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Abstract: Context: Vehicles are essential components of vehicular networks: they function as mobile nodes that exchange and
disseminate vital information including emergency warnings, safety alerts, and updates on passenger enjoyment. As a result, the network
experiences high data flow and a notable rise in data traffic. ICN architectures have been established in contrast to standard host-centric
IP networks, which find it difficult to suit the dynamic needs of vehicular networks. ICN caching makes it possible to store content on
the network, decreases content latency, and improves content accessibility.
Objective: This work aims to optimize content delivery in vehicular networks using ICN networks with efficient caching decisions.
Method: An efficient SH-based (Stretch and Hop) caching strategy is proposed to select the cache node with more interfaces in a
delivery path. The interest and data packets are modified to identify the bridge node by adding H and stretch fields in the packets.
Further, a novel cache replacement policy called PRPI (Popularity-Recency-Probability-Interfaces) eviction policy is proposed to remove
outdated data from the cache node when storage is full. PRPI policy considers the content’s popularity, recency score, probabilistic
factor, and incoming interface score to calculate eviction value. The content with the least eviction value is selected to remove from the
cache.
Result: The proposed work is evaluated using simulation, and the results show better efficiency in terms of cache hit ratio, content
retrieval delay, and stretch ratio.
Conclusion: Using ICN caching in vehicular networks increases content availability in a network. The proposed work uses a high
interface node to cache the content and removes the outdated content by considering multiple factors. This method leads to storing the
fresh content at a more connected node, which can satisfy more requests.
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1. INTRODUCTION
Vehicular networks, including Vehicular Ad-hoc Net-

works (VANETs) and the more recent vehicle-to-everything
(V2X) networks, have become a significant focus for re-
searchers, academics, and industry professionals. These
networks offer various applications, such as enhancing road
safety, improving traffic flow, providing entertainment for
drivers and passengers, and offering environmental benefits
[1] [2]. Automobiles and transportation networks have long
been a focus of research in relation to vehicular com-
munication technologies. Vehicle-to-vehicle (V2V) com-
munication allows for direct interaction between vehicles,
removing the necessity for distributed or central servers for
data distribution or storage. The communication founda-
tion of cutting-edge technologies like linked autonomous
cars, intelligent transportation systems, and smart cities
is provided by vehicular ad hoc networks, or VANETs.
There has been a significant growth in data traffic within
VANETs due to their wide range of uses, as well as
the growing number of linked vehicles and the increased
use of high-bandwidth apps like social networking and
video streaming [3] [4]. In VANETs, vehicles, including

both drivers and passengers, can share and receive real-
time information with minimal delay. This information
includes details on road safety, traffic conditions, accidents,
weather updates, parking availability, promotional offers,
and targeted advertisements. Most existing architectures for
vehicular networks rely on the TCP/IP stack, necessitating
a node to locate the address of the content source and
establish a route before accessing the content. This process
complicates application development for vehicular networks
due to the challenge of maintaining routes in high-mobility
environments [5]. Assigning IP addresses to vehicles in such
dynamic settings is particularly difficult. Consequently, a
host-free connection model and content-centric architecture
are favored for vehicle-to-vehicle networks.

Named Data Networking (NDN), a novel Information-
Centric Networking (ICN) architecture, emphasizes content
as the primary network element [6]. NDN nodes utilize
application-level content names to exchange and retrieve
data packets directly, bypassing the need for IP addresses
[7]. This model incorporates in-network caching, making
NDN particularly effective for wireless environments char-
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acterized by mobility and intermittent connectivity, such as
delay-tolerant, opportunistic, and vehicular networks [8].
Unlike traditional systems, NDN nodes possess content
stores that hold data. This supports node mobility, as the
content store can adapt to users’ content demands [9][10].

ICN offers several benefits in vehicular environments.
One key advantage is content-based security, where infor-
mation is tied to the content rather than the communication
channel. In-network caching helps address mobility issues
by allowing consumer vehicles to retrieve content from the
nearest cache points. Routing and forwarding are based
on the requested content instead of the host or provider’s
location. This approach supports high-speed vehicle move-
ment and enhances content security against attacks targeting
host addresses, such as DoS attacks. Overall, ICN caching
improves efficiency in vehicular networks by ensuring faster
and more reliable content access despite the mobility of ve-
hicles [11] [12]. Caching content replicas by network nodes
is a built-in feature of ICN, offering several benefits, such
as reduced content retrieval delay, shorter path stretches,
decreased network traffic, and optimal resource utilization.
However, effectively caching multimedia content replicas
remains a challenge. This challenge revolves around three
main questions: 1) Where should replicas be cached? 2)
What content should be cached? 3) How should the cached
content be distributed to users? Considering all these ben-
efits and challenges of ICN caching in vehicular networks,
the contributions of the proposed work are listed below.

1) Developed an ICN-SH-based content caching strat-
egy for vehicular networks to optimize content deliv-
ery by considering the stretch (path length) and hop
count, ensuring more efficient routing and reduced
latency.

2) The Proposed caching strategy selects nodes with a
higher number of interfaces, allowing bridge nodes
to cache data and satisfy more requests.

3) Introduced a novel cache replacement algorithm
called PRPI to manage cache content when storage
is full.

