
International Journal of Computing and Digital Systems
ISSN (2210-142X)

 Int. J. Com. Dig. Sys. , No. (Mon-20..)

http://dx.doi.org/10.12785/ijcds/XXXXXX

Enhancing the Scalable Asynchronous Cache Consistency
Scheme with the Clock Algorithm

Ramzi A. Haraty1 and Meghry G. Tchangoulian1

1Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

Received Mon. 20, Revised Mon. 20, Accepted Mon. 20, Published Mon. 20

Abstract: In recent years, mobile computing has seen significant advancements, largely driven by the development and expansion of
wireless networks. This technological evolution has given rise to various models and strategies designed to enhance user experience by
speeding up query responses, reducing network traffic, and optimizing the use of network resources. One notable model that exemplifies
these advancements is the Scalable Asynchronous Cache Consistency Scheme (SACCS). SACCS employs a hybrid data consistency
strategy to ensure the integrity of cached data, offering an alternative to traditional stateful and stateless approaches. Additionally, SACCS
utilizes the Least Recently Used (LRU) replacement algorithm to manage its cached data items efficiently. In this paper, we delve into the
workings of SACCS, particularly focusing on its integration with three other replacement strategies: CLOCK, Longest Distance First (LDF),
and Least Frequently Used with Dynamic Aging (LFU-DA). Through comprehensive simulations, we assess the performance of these
algorithms in comparison to pre-existing methods. Our findings reveal that the CLOCK replacement strategy outperforms the others,
demonstrating superior efficiency in managing cached data. The implications of this study suggest that adopting the CLOCK strategy within
SACCS can significantly enhance mobile computing performance, making it a valuable consideration for future developments in this field.
This research contributes to the ongoing efforts to refine caching techniques and optimize network resource utilization in the ever-evolving
landscape of mobile computing.

Keywords: Mobile Computing, cache consistency, replacement policy, Clock algorithm

1. INTRODUCTION

With the constant use of mobile phones and the need to
access information as quickly as possible, caching can be
used to satisfy the users’ needs while still being in line with
the constraints of the wireless network used. Nevertheless,
designing a caching technique can be challenging since it
needs to account for the fact that mobile phones can get
disconnected from the Internet, due to poor connection or
power-off, and hence the data that these caches might have
would prove to be old. Thus, the caching technique should
act in such a way that will ensure the validity of the data
once the mobile phone gets reconnected to the Internet. To
achieve this consistency, stateful and stateless approaches
have been proposed in the literature. The stateful approach
knows the content of the user’s cache, whereas the stateless
does not. Hence, the stateless approach must check the
validity of the cache’s content before answering a query
every single time. This in turn translates into the stateful
being more scalable than the stateless, despite having a
large overhead [1]. To strike a balance between the two
approaches, a new method has been introduced known
as “Scalable Asynchronous Cache Consistency Scheme”
(SACCS) that uses the Least Recently Used (LRU) algo-
rithm to perform the replacement [1]. In this paper, we test
out three other replacement strategies: Clock[2], Longest
Distance First(LDF) [3] and Least Frequently Used with
Dynamic Aging (LFUDA) [4] and compare them with some
of the older strategies that have been used with SACCS [5].
This paper is divided into five sections. In the second sec-

tion, we provide a literature review mentioning some other
cache replacement policies and the different techniques that
have been used for mobile cache consistency. In the third
section, we give an overview of SACCS and in the fourth
section, we introduce the three new replacement algorithms.
In the fifth section, we provide the experimental results and
discuss our findings. Finally, we conclude our work and
suggest future directions.

2. Literature Review
The basic architecture of a wireless mobile computing

consists of original servers connected to mobile support
stations (MSS) via a wired network, and mobile users (MU)
connected wirelessly to these stations as illustrated in
figure 1 below [1]. The MUs have local caches that store
within them data, and they communicate with the MSS,
via the uplink channel, to retrieve the data that they have
not stored in their caches. In case the MSS does not have
the data in its cache, or the data needs to be updated, the
MSS communicates with the original server, retrieves the
updated/not found data and broadcasts it to the MUS via
the downlink channel.

It is to be noted that the MUs can get disconnected and
then get reconnected to the MSS, leading to the rise of data
inconsistencies. Therefore, the main goal here is finding the
right data consistency strategy to ensure that the updated
version of the data is in the MUs caches.

http://dx.doi.org/10.12785/ijcds/XXXXXX

E-mail: rharaty@lau.edu.lb, meghry.tchangoulian@gmail.com http:// journals.uob.edu.bh

mailto:rharaty@lau.edu.lb
mailto:meghry.tchangoulian@gmail.com
http://journals.uob.edu.bh/

Haraty, et al.: Enhancing the Scalable Asynchronous Cache Consistency Scheme with the Clock Algorithm 190

http:// journals.uob.edu.bh

Figure 1. Mobile Computing Environment (Wang,2004)

A. Caching in Mobile Computing
Caching is a method that stores copies of the data in

a local storage. This leads to decreasing the distance to
access the content, which in turn speeds up data retrieval
and decreases the bandwidth consumption [6]. However, the
main issue with caching is figuring out what data to cache
for the cache to be efficient i.e. having the requested data
in the cache most of the time [1]. Another concern with
caching is ensuring the data consistency among the different
components of the distributed system since mobile units can
go offline unexpectedly. For these reasons, several cache
replacement strategies and models have been introduced and
explored in the literature.

