑒𝑑)𝜌 > 𝑇𝑡ℎ𝑟𝑒𝑠

𝑛𝑜𝑖𝑠𝑒𝑙𝑒𝑠𝑠 𝑝𝑖𝑥𝑒𝑙, 𝑖𝑓 (𝐼𝑟𝑒𝑑)𝜌 < 𝑇𝑡ℎ𝑟𝑒𝑠

                                        (2) 

3.1.3 Normalization 

Unity normalization transforms the pixel-reduced image (Ired) into a range of pixel values. 

Unity normalization has better and faster execution. In order to reduce the inner-class feature 

mismatch, which can be seen as intensity offsets, image normalization is a crucial pre-

processing approach. The normalized image can be denoted as Inor. 

                                                            𝐼𝑛𝑜𝑟 =
𝐼𝑟𝑒𝑑

||𝜈||
                                                                     (3) 

Here, ||𝜈|| denotes the vector of the pixels. 

3.2 Face Detection 

In this step, we detect the face from the pre-processed image using the VJS to facilitate the 

determination of the region of interest and subsequent feature extraction. The VJS process 

entails sliding feature boxes across the image and computing the difference in the summed 

pixel values between adjacent regions, represented as (d). This difference is then compared to 

a threshold value (Tf) to determine if an object, such as a face, has been detected. This method 

simplifies the identification of the region of interest and ensures accurate feature extraction 

from the detected face. The detected face (Iface) is computed as follows, 

                                                𝑇𝑓 =  {
𝑓𝑎𝑐𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑓 𝑇𝑓 > 𝑑

𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑓 𝑇𝑓 < 𝑑
                                                  (4) 

 

3.3 Cropping and skin tone analysis 

The detected face image is cropped to remove all the unwanted things from the image, such as 

the background, and to keep only relevant information in the image. After that, skin tone 

analysis is done to differentiate the parts presented over the face. Then, the image of the 

skin analyzed is denoted as Iskin.           

 

3.4 Patch Generation 

In patch generation, the different facial parts are segmented from Iskin to encourage extracting 

discriminative features from the minute parts using the LSW-KMC algorithm. K means is 

favored over other segmentation methods because of its ease of use and rapid computation 

speed. However, the spatial Euclidean distance-based characterization of the relationship 

between the image pixels and cluster center is more difficult since this distance alone is 

insufficient to understand the general characteristics. In order to get over the drawbacks above, 

the weighted sum of the image pixels was used to estimate the distance between each image 

pixel and the cluster center. After that, the structural similarity index calculates a local distance 

measurement to determine how far apart two image pixels are from one another in the overall 

image. This local distance computation reflects not only the physical relationship between two 



picture pixels but also the relationship connected to luminance and contrast, as well as the 

structure of the image pixels revolving around them. As a result, LSW-KMC serves as the 

inspiration for the proposed KMC. The steps of LSW-KMC are listed as: 

a) Initializing the pixels 𝜌𝑗 ∈ 𝐼𝑠𝑘𝑖𝑛
, presented as, 

𝜌𝑗 = {𝜌1, 𝜌2, 𝜌3, . . . . . . 𝜌𝑁}𝑤ℎ𝑒𝑟𝑒, 𝑗 = 1,2. ,3, . . . . . . 𝑁 (5) 

Here, j denotes the count of pixels of the skin tone detected image. 

b) Select the number of clusters that are defined by their centroids. Initially, the precise centers 

of the pixels are unknown, so the centroids Cm are chosen randomly to establish each cluster. 

𝐶𝑖 = 𝐶1, 𝐶2, . . . . . . . 𝐶𝑀         𝑖 = 1,2, . . . . . . . . . . . . . 𝑀  (6)     

Here, i represents the centroid (cluster centre). 

c) Calculate the weighted sum of the image pixels(⬚) by considering the essential 

distance (𝑑(𝜌𝑗 ,  𝐶𝑖)). 