4) To improve the accuracy of cache eviction decisions
by considering multiple factors, the PRPI algorithm
uses a combination of popularity score, recency
score, probabilistic factor, and incoming interface
score to decide which content to evict.

5) Proposed work is simulated using the ICARUS simu-
lator, demonstrating improvements in Cache Hit Rate
(CHR), Cache Response Delay (CRD), and Stretch
Ratio (SR).

A. Organization of this paper
The remainder of this paper is structured as follows:

Section 2 reviews related work on ICN-caching in vehicular
networks. Section 3 outlines the problem statement and the
objectives of the proposed study. Section 4 provides an
introduction to NDN packet processing. The system design
of the proposed work is detailed in Section 5. Section 6

presents the proposed E2C2 strategy. The proposed cache
eviction policy is discussed in Section 7. Section 8 offers
evaluation results of the proposed approach. Finally, Section
9 concludes the paper and suggests directions for future
research.

2. Related works
Caching in ICN plays an important role since it’s in the

early stage of development and has gotten most of the re-
searcher’s attention in recent years. Since each node in NDN
has limited cache capacity, many researchers concentrated
on cache management strategies [13] [14]. Deciding which
node should cache which data to achieve higher efficiency
becomes a major challenge. Hence, most researchers pro-
posed caching strategies based on the method of forwarding
packets with caching mechanisms [15]. In these strategies,
nodes handle cache management independently based on
the node’s parameters, or sometimes, nodes cooperate with
other nodes to achieve maximum cache efficiency [16].
Caching all content at all nodes is called CEE [17] and
is an in-built cache strategy of ICN. This caching strat-
egy increases the redundant caches in the network and
inefficient usage of resources. LCD (Leave Copy Down)
caching strategy is developed to reduce redundancy [18]. It
reduces redundancy by caching the most popular content at
edge nodes; however, when requests increase for particular
content, it leads to a cache at all nodes. Probabilistic-based
caching (ProbCache) [19] is also a primary caching mecha-
nism based on the probability value p, which enables a high
probability of storing content at edge nodes without consid-
ering the popularity of the content and also increases the
pressure on the edge nodes. Hence, caching strategies will
be concentrated more on cache placement, which is where
to store the content and cache replacement, that is, which
content should be replaced from the cache. [20] proposed an
energy-efficient content placement that caches the content
at edge nodes by considering the residual energy of the
node, content popularity, and cache gain value. This work
supports efficient usage of cache resources by checking the
remaining energy of the node before selecting it to store
the content. However, the authors have not considered the
node’s importance in the network. [21] a novel ICN-based
proactive LRF caching method for VANETs. When material
is proactively placed at the right nodes, VANET perfor-
mance is optimized. Furthermore, the suggested approach
guarantees the prompt distribution of messages pertaining to
safety. [22] a region-based classification for vehicular net-
work components improves content caching diversity and
reduces transmission delay. Vehicles use a strategy to fetch
requested content from their current or neighboring regions,
considering transmission delay and connection handover. A
proposed caching strategy for transient content in VENs
enhances content availability, prioritizing items with longer
lifetimes and high popularity if they are less distributed in
the region. This approach optimizes fast content delivery
and efficient caching in vehicular networks.
[23] a Popularity-Incentive Caching Scheme has been intro-
duced. A Stackelberg game is modeled considering rational
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utilities to address the conflict of interest between the base
station (BS) and vehicles. The proposed solution to this
game model is evaluated, including the impact of various
weight parameters.
[24] proposes a proactive in-network caching scheme to
improve data sharing. The scheme begins by dividing each
onboard service into multiple content units cached at ICVs
and small cell base stations to reduce content retrieval
delays. The system is modeled as an INLP problem to
optimize QoE by strategically placing content units at
suitable caching locations.
[25] A new system for delivering content in vehicular
networks has been proposed, which considers social inter-
actions and traffic conditions. The system includes three
main parts. First, a special search algorithm is used to find
the shortest and most relevant paths for content delivery by
looking at social connections between vehicles. Second, a
recommendation scheme is used to suggest content based on
the social context of the vehicle, using a technique called
”vehicle2vec” to store information about previously con-
sumed content. Finally, DRL is used to efficiently distribute
content provider vehicles throughout the network, ensuring
that content is delivered quickly and efficiently to where it
is needed most.
[26] a new edge-computing-enabled hierarchical cooper-
ative caching framework has been implemented. Firstly,
the spatio-temporal correlation between historical vehicle
trajectories and user requests has been deeply analyzed.
A system model has been constructed to predict vehicle
trajectories and content popularity, forming the basis for
mobility-aware content caching and dispatching. Privacy
protection strategies have also been explored to create a
privacy-preserved prediction model.
[27] an efficient cluster-based caching in NDN NDN-VN
has been proposed. This ensures that consumers receive
content proactively after handover during their mobility.
Additionally, the A-CB-PC-DMM method in the NDN-VN
has been developed to improve the packet delivery ratio and
to reduce handover delay and cluster overhead.
[28] a cooperative content caching approach is proposed
for VENs. This approach utilizes K-means clustering to
manage multi-tier caching servers, including base stations
and roadside units, to collaboratively store identical content
across various servers. Communication models for V2V and
V2I interactions are developed, along with content caching
and delivery models. The cuckoo search algorithm is then
applied to determine vehicle locations and optimize content
delivery according to these models.
[29] a TOCP scheme is proposed for CCVNs based on
tolerable delay time. First, a numerical model is provided
to determine the necessity of precaching by calculating
the possibility of content provision. Then, a Delay-tolerant
Content Management Module (DMM) is created to manage
updated information. New packet formats are designed to
reduce the movement of large-size content, achieving the
optimization goals of TOCP.
[30] a collaborative caching method is introduced, organiz-
ing vehicles into clusters with a designated head to manage