B. Cache Replacement Strategies
The cache has limited space, and when it becomes full,

a replacement strategy needs to be used to get the
requested data item and place it in the cache. These re-
placement strategies can be based on different factors such
as frequency of requests, recency, and size to name a few.
Therefore, there are different replacement strategies in the
literature that can be used to do this [7].

1) Temporal Based Strategies
These strategies rely on the fact that users will most

likely access the same data again, so that data will remain
within the cache [7], [8]. Examples of such strategies are:
Least Recently Used (LRU), Most Recently Used (MRU)
[8], CLOCK [2] and Adaptive Replacement Cache (ARC)
[9].

The ARC replacement algorithm is a mix of LRU and
LFU, such that the cache is divided into two parts: T1 and
T2. T1 is going to be used for the recently referenced data
and T2 is going to be used for the frequently used data [9].
In addition, the cache has two lists B1 and B2 that keep

track of the cache items that have been evicted from the
cache. This algorithm adjusts the two partitions dynamically
by checking in which of the lists B1 and B2 the hit has
occurred. If the hit is in B1, then T1 increases in size by
removing a data item from T2 and vice versa.

2) Location Based Strategies
These strategies rely on the fact that users will most

likely access the same data again when they are still close
to the same server. Examples of such policies are: Man-
hattan Distance Based Policy (MDBP) [10], Farthest Away
Replacement (FAR) [11], Mobility Aware Replacement
(MARS) [12] and Predicted Region Based Replacement
Policy (PRRP) [13].

The MDBP [10] replaces the item with the highest Man-
hattan distance between the MU location and the location
of the data in the cache, whereas FAR [11] replaces the
data items that are found in the out-direction portion of
the cache first as opposed to the in-direction since they are
farther away from the server. As for the MARS [12] and
the PBR [13] policies, they remove the data item that has
the lowest cost. The former is calculated by the taking into
consideration the location of the MU and the frequency of
access of data while the latter takes into consideration the
size of the data, the access probability, the location of the
MU and the location to which the MU will move to.

3) Function Value Based Strategies
These strategies rely on a pre-defined function to cal-

culate a specific value given certain parameters [14]. De-
pending on the algorithm, the calculated value is either
used for rearranging the elements before replacement, or for
the replacement of the element that has the lowest value.
Examples of such algorithms include: Least Utility Value
(LUV) [15], Stretch Access-rate Inverse Update frequency
(SAIU) [16], Least Valuable First(LVF) [17] and Least
Relative Value (LRV) [18]. The above-mentioned policies
are similar in the sense that the cached item is replaced
if the value attained from the calculation of the function
is the lowest when the cache is full. However, they differ
from each other mainly in terms of parameters used in the
functions. For instance, the LUV [15] policy considers the
reference probability and the cost of retrieving the data item
whereas LVF [17] considers delay, frequency, and age of the
data to calculate the function. As for SAIU [16], it considers
the reference probability, the data size, the relative delay and
the update frequency while LRV [18] considers the access
probability and the gain value from removing an item from
the cache when calculating the function.

4) Machine Learning Based Strategies
These strategies depend on machine learning algorithms

and are divided into supervised learning [19], [20], [21],
[22], unsupervised learning [23], [24], [25] and reinforce-
ment learning [26], [27], [28], [29]. Most of the machine
learning strategies mentioned above deal with caching data
items that are the most popular.

http://journals.uob.edu.bh/

Int. J. Com. Dig. Sys. , No. (Mon-20..)) 191

http:// journals.uob.edu.bh

http://journals.uob.edu.bh/

Haraty, et al.: Enhancing the Scalable Asynchronous Cache Consistency Scheme with the Clock Algorithm 192

http:// journals.uob.edu.bh

• Supervised Machine Learning Based Strategies: Su-
pervised learning uses labeled data, where the inputs
and outputs are known, to build or train models based
on the relationships found in the data. An example is
in [19] where they introduce the Liquid State Machine
(LSM) algorithm to increase the data requests’ pre-
dictions for unnamed aerial vehicles (UAVs). Further-
more, there are several other approaches that focus on
predicting, and later caching, popular data items such
as those in [20], [21], [22].