𝑆 = ∑ 𝑊𝑅𝑑(𝜌𝑗𝑟 , 𝐶𝑖𝑟)𝑍
𝑟=1      (7) 

Here, 𝑊𝑅 denotes the weight associated with the distance (𝑑(𝜌𝑗 ,  𝐶𝑖)), 𝜌𝑗𝑟  represents the value 

of the point in the image located around the 𝜌𝑗 , 𝐶𝑖𝑟denotes centroids, and Z denotes the number 

of points in the skin tone detected image.  

d) 𝑊𝑅 is determined by looking at the coordinate distance ⬚⬚between 𝜌𝑗𝑟and 𝜌𝑗 . Therefore, 

the weights are, 

𝑊𝑅 =
1

(1+𝑑𝑟)𝐶𝑝𝑎𝑟𝑎
     (8) 

Here, 𝐶𝑝𝑎𝑟𝑎 represents the control parameter.  

e) Measure the structural similarity of the image. It considers the degree of similarity of 

luminance, contrast, and structure of the pixel and cluster center. The SSIM index(𝐷 ∈ 𝑆) 

between pixels and cluster center is defined as,  

𝐷 =
(2𝜆

𝜌𝑗𝜆𝐶𝑖
+𝜒1)(2𝜎

𝜌𝑗𝐶𝑖+𝜒2)

(𝜆
𝜌𝑗

2𝜆𝐶𝑖
2+𝜒1)(𝜎

𝜌𝑗
2𝜎𝐶𝑖

2+𝜒2)
    

(9) 

Here, 𝜆𝜌𝑗 and 𝜆𝐶𝑖
 denote the mean of 𝜌𝑗and 𝐶𝑖 respectively, 𝜎𝜌𝑗𝐶𝑖 signifies the cross-correlation 

between 𝜌𝑗and 𝐶𝑖, 𝜎𝜌𝑗
2 and 𝜎𝐶𝑖

2specifies standard deviation of 𝜌𝑗and 𝐶𝑖, respectively, 𝜒1 and 

𝜒2are the positive constants. 

f) Assign each pixel to a cluster where the distance between the pixel and the centroid is 

minimized.  

 

This process continues iteratively until the clusters stabilize and no further changes occur. This 

segmentation identifies and outlines standard and disease-affected regions in the resulting 

image, denoted as Iseg. The pseudocode for the proposed LSW-KMC means is: 

 



Input: Face detected image 𝐼𝑠𝑘𝑖𝑛 

Output: Segmented image 𝐼𝑠𝑒𝑔 

Begin  

Initialize 𝜌𝑛, number of clusters 𝐶𝑚, iteration (𝑖𝑡𝑒𝑟), maximum iteration (𝑖𝑡𝑒𝑟𝑚𝑎𝑥())
 

Perform clustering 

Select the number of centroids 

Set 𝑖𝑡𝑒𝑟 = 1 

While 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 

For each pixel, do 

 Calculate the weighted sum of image pixels 

Compute distance 𝐷 

𝐷 =
(2𝜆𝜌𝑖𝜆𝐶𝑖

+ 𝜒1)(2𝜎𝜌𝑗𝐶𝑖 + 𝜒2)

(𝜆𝜌𝑖
2𝜆𝐶𝑖

2 + 𝜒1)(𝜎𝜌𝑖
2𝜎𝐶𝑖

2 + 𝜒2)
 

End for   

Check all the pixels are presented under the cluster 

If (𝜌𝑛 == 𝑢𝑛𝑑𝑒𝑟𝑐𝑙𝑢𝑠𝑡𝑒𝑟) { 

Stop criteria 

} Else { 

Set 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 

} End if 

End While  

Return segmented image  

End 

 

3.5 Contour Formation and Edge Detection 

Here, the contour is formed over Is eg  using CGED to extract the facial parts more effectively 

from the occluded and mask-covered input images. For simplicity, the existing Canny Edge 

Detection (CED) is chosen for the proposed work. However, a drawback of the CED is that the 

default Sobel Operators are restricted to a fixed 3-by-3 window. This limitation can be 

problematic, particularly in noisy images, potentially compromising the final output. Our work 

employs a broader 5-by-5 Sobel Operator window to address this issue. This adjustment aims 

to produce a smoother image and reduce susceptibility to noise, thereby enhancing the 

effectiveness of the CED. In addition, the horizontal and vertical gradients are calculated using 

a Gaussian kernel rather than CED's standard convolution kernel to save time. Denoise image 

before detecting the edge of the image usually use the 5-by-5 Sobel Operator to reduce noise, 

according to (10), 

 

                                                               𝐼𝑑𝑒𝑛 = √𝛽𝑜
2 + 𝛽𝑡

2                                                        (10) 