caches across the cluster. This strategy enables vehicles to
access content cached on nearby vehicles even if they are
not directly in the communication path.
[31] an EDC technique and a PACM have been proposed.
This method takes into account the location and mobility
speed of cars in a VANET and groups them into clusters
according to their placements. The purpose of this architec-
ture is to ensure consistent and dependable communication
between member vehicles (MVs) and cluster heads.
Each caching framework for vehicular networks has its own
benefits and limitations. The rapid increase in connected
vehicles generates significant traffic, creating numerous
challenges. Efficient resource utilization in these networks
is a complex issue. Energy consumption and computational
demands affect the performance and lifespan of network
components in vehicles. Solutions must balance these fac-
tors carefully to avoid optimizing one at the expense of
others. Therefore, further research and the creation of strong
caching systems and strategies are essential to fully use
vehicular networks’ potential in ICN.

3. Problem description and objectives
In vehicular networks, efficient content caching is crit-

ical for ensuring timely data delivery and optimal network
performance. Traditional caching strategies often fall short
in dynamic and resource-constrained environments, such
as those encountered in vehicular networks. To address
these challenges, ICN caching has emerged as a promising
approach. Current caching strategies do not adequately
consider the stretch (path length) and hop count, leading
to inefficient routing and higher latency in content delivery.
The problem statement of the proposed work is to develop
an efficient content caching strategy and novel replacement
algorithm for optimized content delivery in vehicular net-
work by considering stretch ratio and number of interfaces.
The objectives of the proposed work are:

1) To optimize content delivery in vehicular network
and improve cache eviction accuracy.

2) To enhance node selection for caching in vehicular
network.

3) To increase the cache hit ratio of vehicular network.
4) To decrease the content retrieval delay in vehicular

network.
5) To decrease the number of hops travelled to deliver

the content.

4. NDN: An Overview
In this section, we briefly introduce the NDN working

process along with packet structures. ICN is a future inter-
net architecture that resolves almost all IP-based network
issues, such as routing and content-sharing issues based
on addresses. ICN focuses on content rather than end-to-
end connections between the source and destination for
content retrieval. The data or information vehicles produced
in vehicular networks can be considered content. Vehicles or
consumers can request content in the network by using the
name of the content without worrying about the location of
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the content producers. Each node in an ICN network works
as a replica node using cache stores. Content stored at cache
nodes served for future requests instead of reaching till
original content producers. Enabling caching at intermediate
nodes is called in-network caching in ICN. This is the most
used feature of ICN. This in-network caching enhances data
availability and data retrieval and reduces the latency in the
network. Among all ICN projects, NDN is the most used
project by researchers and is well suitable for vehicular
networks. NDN is considered a promising architecture for
the future of computer networks, providing a means to
efficiently communicate data and content in the upcoming
Internet era. NDN transfers the current IP-based network to
a content-based network by addressing the content instead
of the traditional host addressing method by allowing hosts
to name the appropriate content [32].

The NDN architecture employs hierarchically structured
names that are easily readable by humans. These names
identify specific data, enabling content discovery and de-
livery to request consumers [33]. Communication in NDN
happens through two types of packets: 1) Interest packet:
Generated by the requester or consumer to request the
particular content when needed. 2) Data packet: Generated
by the producer as a response to consumers, which contains
the data requested by the consumer and produced by the
producer. The intermediate nodes in NDN are responsible
for caching the content and acting as relay nodes. They
forward the interest packet to producers, and the data packet
is sent downward to consumers. These are called replica
nodes because they store a copy of the content in their
buffers while receiving the data packet. This copy is stored
to fulfill future requests. The content name is added to
both the interest and data packet, and the interest packet
is forwarded hop-by-hop using the content name until it
finds the corresponding content in the replica node or the
original content producer. The same content name is added
to the data packet while it travels back and follows the same
path that the interest packet used. NDN is a receiver-driven
architecture where each node in a network maintains three
data structures. 1) Content Store (CS): Each node caches
the content in CS and serves the future request without
forwarding the request to the primary content provider. This
increases the content-sharing probability, saves bandwidth,
and decreases the content retrieval delay [34].
2) Pending Interest Table (PIT): If the requested content is
available at the received node, it sends a data packet to the
user. The request count will be added to PIT if the data is
unavailable. If the same content request is already available,
then the count is increased else, the new request is added.
It helps to cache the content while encountering the data
packet [35].
3) Forward Interest Base (FIB): FIB functions similarly to a
routing table of the current architecture. It maintains records
of all incoming and outgoing interfaces. Used to forward
interest to the most suitable hops.
The communication process within the NDN network is
depicted in Figures 1 and 2. The node checks its CS for

Start

Interest packet
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Found in
 CS?