• Unsupervised Learning Based Strategies: Unsuper-
vised learning uses unlabeled data, where a model
is built to detect patterns or cluster data into groups
based on similarities. In [24] and in [23], the authors
used k-means as their unsupervised machine learning
strategy. In the former, they detected patterns in the
data requests and used k-NN to cluster and cache the
data in Ultra Dense Networks (UDNs). In the latter,
they introduced the Cluster-Based Content Caching
(CBCC) algorithm where they used features of the
content such as access history and labels to calculate
the expected popularity and compared it with the least
popular data item in the cache, replacing it if the
calculated items were more popular. They proved that
their method is more efficient than the other
replacement algorithms such as LFU, FIFO, LRU and
LFUDA. As for [25], the authors introduced a new
caching algorithm known as Content Cache Value
and User Activity (CCVUA) for D2D edge caching.
First, they cluster users upon their physical and social
characteristics by using a spectral clustering method
and match these clusters with differing base stations.
Then, they use the CCVUA that considers both the
value of the cache and the behavior of the user to
cache the items.

• Reinforcement Learning Based Strategies: Reinforce-
ment learning uses an agent to find the optimal
results where the agent takes different actions, and
receives rewards based on those actions. Thus, after
training for a while it will learn to take the best
actions to maximize the rewards. For example, the
authors in [28] introduced the Grouped Linear Model
(GLM) that uses the history of previous requests to
predict future data requests and uses an RL approach
with Model-Free Acceleration (RLMA) to replace the
cache items. In [26], the authors proposed a new
algorithm that uses a contextual multi-armed method
to perform proactive caching while in [27] the
authors introduced a new method known as change
point detection with reinforcement learning (CPRL)
that notices changes in the environment and adapts
the caching strategy to optimally fit these changes.
Whereas in [29], the authors introduced a new
caching method, divided into three phases, based on
reinforcement learning that utilizes the traffic of the
requests as well as the size of the caches used.

For more information, please refer to [29].

C. Data Consistency Strategies
One of the main challenges of caching is ensuring the

data consistency among the different elements of the mobile
network. Several stateful [30], [31], [32], [33], [34], [35]
stateless [30], [36], [37], [38], [39] and hybrid[1], [40],
[41] data consistency strategies have been introduced in
the literature to tackle this issue. Considering the stateful
technique, the server is aware of the data items cached in the
MUs’ systems. This means that, despite the large overhead,
the validity of the data does not need to be checked every
time a query is made. As for the stateless approach, it is
a technique where the server is unaware of the state of
the data items cached in the MUs systems. Here, the
cache needs to check the validity of the cache’s content
before answering a query every single time, making it less
scalable. Therefore, the hybrid data consistency scheme
is introduced that combines the main benefits of the two
mentioned techniques. One of them is called SACCS that
is described in the section below.

3. The Scalable Asynchronous Cache Consistency
Scheme
To overcome the shortcomings of the stateless and

stateful approaches of maintaining the data consistencies
in the mobile environment, [1] proposed a new approach
known as (SACCS) for read systems that uses LRU for the
replacement algorithm. The idea is that SACCS keeps track
of some of the states’ information, specifically the MSS
keeps track of what data items might be valid in the MUs
cache. Hence, the database management is made simpler
than that of the stateful approach that keeps track of all the
data items in the MUs caches with their states. In addition,
SACCS does not periodically broadcast the invalidation
reports (IR) unlike the stateless techniques, which in turn
reduces the IR messages that are being sent via the downlink
channel.

Regarding the consistency of the databases between the
MSS and the Server, it is kept via wired network consistency
algorithms. As for the consistency between the MSS and
the MU caches, it is maintained by associating each data
item with the flag bit. The flag bit is changed whenever
the data item is changed on the server to indicate that a
valid data may be found in the MU’s cache when it gets
the data. This flag is reset only whenever the MSS gets
an updated data item and sends the IR message to the MUs.
Furthermore, the mobile user can either be in one of these
two states: awake or sleep. Awake indicates that the MU
is online and is connected to the Internet, whereas sleep
indicates that the MU is disconnected due to a power off or
a network connection issue. Therefore, if the MU receives
an IR message when awake, then the data item is
invalidated, and its state is changed to ID-only. However,
if the MU is asleep, the data items are unaffected until the
MU wakes up. In this case, when the MU wakes up, all the
cached data items are set to an uncertain state. Furthermore,

http://journals.uob.edu.bh/

Int. J. Com. Dig. Sys. , No. (Mon-20..)) 193

http:// journals.uob.edu.bh

http://journals.uob.edu.bh/

Haraty, et al.: Enhancing the Scalable Asynchronous Cache Consistency Scheme with the Clock Algorithm 194

http:// journals.uob.edu.bh

Figure 2. State Transition Diagram (Wang, 2004)

the data is “Valid” when it is found in the cache and its
Time To Live (TTL) matches the TTL of its copy found
in the MSS. Whereas the data is “Uncertain” when the
data is in the cache of a MU that got reconnected after a
disconnection, thus its state is no longer certain and needs
to be checked. As for the “ID-Only”, it is for the data that
has been invalidated due to an IR received by the MSS.
This process is further illustrated in figure 2.