To calculate the gradient intensity (B), use the Gaussian kernel and determine the edge 

direction (ϕ). Typically, the gradient direction is categorized into four angles: 0, 45, 90, and 

135 degrees. This process is defined by equations (11) and (12), 
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Where, o and  denote the pixel values in the o -axis and  -axis, respectively,   denotes the 

signum function. After the gradient and magnitude calculation, the entire image is scanned, 

unwanted pixel intensities are suppressed to 0, and the edges present are given as

finE ,...,2,1, = . Next, the hysteresis threshold is selected as high ( )lUp  and low ( )lLo . These 

thresholds analyze whether all the detected edges are edges or not. The thresholding function 

is given as, 
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Where  depicts the edge, if the edge  lies between, then lUp and lLo connected to edgeSure

is considered a valid edge. If the edge  does not connect to the sure edges and below, then 

lLo it is removed from the image as a non-edge. Finally, the edge-detected image is denoted as
edgeI .  

3.5 Contour Formation and Edge Detection 

After performing edge detection, the next step is to extract features to obtain detailed 

information from the input image. Texture features are extracted using the GF, a linear filter 

selected for its frequency and orientation representations that closely mimic the human visual 

system. The GF consists of a sinusoidal plane wave modulated by a Gaussian kernel function. 

According to the convolution theorem, the Fourier transform of a harmonic function and the 

Fourier transform of a Gaussian function combine to produce the impulse response of a Gabor 

filter. This filter captures orthogonal directions with both real and imaginary components. The 

process involves applying the GF to the input image to obtain the sinusoidal plane wave 

response, modulating this response with the Gaussian kernel function to capture both frequency 

and orientation information, and combining the Fourier transforms of the harmonic and 

Gaussian functions to generate the GF's impulse response. The real and imaginary components 

representing orthogonal directions are then extracted. These Gabor features (f1) are crucial for 

accurately capturing the texture information from the image, thereby enhancing the overall 

feature extraction process. 

( ) ( )( ) ( ) iiif  /2cos*2/exp 222

1 +−=    (14) 

Here,  and   denotes the wavelength and effective width, respectively. Additionally, various 

features such as geometrical features, appearance features, temporal features, HOG, SIFT, and 

Speeded-Up Robust Features (SURF) are extracted. The comprehensive set of extracted 

features ( )kf  can be summarized as follows:  

  Kkwherefffff Kk ....,.........3,2,1,....,.........,, 321 ==   (15) 

Here, K denotes the number of features.  

 

3.7 Dimensionality reduction 



In this step, the dimensionality of features is reduced kf to a lower-dimensional space using 

PIGA, which selects the most critical features to minimize training time during classification. 

Principal Component Analysis (PCA) is employed for its straightforward computation process 

and ability to eliminate correlated features. Principal Components aim to capture the maximum 

variance among the features. However, traditional PCA may lose some information compared 

to the original feature set due to the arbitrary selection of principal components. The research 

incorporates the Information Gain (IG) mechanism to address this issue and determine the 

optimal number of principal components. IG is an entropy-based feature estimation method 

that evaluates each feature individually, calculates its information gain, and assesses its 

importance on the class label. Each extracted feature is assigned a score ranging from 1 to 0, 

indicating its relevance from most to least important for setting the number of principal 

components. This approach ensures that principal component selection is fair and effective, 

preserving essential information while reducing dimensionality. 

Covariance matrix construction: The PIGA constructs a covariance matrix for the 

recognition process to get the eigenvectors. The covariance matrix ( )  construction is 

formulated as, 

( )( )Tk

K

k

k ff
K

=

=
1

1
      (16) 

Where, ( )T depicts matrix transpose. 

Eigenvalue calculation: The eigenvalue is calculated from the features as, 

( )( )kfKE = 1       (17) 

Where, E depicts the eigenvalue and ( )  depicts the decomposition function, which is given 

as, 

maincoDD=       (18) 

Here, maincoDD depicts the decomposition of two matrices of the features.  

Eigenvector estimation: For the features with high eigenvalues, the eigenvector ( )V  is 

calculated using the formula, 

EV .−=       (19) 

Here,  indicates a random constant value.  

Obtaining Principal Components: After the eigenvalues are estimated, the features with high 

Eigenvalues are derived as the principal components. The Principal components are calculated 

using IG, 

cencom Vp =       (20) 

Where, cen  depicts the kernel center. Thus, the selected features ( )sel

zF  are given as, 



 sel

Z

selselselsel

z FFFFF ,...,,, 321=      (21) 

Where thZ represents the number of features.  