Generate data
packet and send to

user

Found in
 PIT?

Aggregate interest to
matched entry

Found in
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Forward interest to
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Add new entry in
PIT

End

Discard interest
packet

No No No

YesYesYes

Figure 1. Interest packet processing in NDN

the desired data when it obtains the interest packet. If the
data is available, it creates and transmits the packet to the
requester. Based on the FIB history, the request information
is added to PIT and the interest is passed to the subsequent
node. The request is aggregated if the PIT record for the
same content already exists; if not, a new entry is made.
A node verifies its PIT after receiving data packets from
other nodes. The node forwards the packet to every other
node that has previously requested the same content if it
discovers an entry that matches the content request. If not,
the node considers the packet to be unimportant. Based
on their respective caching policies, nodes along the data
pipeline decide concurrently whether to cache the data or
not.

A. Caching in ICN
One of ICN’s most prominent and well-researched as-

pects is the in-network content caching at intermediate
nodes. This feature has garnered significant attention from
researchers, as noted in references [36]-[37]. Intermediate
nodes can keep content retrieved from servers through in-
network caching. Many advantages come with this ap-
proach, including decreased network traffic, more effective
content distribution, fewer content retrieval latency, and
more network capacity by delivering requested content
closer to the user. However, there are a number of issues
with in-network caching, including security risks, cache
overflow, excessive duplication of cached content, and re-
strictions on where and how often data can be cached. All
of these problems have an impact on the network’s overall
performance. To efficiently manage ICN caches, a number
of caching techniques, content placement strategies, and
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Figure 2. Data packet processing in NDN

replacement algorithms have been presented.

5. System Design
This section discusses the main elements and structure

of our suggested approach.

A. Major components
The design of our suggested vehicular network is rep-

resented as a graph G = (V, E), in which V stands for
vertices, or vehicles, and E for edges, or connections.
V = v1, v2, v3, ....., vn represents the vertices, while E =
E1, E2, E3, ....., Em represents the edges. The contents that
are now available at the server are F = f 1, f 2, ....., f n. In
this network, requests are created by the end-user and are
responded to by the server. Data packets that are going via
an ICN network vehicle (vertex) can be cached. Every data
chunk on the network is provided by a single server, Vs. The
FIB’s forwarding plan determines how requests for these
pieces are sent. Every node vi has a variable power P(vi) and
a finite cache capacity C(vi), which are updated following
the transmission of each request or response packet via vi.

B. Assumptions
To improve understanding, let’s assume each content

chunk is uniform and represents the smallest unit for
caching within the network. The general assumptions of
this work are listed below:

• λ( f j, vi)= Speed of a request traveling from one node
to another.

• P( f j)= Local popularity of a content chunk traveling
from one node to another.

• T (t)= Time of the day. Because request frequencies
might vary at different times, with peaks during
certain hours.

The request frequency of content chunk f j at vehicle vi
is represented as:

Req( f j, vi) = λ( f j, vi) ∗ P( f j) ∗ T (t) (1)

A random number generator will be used to assign
power to each vehicle at random.

C. Optimization model
Our suggested approach seeks to reduce retrieval latency

and data redundancy in the network by optimizing content
placement on cache-capable vehicles. To improve caching
advantage and minimize path length, we address the prob-
lem of caching individual chunks on vehicles with different
power levels and storage capacities. The notations used in
this paper are shown in Table ??.

Notation Description
V Set of all nodes in the network
F Set of all content chunks
vi A node in the network
f j A content chunk
Req f j,vi

Number of requests for content
chunk f j by node vi

H(vi) Number of interfaces of node vi
B( f j, vi) Binary variable indicating if con-

tent chunk f j is cached at node vi
Stretch f j,vi Number of hops traveled by con-

tent chunk f j to reach node vi
size( f j) Size of content chunk f j
C(vi) Storage capacity of node vi
Hd Minimum required number of in-

terfaces for a node to cache content
Pi Popularity score of content item i
Ri Recency score of content item i
Qi Probabilistic factor of content item

i
Ii Incoming interfaces score of con-

tent item i
Ei Eviction score of content item i

Table I. List of Notations

For effective content caching in vehicle networks, we
formulate the following optimization function as a maxi-
mization problem:

max

∑
vi∈V

∑
f j∈F

(
Req f j,vi

× H(vi) × B( f j, vi)
)

−
∑
vi∈V

∑
f j∈F

(
Stretch f j,vi × B( f j, vi)

)
(2)

Subject to the constraints:
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1. Binary Caching Decision:

B( f j, vi) ∈ {0, 1} (3)

Each content chunk f j at node vi is either cached (B( f j, vi) =
1) or not (B( f j, vi) = 0). Ensures that content is either
cached or not at a node.
2. Cache Capacity:

B( f j, vi) × size( f j) ≤ C(vi) ∀vi ∈ V, f j ∈ F (4)

The total size of cached content at node vi should not exceed
its capacity C(vi). Ensures that the cached content does not
exceed the node’s capacity.
3. Single Instance of Content:∑

vi∈V

B( f j, vi) = 1 ∀ f j ∈ F (5)

Each content chunk f j must be cached at exactly one node
in the network.