As mentioned before, SACCS uses LRU as the cache
replacement algorithm. This means that whenever a data
item is added to the cache or is accessed (hit), that data item
is added and or moved to the head of the cache. However,
when the cache is full, data entries that are valid, invalid,
and uncertain are removed from the end of the cache to
make room for the new data item. As for validating cache
data items, the entries with ID-Only and Uncertain states
are kept in their same location, and data from the tail is
deleted if the cache is full.

4. Cache Replacement Strategies for SACCS
A. Longest Distance First

The longest Distance First (LDF) is a replacement
algorithm that replaces the data that has the longest distance
from the current data entry [3]. Here, the page that is next
to the current page in anti-clockwise rotation is replaced
in case two data items have the same distance. As for the
distance calculation, the idea is to place the unique data
entries in a circular list and see how far the current entry
is from the other entries present in the cache in clockwise
and anticlockwise directions, where the smaller of the two
is chosen. Out of all the distances calculated for the data
entries, the one that is the greatest is replaced. When it
comes to SACCS, we have the function Find LDF() that
finds the data entry that has the longest distance from

the current item. Therefore, the data item that has longest
distance is placed at the tail of the cache to be replaced
when the cache is full.

B. Clock
The Clock algorithm, an approximation of the LRU

algorithm, replaces data based on the flag bit and the clock
hand [2]. It keeps a circular list of all the data items in the
cache, where each entry has a flag, set to 0 or 1, and a
‘clock hand’ that moves forward after each data insertion.
Whenever the cache is full, the flag bit pointed to by the
clock hand will be checked. If the flag bit is set to 0, then
the data will be replaced, and the clock hand will move
forward. However, if the flag bit is set to 1, then the flag
bit will be set to 0 and the clock hand will move forward
till it finds a data entry whose flag bit is 0 so that it can
replace it. When it comes to SACCS, the new data item is
added to the front of the list with its flag bit set to 1, and
the clock hand is updated by moving one step backwards.
We are moving backwards since we are adding items to
the head of the cache that we have. If the data item has
been referenced, then the flag bit is set to 1. However, if
the cache is full and the flag bit of the data item pointed to
by the clock is 0, then the data item is replaced. If the bit
is 1, then the clock moves backwards until it finds a data
item with its flag bit set to 0.

C. Least Frequently Used with Dynamic Aging
The Least Frequently Used with Dynamic Aging (LFU-

DA)[4], [42] is an approach that is used to deal with the
issue of cache pollution caused by LFU. We have cache
pollution in LFU since it would keep highly requested data
items in the cache for long periods of time even if they are
not being accessed currently. Hence, by adding an aging
factor to the frequency of accesses, it leads to these old
items being removed from the cache eventually. The idea
is to have a global variable Cache-Age, set to 0 initially,
that is added to the frequency (F) of the cached data item,
where the key K(i) is: K(i) = F(i) + cache age

When a cache is full, the data item that has the least
key value is replaced, where the cache-age is set to the
key value. In case two or more key values are the same,
the data item that has been least recently used is removed.
Furthermore, every time a data item is accessed or added
to the cache, the key value is calculated again following
the formula above. When it comes to SACCS, the new data
item is added to the front of the list with the cache-age set
to 0 initially. Every time a data item is accessed or added
to the cache later on, its key value is updated. When the
cache is full, the data item that has the least key value is
removed, with the cache-age being set to its key value.

D. Other Cache Replacement Algorithms
We have compared the above-mentioned approaches

with the previous work that has been done on other cache
replacement algorithms to evaluate their performance[5].

http://journals.uob.edu.bh/

Int. J. Com. Dig. Sys. , No. (Mon-20..)) 195

http:// journals.uob.edu.bh

http://journals.uob.edu.bh/

Haraty, et al.: Enhancing the Scalable Asynchronous Cache Consistency Scheme with the Clock Algorithm 196

http:// journals.uob.edu.bh

1) Least Recently Used
The least recently used (LRU) algorithm is a replace-

ment algorithm that replaces the least recently used item
when the cache is full. It is the algorithm that has been
initially proposed to be used with SACCS, where the least
recently used items are found at the tail of the cache. When
the cache is full, the data items at the tail are marked for
removal.

2) First in First Out
The first in first out (FIFO) algorithm is a replacement

algorithm that replaces the first item that has been cached.
When it comes to SACCS, the first items that have been
cached are at the end of the cache, and hence replaced
because newly cached items are added to the head of the
cache.

3) Most Recently Used
The most recently used (MRU) algorithm is a replace-

ment algorithm that replaces the item that has been most
recently used. When it comes to SACCS, the item that has
been recently accessed is placed at the tail of the cache to
be replaced when the cache is full.

4) Most Frequently Used
The most frequently used (MFU) algorithm is a replace-

ment algorithm that replaces the item that has been most
frequently used. When it comes to SACCS, every data item
would have an access number that is incremented every
time the item is accessed. The item that has been the most
frequently used is placed at the tail of the cache to be
replaced when the cache is full.