 

3.8 Action Unit Identification 

Here, the CSE network determines the human AUs sel

zF for quickly identifying emotions during 

training. Human action units encompass various expressions and movements such as slit, eyes 

closed, squint, blink, wink, and others. They also incorporate actions such as raising the inner 

brow, raising the outer brow, lowering the brow, raising the upper lid, wrinkling the nose, 

raising the cheeks, tightening the lids, and drooping the lids. CNN is employed for its ability 

to handle high-dimensional data without significant information loss. However, in existing 

CNNs, many neurons still need to be updated because the ReLU activation function does not 

preserve negative values due to its monotonic and linear nature. The proposed method utilizes 

Hard Swish (HS), which is nonmonotonic and smooth, to address this issue. The nonmonotonic 

property of HS stabilizes the network's gradient, allowing it to maintain small negative values. 

Additionally, the CNN's embedding and correlated interference modules are crucial for 

effective recognition. These enhancements ensure that the network can better capture and 

process the nuances of human action units, leading to more accurate and robust recognition. 

The correlated interference module received and processed the discriminative AU features' 

estimations from the embedded module. It calculates the correlations between the 

differentiating characteristics. As a result, the planned CNN is known as CSE. 

 

Figure 2: Architecture of the proposed CSE 

3.8.1 Input layer: The input layer of a neural network is composed of artificial input neurons 

that feed the initial data into the system, setting the stage for processing by the successive layers 

of artificial neurons. 

3.8.2 Convolution Layer: In the convolution layer, an element-wise product is calculated 

between each element of the kernel and the input array at every position within the tensor. 

These products are subsequently summed to generate the output value for the corresponding 

location in the output array. This process is repeated with multiple kernels to generate diverse 

feature maps. Then, convolution ( )conL  is expressed as, 

( ) ),(),( uuwuhugFL sel

z
uu

con −−=
    

(22) 

Where, g and h are the input matrix dimension size, ),( uuw  represents the kernel having uu  



dimension size. The convolution parameters can reduce the model's complexity.  

3.8.3 Nonlinear activation function: The HS activation function is used for this purpose. The 

main task of using nonlinearity is to adjust or cut off the generated convolution output. The 

activation function is expressed in the mathematical representation as, 

( )
6

36 +
= con

con

LR
LA

      

(23) 

Where, A  denotes the output of the HS activation function and R  denotes the ReLu activation 

function. 

3.8.4 Embedding Module and Correlated Interference Module: In this step, the features 

derived from the nonlinear function are fed into the embedding module. This module utilizes a 

deeper convolutional network as a feature extraction mechanism, enhancing the capacity for 

feature representation by extracting discriminative AU features. Then, the output of the 

embedding module is calculated as,  

( ) ( ) uuwAEmbedAemb ,=      (24) 

Here,  Embed signifies the embedding function. The discriminative AU features are given 

into the correlated interference module, which efficiently calculates the correlation between 

the features, and it is represented as, 

( ) ( ) ( ) ( ) 
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Here, 
corrA specifies the output of the correlated interference module. 

3.8.5 Pooling Layer: A pooling layer executes a standard down-sampling action that reduces 

the in-plane dimensionality of the feature maps. It outputs the maximum value found within 

the pooling filter, using this value as the result. The pooling (Lpool) operation can be expressed 

as:  

1+
−

=
S

wA
L

corr

pool

     
 (26) 

Where, S represents the kernel strides. The process keeps on going until it reaches the last layer.  

 

3.8.6 Fully connected layer: The final convolution or pooling layer's output feature maps are 

often flattened, becoming a one-dimensional array of numbers. The last completely linked layer 

has an equal number of output nodes corresponding to the number of classes. Calculating the 

flattened output as, 

𝐿𝑓𝑢𝑙𝑙𝑦 = 𝐿𝑝𝑜𝑜𝑙 − (𝑤(𝑢 × 𝑢) − 1)
     (27) 

Where, fullyL is the output of the fully connected layer. 