Ensures each content chunk is cached at only one node
in the network.
4. Interface Requirement:

H(vi) ≥ Hd ∀vi ∈ V (6)

The interface count of node vi should be at least Hd. Ensures
nodes selected for caching have a sufficient number of
interfaces.
5. Eviction Strategy:

Ei =
1

Pi × Ri × Qi × Ii
(7)

The eviction score Ei for each content item i in the cache
is calculated based on its popularity score Pi, recency
score Ri, probabilistic factor Qi, and incoming interfaces
score Ii. Items with the lowest Ei score are selected for
eviction. Uses the calculated eviction score Ei to decide
which content to evict, prioritizing items with lower scores
for eviction.

By integrating these constraints and the objective
function, the proposed algorithm optimizes content caching
to enhance network performance, minimize latency, and
ensure efficient use of resources.

6. Proposed SH-based caching Strategy
To achieve efficient caching, content chunks should be

placed at nodes with more interfaces and enough energy to
serve more requests. This helps to reduce content redun-
dancy, path stretch, and bandwidth usage. The proposed
strategy considers the number of interfaces of a node in
the delivery path to select the optimal cache node. In the
proposed work, the packet is forwarded in two directions:
upstream and downstream. Upstream direction is when the
user sends the request through the interest packet and
forwards it upstream to the content producer. Downstream
is where packets route from producer to user. We have
modified the interest and data packets to identify each

node’s interface in the delivery path, as shown in Fig. 3.

Interest Packet

Content Prefix

H

Stretch

Data Packet

Content Prefix

H

Stretch

Data

Signature

Figure 3. Modified NDN packets

The H field in the interest and data packets represents
the number of hops connected to each node, which is the
number of interfaces. The Stretch field specifies the number
of hops traveled by each packet. The flowchart of the
proposed packet forwarding strategy is represented in Fig.
4. The main idea of our proposed strategy is in Algorithm
1 also listed below as different cases:

1) The main objective of the proposed work is to
determine a bridge node with a greater number of
interfaces in the delivery path.

2) The node with the highest number of interfaces in
the delivery path is selected to cache the content.

3) Each time an interest packet visits another node, it
follows the proposed upstream rules.

Upstream rules:
• When the interest packet reaches the next node,

i.e. next to the requester, the number of inter-
faces of that node will be added to the H field,
and the Stretch field value will be increased by
one. Initially, H and stretch values are zero.

S tretchnew = S tretchcurrent + 1 (8)

• The Existing value of the H field will be
replaced only if the number of interfaces of
the next visited nodes in a path is greater than
the existing H value in the interest packet.

Hnew = max(Hcurrent, interfaces of current node)
(9)

• : When interest visits the content producer, the
H filed will have the highest interface value.

• Increasing the stretch value to one when in-
terest visits a new node helps to identify how
many nodes that interest packet is passed to
reach the content producer.
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4) The data packet follows the proposed downstream
rules while traveling from the producer to the user.
Downstream rules:
• When a data packet is produced at the content

producer, the Stretch and H values of the in-
terest packet will be copied to the data packet.

• When the data packet visits the next nodes in a
path, then the value of stretch will be decreased
by one. This means that in the same path of
interest packet, the data packet is covered by
one node, and the remaining value indicates
how many nodes remain in the path.

S tretchnew = S tretchcurrent − 1 (10)

• Also, the H value of the data packet is com-
pared with the current node’s number of inter-
faces.

• If both the H value and the current node’s
interface value match, then that node will be
selected to cache the content.

• Since the dynamic nature of the vehicular net-
work, if the number of interfaces doesn’t match
any node value, then the node that exists next
to a user is selected to cache the data. It can
be identified when the stretch value becomes
zero.

5) When the selected cache node’s storage is full, the
unwanted data is removed using the proposed cache
replacement policy, and new data will be added.

7. Popularity-Recency-Probability-Interfaces (PRPI)
Eviction Strategy
We proposed a new cache replacement strategy to evict

the unwanted content from the cache when the cache is full.
We considered the popularity score, recency score, proba-
bility factor, and incoming interface score as a key points
to measure the unwanted data from the cache. Including the
number of incoming interfaces can add another dimension
to the eviction decision, reflecting the network traffic load
on each content item. Algorithm 2 explains the proposed
PRPI strategy. The key components of our proposed cache
placement strategy are listed below:

1) Popularity Score (Pi): The popularity score quan-
tifies how frequently a content chunk has been
accessed. This metric helps to identify the most
requested content within the network. Prioritizing
content with higher popularity scores for caching
ensures that the most in-demand content is readily
available. This reduces retrieval latency as popular
content is more likely to be cached near where it
is requested, improving overall user satisfaction. By
maintaining frequently accessed content within the
cache, the system can efficiently handle common
requests without repeatedly fetching the same data
from distant servers, thus optimizing network per-
formance and resource utilization.