5) Least Frequently Used
The least frequently used (LFU) algorithm is a replace-

ment algorithm that replaces the item that has been least
frequently used. When it comes to SACCS, every data item
would have an access number that is incremented every
time the item is accessed. The item that has been the least
frequently used is placed at the tail of the cache to be
replaced when the cache is full.

5. Experimental Results
To evaluate the performance of the three suggested

replacement algorithms with SACCS, they are implemented
and compared to some of the previous algorithms that have
been used with SACCS. To perform the simulation, the
environment is set up with fixed and changeable parameters
using the C++ programming language. We have used a
one cell slot that has 100 mobile users, each with a 300-
cache size, a thousand data entries that have different access
commands, a random data size (in bytes) and an average
data update interval (in sec) that is changeable. Furthermore,
the downlink and uplink data transmission use one channel
with a bandwidth of 1250 bps, where the message size is 64
bytes. Concerning the mobile units, they can be in either
sleep or wakeup state that is randomized using the two-
state Markov chain. The simulation is performed by varying

Figure 3. Total Hit Vs Time

Figure 4. Total Hit

eight time slots. As for the performance metrics, we have
used the total hit/time, total miss/time, total hit, total miss,
miss ratio, total delay, average delay, bytes per query and
downloaded bytes per query.

The total hit is the total number of times the data item
queried is found in the MU’s cache. Figure 3 below shows
the total hit results versus the specific time while Figure 4
shows the total hit for each replacement algorithm.

As one can see from the results above, the CLOCK
algorithm has the best total hit (5333) as opposed to the
other tested algorithms. As for LRU (5086) it is the second
best followed by the LFUDA (5052) and LDF (4963). The
CLOCK algorithm has the best total hit due to setting the
access bit to one every time a new data is added to the
cache as opposed to only setting it to one during re-access,
giving every data item an equal head start. Furthermore,
the CLOCK hand moves, after filling the cache, only when
the cache is full. Thus, when removing a data item, the one
that is added first or that has been added first and not
been referenced for a while will most likely be removed.
Concerning LFUDA, it is close to LRU since both algorithms
make use of the temporal locality, where the latter is
replacing based on recency and the former based on
frequency and recency. Furthermore, if we examine
LFUDA, we note that it takes into consideration both the
frequency and the recency for the replacement, thus it does
not allow old items that have high frequencies to remain in
the cache longer than necessary. As for LDF, it is shown to
be better than FIFO since instead of relying on removing
the item that has been added first, it removes the data item
that is the farthest from the current data item. This in turn

http://journals.uob.edu.bh/

Int. J. Com. Dig. Sys. , No. (Mon-20..)) 197

http:// journals.uob.edu.bh

Figure 5. Total Miss Vs Time

Figure 6. Total Miss

mimics prediction, where data items that are the farthest
from each other, based on their initial accesses, are less
likely to be accessed again.

As for the total miss, it is the total number of times the
data item is invalid or not found in the MUs cache. Figure
5 below shows the total miss results versus the specific time
on the different caching algorithms while Figure 6 shows
the total miss for each replacement algorithm. Based on
these two figures, the CLOCK (11,421) has the least total
misses as opposed to the LFUDA (11598), LRU (11,666),
LDF (11,816) and the other algorithms.

The total miss ratio is the ratio of all the number of times
the data is not found in the cache over all the data items
that are requested. Figure 7 below shows the total miss ratio
results versus the specific time after running the simulation
on the different caching algorithms. Based on this figure,
the CLOCK has the least miss ratio as opposed to LFUDA
followed by LRU, LDF and the other tested algorithms.

Figure 7. Miss Ratio Vs Time

Figure 8. Total Delay

Figure 9. Average Delay

As for the total delay, based on the figure 8 above, the
CLOCK has the least total delay (5652.57) followed by the
LFUDA (5921.56), LRU (6121.15), FIFO (6275.44), LDF
(6360.79) and the other tested algorithms. This is due to the
fact that delay measures the time between a request and its
receival, hence if the requested data items are in the cache
most of the time, requesting missed data items would be
low.

Concerning the average delay, based on the figure 9
above, between issuing a data request and receiving that
request on average. below shows the average delay VS time
after running the simulation on the different caching
algorithms. Based on figure 9, the CLOCK (0.847589) has
the least average delay as opposed to LFUDA (0.894496),
LRU (0.916117), FIFO (0.954294), LDF (0.966686) and the
other tested algorithms.

As for the bytes/query, Figure 10 below shows the bytes
per query after running the simulation on the different
caching algorithms. Based on the figure below, the CLOCK
has the least bytes/query (754.433) as opposed to LFUDA
(788.321), LRU (793.541), LDF(830.943) and the other
tested algorithms.