 

3.8.7 Softmax layer:  



The activation function, primarily used in the output layer, normalizes the real values in the 

range (0, 1) from the last fully connected layer into target class probabilities. This is achieved 

using the softmax function, which is defined by the following equation, 

𝐿𝑠𝑜𝑓𝑡 =
𝑒

𝐿𝑓𝑢𝑙𝑙𝑦

∑ 𝐿𝑓𝑢𝑙𝑙𝑦

      

(28) 

Where, Lsoft is the output of the softmax activation function. Later, the loss function is evaluated 

using the below equation,  

𝑙𝑜𝑠𝑠 = ‖𝑂𝑡 𝑎𝑟𝑔 𝑒𝑡 − 𝐿𝑠𝑜𝑓𝑡‖
      (29)

 

Here, Otarget specifies the target output. Finally, the identified AU is denoted as (Lsoft). The 

pseudocode of the proposed CSE is, 

 

Input: Dimension reduced features ( )sel

zF  

Output: Action units ( )softL  

Begin 

 Initialize parameters conL , ),( uuw
poolL  

 Compute weight value  

 While Ztoj 1=  

 For 1=j  

   Compute convolution operation  

    Evaluate activation function 

    
( )

6

36 +
= con

con

LR
LA

 

   

Compute Embedding Module 

   Perform Correlated Interference Module 

 End for  

 While Ztoj 2=  
 For 2=j  

   Compute convolution operation  

    Evaluate activation function 

    
( )

6

36 +
= con

con

LR
LA

 

   Compute pooling operation poolL  

  End for  

 End while 

 Flattening all the layers 

 Evaluate softmax activation function softL  

 If ( )softLett OO arg  

  Stop criteria 

 } else { 

Set 1+= iteriter  
      } End if 



 
Return softL  

End  

 

3.9 Emotion Classification  

The Pizam-ANFIS is used to categorize the types of emotions by taking the input as selected 

features and action units from the occluded and mask-covered input images once the action 

units have been identified. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a 

computational and predictive model that integrates the fuzzy Sugeno method with an adaptive 

neural network system. However, the adapted Sugeno fuzzy interference system introduces 

computational complexity while designing the higher-order fuzzy models. To avoid this issue, 

the Mamdani fuzzy interference system in the defuzzification process is induced with 

modification in the existing ANFIS. It uses the center of gravity technique for the 

defuzzification process, and the bell membership is replaced with the Piz membership function, 

which reduces the computational complexity and produces effective outcomes.  

Here, the second layer performs the fuzzification process, with the nodes in this layer being 

adaptive. The fuzzified output for the th layer   is, 

( )
hW 1=

      
(30) 

( )
vW 2=

      
(31) 

Where, 1  and 2 represent input node, hW  and vW  denotes value of weights,   denotes Piz 

membership function (layer1), and it is calculated as,  
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Here, points denote the feature and AU points. In the third layer, the output signals from the 

previous layers are multiplied. This layer processes the outputs from the second layer  , 

resulting in:  

( ) ( )
vh WW  21 *=

     
(33) 

The output of each node represents the firing strength of the rules. In the fourth layer, the 

output, described as the normalized firing strength ( )* , is mathematically represented using 

the Radial Basis Function (RBF) as follows, 

( ) ( )( ) b
vh W

i

W +=   ,2

*
    (34) 

Here,  and b denote kernel and bias. The consequent part of the fuzzy rules is executed in the 

fourth layer. The nodes in this layer are adaptive, and the node function is formulated as 

follows, 
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Where, i ia  and iL  denote linear adaptive parameters, 


−









 represent defuzzification using 

the Mamdani interference system’s defuzzification process. Finally, the last layer predicts the 

emotion of the human ( ) , and it is represented as, 

( ) ( ) ++= iiii La 21

*


     
(36) 

After training the proposed network, the image, which has to be tested, is given to the system 

for testing. By testing the data, the output layer classifies the emotions as Neutral, Happiness, 

Fear, Surprise, Anger, Disgust, and Sadness. 

 

4.  Results and Discussion 

This section details the experiments performed on the PYTHON platform to validate the 

proposed scheme's performance. The experiments utilized a synthetic dataset created from 

publicly available sources. The dataset was split into two segments: 80% of the images were 

allocated for training, while the remaining 20% were reserved for testing. Sample images from 

the dataset were processed and incorporated into the operation, as depicted in Figure 3. 