Algorithm 1 Content Caching Based on Node Interfaces

Require: Network of nodes, Interest packets, Data packets
Ensure: Efficient content caching strategy

0: function ContentCaching(Network, InterestPackets,
DataPackets)

0: 1. Initialization:
0: Define H field in interest and data packets to repre-

sent the number of interfaces.
0: Define S tretch field to specify the number of hops

traveled by each packet.
0: 2. Upstream Process:
0: Objective: Place content at a bridge node with the

highest number of interfaces in the delivery path.
0: Interest Packet Handling:
0: for each interest packet visiting a node do
0: Add the node’s interface count to the H field.
0: if it is the first node after the requester then
0: Set the S tretch field value to 1.
0: end if
0: Replace the existing H value only if the current

node’s interface count is greater than the existing H
value in the interest packet:

0: Hnew = max(Hcurrent, interfaces of current node)
0: Increment the S tretch field by 1 for each new node

visited:
0: S tretchnew = S tretchcurrent + 1
0: At the content producer, the H field will hold

the highest interface value, and the S tretch field will
indicate the total number of nodes traversed.

0: end for
0: 3. Downstream Process:
0: Data Packet Handling:
0: for each data packet returning from the content

producer do
0: Copy the S tretch and H values from the interest

packet to the data packet.
0: Decrease the S tretch field by 1 at each node

visited:
0: S tretchnew = S tretchcurrent − 1
0: Compare the H value in the data packet with the

current node’s interface count.
0: if the H value matches the current node’s interface

count then
0: Select this node to cache the content.
0: else if no node matches the H value then
0: Select the node next to the user (identified when

the S tretch value becomes zero) to cache the content.
0: end if
0: end for
0: 4. Cache Management:
0: if the selected cache node’s storage is full then
0: Remove unwanted data as per the proposed cache

replacement policy.
0: Add the new data to the cache.
0: end if
0: end function=0
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Figure 4. Flow chart of the proposed interest and data packet processing
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Pi =
Number of accesses of content i in the time window

Total number of accesses in the time window

Pi =
ai∑N

j=1 a j
(11)

where ai is the number of accesses of content i and
N is the total number of content items in the cache.

2) Recency Score (Ri): The recency score indicates
how recently a piece of content has been accessed,
with higher scores for more recent accesses. Caching
content based on its recency helps the system adapt
to evolving user preferences and trends. By priori-
tizing recently accessed content, the cache stays rel-
evant and current, providing users with quick access
to the latest information. This method minimizes the
storage of outdated content, enhancing the overall
effectiveness of the cache.

Ri =
1
ti
·

1

max
(

1
t1
, 1

t2
, . . . , 1

tn

) (12)

where ti is the time since the last access of content i.

3) Probabilistic Factor (Qi): The probabilistic factor
adds an element of randomness to the caching de-
cision process, which can change according to a set
probability distribution. Incorporating a probabilistic
factor into the caching strategy adds an element
of diversity, reducing the predictability of eviction
decisions. This randomness prevents the cache from
becoming too homogenous and ensures a broader
range of content is available. It is particularly useful
in scenarios where content access patterns are highly
variable or unpredictable.

Qi ∼ U(0, 1) (13)

Where, Qi: Represents the random component for
content i. U: Denotes a uniform distribution. 0:
Lower bound of the uniform distribution. 1: Upper
bound of the uniform distribution.

4) Incoming Interfaces Score (Ii): The incoming in-
terfaces score measures the number of different in-
terfaces or sources requesting a particular content
chunk. This score reflects the demand for con-
tent from multiple points within the network. The
caching strategy prioritizes content in demand from
multiple sources by considering the number of in-
coming interfaces. This ensures that cache space is
used efficiently by storing content that benefits a
larger network portion. By serving content requested
from various nodes, the strategy reduces overall
bandwidth usage and minimizes path stretch, leading
to more efficient content delivery.

Ii =
ni

N
(14)

where Ii represents the score for content i, ni is the

number of different interfaces that have requested
content i, and N is the total number of interfaces.

The overall eviction value of each content can be
calculated as The overall eviction score (Ei) is calculated
as:

Ei = αPi + βRi + γQi + δIi (15)

where:

• Ei represents the eviction score for content i.

• α, β, γ, and δ are weights determining the importance
of each factor.

• Pi, Ri, Qi, and Ii are the Popularity Score, Recency
Score, Probabilistic Factor, and Incoming Interfaces
Score for content i, respectively.

Algorithm 2 PRPI Eviction Strategy

0: Input: Cache with content items
0: Output: Content item to evict
0: function EvictItem(Cache)
0: for each content item i in the cache do
0: Calculate Popularity Score (Pi) using Equation 11
0: Calculate Recency Score (Ri) using Equation 12
0: Generate Probabilistic Factor (Qi) using Equation

13
0: Calculate Incoming Interfaces Score (Ii) using

Equation 14
0: Calculate Eviction Score (Ei) using Equation 15
0: end for
0: Select item with the lowest Ei score for eviction
0: end function=0

A. Example scenario for selecting the content with the least
eviction score
Suppose you have the following content items with their

access patterns:

• Content A: accessed 10 times, last accessed 2 minutes
ago, requested from 3 interfaces.

• Content B: accessed 5 times, last accessed 1 minute
ago, requested from 1 interface.

• Content C: accessed 8 times, last accessed 5 minutes
ago, requested from 2 interfaces.