The data downloaded/query shows the number of bytes
downloaded per query. Figure 11 below shows the data
downloaded/query after running the simulation on the differ-
ent caching algorithms. Based on the figure below, the clock

http://journals.uob.edu.bh/

Haraty, et al.: Enhancing the Scalable Asynchronous Cache Consistency Scheme with the Clock Algorithm 198

http:// journals.uob.edu.bh

http://journals.uob.edu.bh/

Int. J. Com. Dig. Sys. , No. (Mon-20..)) 199

http:// journals.uob.edu.bh

Figure 10. Bytes Per Query

Figure 11. Data Download Per Query

has the least data download/query (0.515428) as opposed to
LFUDA (0.539196) LRU (0.541938), LDF (0.562619) and
the other tested algorithms. The low ratios are attributed to
finding the data items in the cache, since data is downloaded
only when there is a miss or there is an update.

Based on the results above, the proposed CLOCK al-
gorithm seems to be the best in comparison to the other
tested algorithms. This can be attributed to the fact that the
Clock has the most hits with the least misses. Furthermore,
having the most hits translates to having the least total and
average delay, since the algorithm would spend less time
getting data from the MSS as most of the data would be
found in their caches. The same reasoning could be applied
as to why the data downloaded per query is the least in the
CLOCK algorithm. As for LFUDA, it is the second best
due to having the second-best hits. The reasoning behind
this could be since MUs tend to request the same content
repeatedly, and LFUDA replaces the data items that have
been accessed least frequently dynamically thanks to the
cache age.

6. Conclusion
Caching has been proven to show improvements in

bandwidth utilization in wireless mobile computing. How-
ever, the major issue with caching in these networks is effi-
ciency and validity. In the former, we have stated efficiency
since we need to ensure that the requested data items are
found in the cache most of the time. As for the validity of
the data, mobile devices are prone to disconnections from
the network due to power-offs or bad network connections.
For these reasons, several cache replacement algorithms and
data consistency schemes have been studied in the literature.
As mentioned, several cache replacement strategies have

been explored in the literature that are temporal, location
or function based, each with their improvements and draw-
backs. The temporal based algorithms depend on the fact
that data recently accessed will be accessed again, while
the location-based algorithms depend on the fact that data
items placed closer to the server will be accessed again. As
for the function based, these algorithms depend on a value
obtained from a function to make the cache replacement. In
addition to these methods, several Machine learning-based
algorithms have been proposed that mostly rely on learning
to cache data items that are highly requested. Concerning
the validity of data, several stateful, stateless and hybrid
consistency approaches have been developed to ensure the
validity of the cached items. Both the stateful and stateless
approaches have drawbacks, where the former has a large
overhead in order to keep track of the MUs states while
the latter is redundant and not scalable due to sending IRs
periodically. Hence, the aim of the hybrid method such as
SACCS is to utilize the benefits of the stateful and stateless
approaches while avoiding their drawbacks. In this paper,
we have used SACCS with other replacement strategies
such as CLOCK, LDF and LFUDA, and compared them
with other replacement strategies. We note that the CLOCK
algorithm is the most efficient out of LRU, LFUDA, LDF,
FIFO, MRU, MFU and LFU since it has the highest hit
rate and lowest bandwidth utilization with LFUDA coming
at a close second. Despite this, it would be interesting to
evaluate these algorithms after performing network analysis.
Another future direction could be using machine learning
models with SACCS to better cache data items at the MSS
as well as the MUS.

References
[1] Z. Wang, S. Das, H. Che, and M. Kumar, “A scalable asynchronous

cache consistency scheme (saccs) for mobile environments,” IEEE
Transactions on Parallel and Distributed Systems, vol. 15, no. 11,
pp. 983–995, 2004.

[2] F. J. Corbato, A paging experiment with the multics system. Mas-

sachusetts Institute of Technology, 1968.

[3] G. Kumar and P. Tomar, “A novel longest distance first page
replacement algorithm,” Indian Journal of Science and Technology,
vol. 10, no. 30, pp. 1–6, 2017.

[4] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin,

“Evaluating content management techniques for web proxy caches,”
ACM SIGMETRICS Performance Evaluation Review, vol. 27, no. 4,
pp. 3–11, 2000.

[5] R. A. Haraty and L. Turk, “A comparative study of replacement

algorithms used in the scalable asynchronous cache consistency
scheme.” in CAINE, 2006, pp. 83–88.

[6] C. Wang, Y. He, F. R. Yu, Q. Chen, and L. Tang, “Integration of

networking, caching, and computing in wireless systems: A survey,
some research issues, and challenges,” IEEE Communications Sur-
veys & Tutorials, vol. 20, no. 1, pp. 7–38, 2017.

[7] E. Hattab and S. Qawasmeh, “A survey of replacement policies

for mobile web caching,” in 2015 International Conference on

http://journals.uob.edu.bh/

Haraty, et al.: Enhancing the Scalable Asynchronous Cache Consistency Scheme with the Clock Algorithm 200

http:// journals.uob.edu.bh

Developments of E-Systems Engineering (DeSE). IEEE, 2015, pp.
41–46.

[8] E. J. O’neil, P. E. O’neil, and G. Weikum, “The lru-k page

replacement algorithm for database disk buffering,” Acm Sigmod
Record, vol. 22, no. 2, pp. 297–306, 1993.