 
 

 

 

 
(a) 

 
 

 
(b) 

 

 

 
(c) 

 

 
 
 

(d) 

 

Figure 3: Sample images of a human face with an emotion (a) input images (b) Face 

detected image (c) Patch generated image (d) Edge detected image 
 

4.1 Performance analysis of proposed CSE-Pizam-ANFIS 

To thoroughly assess channel estimation performance, the anticipated CSE-Pizam-ANFIS 

algorithm was benchmarked against several well-established methods. These included the 



ANFIS, CNN, Long Short-Term Memory (LSTM) network, and ANN. The efficacy and 

advantages of the CSE-Pizam-ANFIS approach in channel estimation were effectively 

validated by conducting a comprehensive comparison with these existing algorithms. 

 

Figure 4: Illustrative comparison of the proposed and existing models (right-hand side): (a) 

Accuracy, Precision, Recall metrics, (b) Sensitivity, Specificity, and F-measure parameters. 

 

Figure 4 presents a detailed assessment of the proposed CSE-Pizam-ANFIS model's 

performance in comparison to existing models, focusing on key metrics such as accuracy, 

precision, recall, sensitivity, specificity, and f-measure. Higher values in these metrics indicate 

more efficient model performance. The proposed CSE-Pizam-ANFIS model achieves an 

impressive accuracy of 99.28%, which is notably higher than the accuracy of the existing 

models: ANFIS at 97.22%, CNN at 95.24%, LSTM at 93.34%, and ANN at 90.97%.  

 

In addition to accuracy, the proposed model excels in other metrics. It records a precision of 

99.67%, a recall of 99.35%, a sensitivity of 99.35%, a specificity of 99.09%, and an f-measure 

of 99.51%. These values surpass those of the existing models, demonstrating the superior 

performance of the proposed model across all evaluated aspects. This comprehensive analysis 

underscores the effectiveness of the proposed model in AU classification and emotion 

classification tasks, significantly outperforming current alternatives. 
 

Table 1: Performance evaluation of proposed and existing models 
 

Techniques FPR FRR FNR PPV NPV MCC 

Proposed CSE- 

Pizam-ANFIS 

0.00900901 0.006451613 0.006452 0.996764 0.9821429 0.9871895 

ANFIS 0.02484472 0.11764706 0.029412 0.985075 0.9515152 0.971719 

CNN 0.05932203 0.04290429 0.042904 0.976431 0.8951613 0.8845861 

LSTM 0.0610687 0.068965517 0.068966 0.971223 0.8601399 0.8544533 

ANN 0.11764706 0.077192982 0.077193 0.942652 0.8450704 0.7963936 

 

Table 1 provides a comprehensive performance evaluation of the proposed and existing models 

using various metrics: False Positive Rate (FPR), False Rejection Rate (FRR), False Negative 

Rate (FNR), Positive Predictive Value (PPV), Negative Predictive Value (NPV), and Matthews 

a b



Correlation Coefficient (MCC). Higher values of FPR, FRR, and FNR indicate improved 

performance of the proposed model, while lower values of PPV, NPV, and MCC demonstrate 

its higher efficiency. For example, the proposed model shows a 63.78% improvement in FPR 

compared to ANFIS, 84.81% compared to CNN, and 92% compared to ANN. Additionally, 

the FRR of the proposed model is 94.51% better than that of LSTM and other existing models. 

Similarly, the FNR, PPV, NPV, and MCC metrics for both the proposed and existing models 

have been analyzed and compared. This detailed analysis reveals the superior efficiency and 

performance of the developed AU and emotion recognition system. 
 

 

 

Figure 5: Computational time analysis 
 

Figure 5 illustrates the computational time analysis, comparing the proposed and existing 

models. Attaining a Lower time for the proposed model indicates the efficient time of 

the proposed model. Here, the training time of the proposed model is 47015ms, whereas the 

existing ANFIS (52009ms), CNN (58006ms), LSTM (63006ms), and ANN (67010ms) take 

more time to train the proposed model. This can be achieved by inducing the HS and 

embedding a correlated interference module to stabilize the network's gradient and efficiently 

recognize action units. Additionally, the Piz membership function and the Mamdani 

defuzzification method were introduced, which aids in the classification of emotions for 

computational complexity. 
 

4.2 Performance analysis of patch generation 

To highlight the advantages of our proposed model, we evaluated the performance of the LSW-

KMC. We compared it to existing models using metrics such as the Jaccard Index, Dice score, 

and Clustering Time. 
 