Popularity Scores:

PA = 10
PB = 5
PC = 8
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Recency Scores (assuming normalized inverse time):

RA =
1
2

RB = 1

RC =
1
5

Probabilistic Factors (random values between 0 and
1):

QA = 0.7
QB = 0.2
QC = 0.9

Incoming Interfaces Scores (normalized to 0-1):

IA = 1

IB =
1
3
≈ 0.33

IC =
2
3
≈ 0.67

Assuming equal weights for simplicity (α = β =
γ = δ = 1

4 ):

EA =
1
4

(10) +
1
4

(0.5) +
1
4

(0.7) +
1
4

(1)

= 3.05

EB =
1
4

(5) +
1
4

(1) +
1
4

(0.2) +
1
4

(0.33)

= 1.63

EC =
1
4

(8) +
1
4

(0.2) +
1
4

(0.9) +
1
4

(0.67)

= 2.44

Content B would be evicted in this example as it has
the lowest eviction score.

Benefits:

• Balanced Approach: Combines multiple factors to
make a more informed eviction decision.

• Network Demand Consideration: Includes the number
of incoming interfaces, which can reflect broader
network-wide demand.

• Reduced Predictability: The probabilistic factor in-
troduces randomness to prevent the eviction strategy

from being too predictable.

By incorporating these factors, the PRPI eviction strat-
egy provides an efficient approach to cache management,
potentially improving cache hit rates and overall network
efficiency.

8. Simulation results
To evaluate the proposed work, we used the ICN caching

simulator ICARUS [38]. Table II contains a list of all the
parameters utilized and the configuration of the system. The
Salama method creates a random network structure utilizing
an ICN network of 100 nodes. We consider the uniform
capacity allocation strategy, which means all cache nodes
have the same storage capacity. The content popularity
distribution follows Zipf’s law, 1/|K|α, which is widely
used in literature. The parameter α varies between 0.6 and
1.00 in the experiments. Higher α values indicate more
concentrated user preferences.

Table II. Simulation parameters

Parameters Default values
Total number of nodes 100

Number of servers 1
Number of cache nodes 30

User nodes 69
Request rate 15 req/sec
Cache size 10-100 MB
α value 0.6 to 1.0

A. performance metrics
To analyze the performance of the proposed work, we

have chosen the most commonly used performance metrics
in the existing works on ICN caching. ICN caching aims
to minimize content retrieval delay by efficiently managing
the available resources in the network. Therefore, most
researchers in existing works are concentrated on the lit-
erature on CHR, CRD, and Stretch ratio. Considering the
related works, the proposed work considered the following
performance metrics.

1) Cache Hit Ratio (CHR): CHR is a metric used
to evaluate the performance of a cache system by
comparing the number of interest packets success-
fully satisfied by the cache to the total number of
interest packets transmitted across the network. This
metric effectively measures the efficiency of routers.
Equation 16 provides the formula for calculating
CHR.

CHR =
cache hits

cache hits + cache misses
(16)

2) Content Retrieval Delay (CRD): It refers to the
time required to deliver content to a user. This
metric, known as delivery time, can be calculated
using the formula provided in Equation 17.
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CRD =
ctotal∑
i=1

IPD +
ctotal∑
i=1

DPD (17)

Where Ctotal is the total content chunks requested,
IPD is interest packet duration and DPD is data
packet duration.

3) Stretch Ratio (SR): The number of hops traveled
by the interest packet until the corresponding data is
found.

SR =
Number of hops traveled

Total number of hops from user to data producer
(18)

B. Evaluation results
The result of the proposed work is evaluated against

various existing strategies, namely, ProbCache, CL4M, and
LCD, which are explained in Section II. We divided the
evaluation into three subsections, using three major param-
eters: content popularity, cache size, and request rate. In
this context, the performance of the described algorithms
is evaluated by adjusting various parameters that influence
performance metrics. These measures include the average
delay for content retrieval, the hit rate, and the stretch
ratio—the decrease in the number of hops needed to get
content.

1) For varying content popularity We assessed the
effectiveness of several algorithms by manipulating
the Zipf-Mandelbrot distribution’s α skewness in-
dex, which signifies that requests focus on a more
limited set of content, thereby making that content
more popular. Fig. 5 shows the evaluation result of
the proposed work in terms of CHR for varying
popularity index. The graph indicates that when we
increase the popularity factor, then the CHR of all the
caching strategies increases. This shows that more
requests are focused on fewer items, making those
items more popular. Compared to existing strategies,
the proposed work indicates better performance.
The efficiency of the proposed work is calculated
by determining the average relative improvement.
The average relative improvement is found by taking
the mean of the relative improvements across all
data points for each comparison. The average rel-
ative improvements of the proposed method (CHR
ratio) over the other methods are as follows: pro-
posed method over ProbCache: ( 27.76%), proposed
method over CL4M: (28.00%), proposed method
over LCD: (33.78%). Fig. 6 shows the content re-
trieval delay for different popularity values. When
the popularity parameter increases, the delay de-
creases. This shows that when the popular content
becomes less, it easily stores those popular contents
in the cache and can satisfy many requests. The
popularity parameter becomes a major factor in the
proposed policy as we calculate the eviction score
to replace the content by using popularity as one
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Figure 7. SR for varying α values