[9] N. Megiddo and D. S. Modha, “{ARC}: A {Self-Tuning}, low

overhead replacement cache,” in 2nd USENIX Conference on File
and Storage Technologies (FAST 03), 2003.

[10] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, M. Tan et al.,

“Semantic data caching and replacement,” in VLDB, vol. 96, 1996,
pp. 330–341.

[11] P. Venketesh and R. Venkatesan, “A survey on applications of neural

networks and evolutionary techniques in web caching,” IETE
Technical review, vol. 26, no. 3, pp. 171–180, 2009.

[12] K. Y. Lai, Z. Tari, and P. Bertok, “Mobility-aware cache replacement

for users of location-dependent services,” in 29th Annual IEEE
International Conference on Local Computer Networks. IEEE,
2004, pp. 50–58.

[13] A. Kumar, M. Misra, and A. K. Sarje, “A predicted region based

cache replacement policy for location dependent data in mobile
environment,” in 2006 International Conference on Wireless Com-
munications, Networking and Mobile Computing. IEEE, 2006, pp.
1–4.

[14] H. ElAarag and S. Romano, “Comparison of function based web

proxy cache replacement strategies,” 2009 International Symposium
on Performance Evaluation of Computer & Telecommunication
Systems, vol. 41, pp. 252–259, 2009. [Online]. Available:
https://api.semanticscholar.org/CorpusID:14518810

[15] N. Chand, R. C. Joshi, and M. Misra, “Cooperative caching in

mobile ad hoc networks based on data utility,” Mobile Information
Systems, vol. 3, no. 1, pp. 19–37, 2007.

[16] J. Xu, Q. Hu, D. L. Lee, and W.-C. Lee, “Saiu: An efficient cache

replacement policy for wireless on-demand broadcasts,” in
Proceedings of the ninth international conference on Information

ing in fog-ran,” in 2017 IEEE Globecom Workshops (GC Wkshps).
IEEE, 2017, pp. 1–6.

[22] S. S. Tanzil, W. Hoiles, and V. Krishnamurthy, “Adaptive scheme

for caching youtube content in a cellular network: Machine learning
approach,” Ieee Access, vol. 5, pp. 5870–5881, 2017.

[23] B. Jia, R. Li, C. Wang, C. Qiu, and X. Wang, “Cluster-based content

caching driven by popularity prediction,” CCF Transactions on High
Performance Computing, vol. 4, no. 3, pp. 357–366, 2022.

[24] G. Shen, L. Pei, P. Zhiwen, L. Nan, and Y. Xiaohu, “Machine

learning based small cell cache strategy for ultra dense networks,”
in 2017 9th International Conference on Wireless Communications
and Signal Processing (WCSP). IEEE, 2017, pp. 1–6.

[25] Y. Zhang, W. Zhang, H. Hao, and K. Zhang, “Cluster caching strategy

based on user characteristics in edge networks,” in 2023 24st Asia-
Pacific Network Operations and Management Symposium
(APNOMS). IEEE, 2023, pp. 36–41.

[26] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Context-aware

proactive content caching with service differentiation in wireless
networks,” IEEE Transactions on Wireless Communications, vol. 16,
no. 2, pp. 1024–1036, 2017.

[27] J. Rostampoor, R. S. Adve, A. Afana, and Y. A. E. Ahmed, “Cprl:

Change point detection and reinforcement learning to optimize cache
placement strategies,” IEEE Transactions on Communica- tions,
vol. 72, no. 4, pp. 2339–2353, 2024.

[28] N. Zhang, K. Zheng, and M. Tao, “Using grouped linear prediction

and accelerated reinforcement learning for online content caching,”
2018 IEEE International Conference on Communications
Workshops (ICC Workshops), pp. 1–6, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:3865918

[29] X. Zhang, G. Zheng, S. Lambotharan, M. R. Nakhai, and K.-

K. Wong, “A reinforcement learning-based user-assisted caching
strategy for dynamic content library in small cell networks,” IEEE
Transactions on Communications, vol. 68, no. 6, pp. 3627–3639,
2020.

and knowledge management, 2000, pp. 46–53. [30] D. Barbará and T. Imieliński, “Sleepers and workaholics:

[17] F. M. Al-Turjman, A. E. Al-Fagih, and H. S. Hassanein, “A value-

based cache replacement approach for information-centric
networks,” in 38th Annual IEEE Conference on Local Computer
Networks-Workshops. IEEE, 2013, pp. 874–881.

[18] L. Rizzo and L. Vicisano, “Replacement policies for a proxy cache,”

IEEE/ACM Transactions on networking, vol. 8, no. 2, pp. 158–170,
2000.

[19] M. Chen, W. Saad, and C. Yin, “Liquid state machine learning for

resource and cache management in lte-u unmanned aerial vehicle
(uav) networks,” IEEE Transactions on Wireless Communications,
vol. 18, no. 3, pp. 1504–1517, 2019.