 

 

 

 

 

 

 



                Table 2: Jaccard Index                                            Table 3: Clustering time analysis 
 

 

 

Table 2 presents a detailed analysis of the Jaccard Index for both the proposed and existing 

models. The Jaccard Index measures the similarity between pixel groupings across different 

clusters, with one indicating that two clusters have perfectly extracted the same pixels and 0 

indicating no overlap. The proposed model achieved a Jaccard Index of 0.03263298, 

demonstrating superior performance compared to the existing models, which showed lower 

coefficients. This result underscores the enhanced effectiveness of our new patch generation 

technique in accurately identifying similar clusters. 

 

 

Figure 6: Dice score analysis. 

 

Figure 6 comprehensively analyzes the Dice scores, comparing the proposed model with 

existing models. The Dice coefficient, which measures the pixel-wise agreement between 

predicted segmentation and the corresponding ground truth, shows that the proposed model 

achieved a Dice score of 0.8245. This performance significantly surpasses that of the existing 

models: K-Means with a score of 0.60973, Fuzzy c-Means (FCM) with 0.5582, K-Medoid with 

0.52096, and Clustering Large Applications (CLARA) with 0.5007. This analysis highlights 

the superior performance of the proposed method. Furthermore, Table 3 presents the 

performance results, underscoring the proposed model's efficiency in terms of clustering time. 

The proposed model's clustering time is 38010ms, showing an improvement of 4995ms over 

K Means, 9001ms over FCM, and 18002ms over CLARA. This indicates that the LSW-KMC 

technique generates facial parts with greater accuracy and in a shorter time frame. The overall 

Method Jaccard Index 

Proposed LSW- 

KMC 

0.03263298 

K Means -0.0690296 

FCM -0.068997 

K Medoid -0.0690228 

CLARA -0.069018 

 

Method Clustering Time (ms) 

Proposed LSW- 

KMC 

38010 

K Means 43005 

FCM 47011 

K Medoid 53010 

CLARA 56012 

 



success of the proposed model is attributed to the careful selection and modification of existing 

patch generation techniques, as established in previous studies. By refining these existing 

models, the proposed approach effectively generates accurate facial parts more efficiently. 
 

4.3 Comparative Evaluation of the Suggested and Earlier Approaches 

 

Figure 7: Comparison of Accuracy between Proposed and Existing models 

 

In this section, the performance of our proposed methodology with existing hybrid approaches 

developed by Hussain & Salim Abdallah Al Balushi (2020), Hassan & Mohammed (2020), and 

Mehendale (2020) based on their classification accuracy is compared. Figure 7 illustrates the 

accuracy performance of our proposed framework under various conditions. Our model 

consistently demonstrated superior performance across all tested scenarios. The existing 

models utilized different techniques: Hussain & Salim Abdallah Al Balushi (2020) employed 

a graph mining scheme, Hassan & Mohammed (2020) used a CNN model, and Mehendale 

(2020) applied FERC. In contrast, our proposed PAFEROFA model achieved higher accuracy 

in emotion classification, which is attributed to using CSE and PIGA techniques for 

recognizing AUs and selecting optimal features for training, respectively. Therefore, it is 

evident that the overall performance of our proposed methodology surpasses that of the existing 

techniques. 
 

5. Conclusion 

FER is a crucial method for assessing emotional states. However, traditional recognition 

models often struggle with accuracy due to challenges like partial occlusion and wearing face 

masks. To address these issues, we have developed a novel FER method. The process begins 

with pre-processing the input image and detecting the face. Differential parts of the face are 

then extracted using the LSW-KMC method, which identifies a similarity score of 0.0326 

within a time frame of 38010ms. Following this, feature extraction and selection are performed 

using the PIGA technique, which is known for its high efficiency. These selected features 

classify Action Units (AUs) with a trained neural network model. Later, the features and AUs 

are fed into the Pizam-ANFIS classifier to determine the emotions. Our proposed CSE-Pizam-

ANFIS model achieved an impressive accuracy of 99.28% and a computation time of 47015ms. 



The proposed FER system demonstrated high efficacy, even under the challenging conditions 

of partial occlusion and face masks. Therefore, our proposed model outperforms existing 

methods. Currently, the model is designed to recognize emotions in individual subjects. Future 

research will focus on advancing emotion recognition from video inputs involving multiple 

people. 
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