of the major factors. The suggested policy inspects
the number of interfaces and stretch ratio for select-
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ing the best node for caching the content, which
enables the selection of the efficient node in the
network so that it can satisfy many requests. Whereas
the ProbCache only considers the probability value
to cache the content, the LCD leaves the content
downstream without considering the node’s position,
and CL4M focuses on graph-based centrality. Hence,
the proposed strategy yields better results than the
existing methods. The average relative improvements
of the suggested method over the other methods in
terms of CRD are as follows: Proposed method over
Probcache: 6.27% Proposed method over CL4M:
7.72% Proposed method over LCD: 3.92%. These
values represent the average percentage reduction in
the Content Retrieval Delay of the recommended
method compared to the other methods across all the
data points. This indicates that the proposed method
achieves a lower CRD, thus demonstrating improved
efficiency in terms of content retrieval time.
Fig. 7 depicts the stretch ratio for the increasing
popularity parameter. The proposed work selects the
efficient cache using the PRPI eviction policy and
stores content at the bridge node. It decreases the
number of hops required to travel in the delivery
path.
The average relative improvements of the suggested
method over the other methods regarding SR are as
follows: Proposed method over ProbCache: 7.25%
Proposed method over CL4M: 7.92% Proposed
method over LCD: 3.55% These values represent the
average percentage reduction in the Stretch Ratio of
the proposed method compared to the other meth-
ods across the evaluated data points. This indicates
that the proposed method achieves a lower Stretch
Ratio, thus demonstrating improved efficiency in the
number of hops traveled.

2) For varying cache size Fig. 8,9, and 10 repre-
sent the process of adjusting performance metrics
for different schemes by varying the cache size in
network nodes. The proposed workplaces content at
nodes with the highest number of interfaces in the
delivery path, and the replacement algorithm ensures
that frequently accessed content is cached at nodes
with higher connectivity. This increases the likeli-
hood that future requests can be served from these
high interface nodes, reducing the average content
retrieval delay. LCD strategy copies data down to the
node closest to the requester, potentially leading to
redundant caching and inefficient use of cache space.
Probcache and CL4M place content probabilistically
and based on the graph centrality along the path,
leading to random placement of content and non-
optimal cache hits. Hence, the proposed policy gives
better CHR, CRD, and SR results when we increase
the cache size.
The average relative efficiency of the suggested
technique when we increase the cache size over the
other methods in terms of CHR is 17.83% more
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efficient than ProbCache, 36.54% more efficient than
CL4M, and 9.94% better than LCD. The average
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relative efficiency of the proposed technique over the
other methods in terms of CRD when we vary the
cache size is 17.83% more efficient than Probcache,
23.22% more efficient than CL4M, and 8.75% effi-
cient than LCD. The average relative efficiency of the
suggested method over the other methods in terms
of SR for varying cache size is 12.67% efficient
than ProbCache, 16.63% efficient than CL4M, and
12.73% efficient than LCD.

3) For varying number of requests When we increase
the number of requests, the packets generated in
the network also increase. In the proposed work we
consider the interface count and strategically placing
content at high-connectivity nodes, the retrieval de-
lay is minimized as these nodes are likely to serve
more future requests efficiently. The proposed work’s
stretch and H field mechanism allows dynamic ad-
justments based on current network conditions, fur-
ther reducing the delay.
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The proposed cache replacement policy combines
popularity, recency, probabilistic factors, and incom-
ing interfaces. This eviction strategy ensures that the
most relevant content stays in the cache. This reduces
the need to fetch content from the source and delays
in retrieval. This strategy adapts better to varying
traffic patterns in vehicular networks, maintaining a
more efficient cache. The existing LCD, ProbCache,
and CL4M strategies do not optimize for node con-
nectivity and use simpler eviction strategies, which
can lead to higher retrieval delays, lower hit ratio,
and lower stretch ratio. Compared to other methods,
the proposed work satisfies all requests and reduces
the number of hops and time taken to travel. Fig. 11,
12 and 13 indicate the better results of the proposed
work compared to existing methods.

9. Conclusion
The rapid increase of data traffic in vehicular networks

increases the content retrieval delay when consumer re-
quests travel to the producer every time. ICN’s in-network
caching feature enables the storage of a copy of the content
in the network, which decreases the content retrieval delay
and increases content availability in the network. In this
paper, we proposed an SH-based caching strategy that
selects the cache node using each node’s interface count
in a delivery path. This strategy places the content at a
more connected node in the path that can satisfy several
requests. Further, the PRPI eviction policy is developed
to evict outdated content when the cache is full. PRPI
cache replacement considers the content’s popularity, re-
cency, probability, and interfaces to detect unwanted content
from the cache. The proposed work is evaluated through
simulation against ProbCache, CL4M, and LCD strategies
regarding CHR, CRD, and SR. The simulation results indi-
cate that the proposed work achieves better results than the
existing methods. The future direction of the proposed work
includes enhanced Cache Selection Mechanisms. While
the proposed SH-based caching strategy utilizes interface
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count to select cache nodes, future research could explore
more sophisticated metrics for cache node selection. Energy
efficiency is critical in vehicular networks, especially for
battery-powered devices. Future work could also explore
energy-efficient caching strategies that minimize the power
consumption of cache nodes.
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