[20] M. T. Firouzjaee, K. Jamshidi, N. Moghim, and S. Shetty, “User

preference-aware content caching strategy for video delivery in
cache-enabled iot networks,” Computer Networks, vol. 240, p.
110142, 2024.

caching strategies in mobile environments,” SIGMOD Rec., vol.
23, no. 2, p. 1–12, may 1994. [Online]. Available:
https://doi.org/10.1145/191843.191844

[31] G. Cao, “On improving the performance of cache invalidation

in mobile environments,” Mob. Netw. Appl., vol. 7, no. 4, p. 291–
303, aug 2002. [Online]. Available: https://doi.org/10.1023/A:
1015463328335

[32] N. Chand, R. Joshi, and M. Misra, “Energy efficient cache invalida-

tion in wireless mobile environment,” in 2005 IEEE International
Conference on Personal Wireless Communications, 2005. ICPWC
2005., 2005, pp. 244–248.

[33] W. He, I.-R. Chen, and B. Gu, “A proxy-based integrated cache

consistency and mobility management scheme for mobile ip sys-
tems,” in 21st International Conference on Advanced Information
Networking and Applications (AINA ’07), 2007, pp. 354–361.

[34] A. Madhukar, T. Ö zyer, and R. Alhajj, “Dynamic cache

http://journals.uob.edu.bh/
https://doi.org/10.1145/191843.191844
https://doi.org/10.1145/191843.191844

Int. J. Com. Dig. Sys. , No. (Mon-20..)) 201

http:// journals.uob.edu.bh

[21] Y. Jiang, M. Ma, M. Bennis, F. Zheng, and X. You, “A novel caching
policy with content popularity prediction and user preference learn-

invalidation scheme for wireless mobile environments,” Wireless
Networks, vol. 15, pp. 727–740, 2009. [Online]. Available:
https://api.semanticscholar.org/CorpusID:40914157

http://journals.uob.edu.bh/

Haraty, et al.: Enhancing the Scalable Asynchronous Cache Consistency Scheme with the Clock Algorithm 202

http:// journals.uob.edu.bh

[35] T. T. M. Nguyen and T. T. B. Dong, “An adaptive cache consistency

strategy in a disconnected mobile wireless network,” in 2011 IEEE
International Conference on Computer Science and Automation
Engineering, vol. 4, 2011, pp. 256–260.

[36] J. Jing, A. Elmagarmid, A. S. Helal, and R. Alonso, “Bit-sequences:

an adaptive cache invalidation method in mobile client/server
environments,” Mob. Netw. Appl., vol. 2, no. 2, p. 115–127, oct 1997.
[Online]. Available: https://doi.org/10.1023/A:1013616213333

[37] H. Safa, H. Artail, and M. Nahhas, “A cache invalidation strategy for

mobile networks,” Journal of Network and Computer Applications,
vol. 33, no. 2, pp. 168–182, 2010. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1084804509001210

[38] M. Sain, S. Varanasi, Y.-J. Kang, and H. J. Lee, “Aim — adap-

tive invalidation mechanism for wireless networks,” in 2017 19th
International Conference on Advanced Communication Technology
(ICACT), 2017, pp. 621–625.

[39] R. Tiwari and N. Kumar, “An adaptive cache invalidation technique

for wireless environments,” Telecommunication Systems: Modelling,
Analysis, Design and Management, vol. 62, no. 1, pp. 149–165,
May 2016. [Online]. Available: https://ideas.repec.org/a/spr/telsys/
v62y2016i1d10.1007 s11235-015-0070-1.html

[40] M. Choi, W. Park, and Y.-K. Kim, “A hybrid cache cohrency scheme

for ubiquitous mobile clients,” in 2007 International Conference on
Convergence Information Technology (ICCIT 2007), 2007, pp. 181–
188.

[41] Y. Bao, R. Alhajj, and K. Barker, “Hybrid cache invalidation schemes

in mobile environments,” in The IEEE/ACS International
Conference onPervasive Services, 2004. ICPS 2004. Proceedings.,
2004, pp. 209–218.

[42] W. Ali, S. M. Shamsuddin et al., “Intelligent dynamic aging

approaches in web proxy cache replacement,” Journal of Intelligent
Learning Systems and Applications, vol. 7, no. 04, p. 117, 2015.

Author 1 Name short biography
.
.
.
.
. . . .

Author 2 Name short biography
.
.
.
.
. . . .

Author 3 Name short biography
.
.
.
.
. . . .

http://journals.uob.edu.bh/
https://www.sciencedirect.com/science/article/pii/S1084804509001210
https://www.sciencedirect.com/science/article/pii/S1084804509001210
https://ideas.repec.org/a/spr/telsys/v62y2016i1d10.1007_s11235-015-0070-1.html
https://ideas.repec.org/a/spr/telsys/v62y2016i1d10.1007_s11235-015-0070-1.html

	International Journal of Computing and Digital Systems
	ISSN (2210-142X)

	Ramzi A. Haraty1 and Meghry G. Tchangoulian1
	1. INTRODUCTION

