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Abstract: In recent years, mobile computing has seen significant advancements, largely driven by the development and expansion of 
wireless networks. This technological evolution has given rise to various models and strategies designed to enhance user experience by 
speeding up query responses, reducing network traffic, and optimizing the use of network resources. One notable model that exemplifies 
these advancements is the Scalable Asynchronous Cache Consistency Scheme (SACCS). SACCS employs a hybrid data consistency 
strategy to ensure the integrity of cached data, offering an alternative to traditional stateful and stateless approaches. Additionally, SACCS 
utilizes the Least Recently Used (LRU) replacement algorithm to manage its cached data items efficiently. In this paper, we delve into the 
workings of SACCS, particularly focusing on its integration with three other replacement strategies: CLOCK, Longest Distance First (LDF), 
and Least Frequently Used with Dynamic Aging (LFU-DA). Through comprehensive simulations, we assess the performance of these 
algorithms in comparison to pre-existing methods. Our findings reveal that the CLOCK replacement strategy outperforms the others, 
demonstrating superior efficiency in managing cached data. The implications of this study suggest that adopting the CLOCK strategy within 
SACCS can significantly enhance mobile computing performance, making it a valuable consideration for future developments in this field. 
This research contributes to the ongoing efforts to refine caching techniques and optimize network resource utilization in the ever-evolving 
landscape of mobile computing. 
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1. INTRODUCTION 

With the constant use of mobile phones and the need to 
access information as quickly as possible, caching can be 
used to satisfy the users’ needs while still being in line with 
the constraints of the wireless network used. Nevertheless, 
designing a caching technique can be challenging since it 
needs to account for the fact that mobile phones can get 
disconnected from the Internet, due to poor connection or 
power-off, and hence the data that these caches might have 
would prove to be old. Thus, the caching technique should 
act in such a way that will ensure the validity of the data 
once the mobile phone gets reconnected to the Internet. To 
achieve this consistency, stateful and stateless approaches 
have been proposed in the literature. The stateful approach 
knows the content of the user’s cache, whereas the stateless 
does not. Hence, the stateless approach must check the 
validity of the cache’s content before answering a query 
every single time. This in turn translates into the stateful 
being more scalable than the stateless, despite having a 
large overhead [1]. To strike a balance between the two 
approaches, a new  method  has  been  introduced  known 
as “Scalable Asynchronous Cache Consistency Scheme” 
(SACCS) that uses the Least Recently Used (LRU) algo- 
rithm to perform the replacement [1]. In this paper, we test 
out three other replacement strategies: Clock[2], Longest 
Distance First(LDF) [3] and Least Frequently Used with 
Dynamic Aging (LFUDA) [4] and compare them with some 
of the older strategies that have been used with SACCS [5]. 
This paper is divided into five sections. In the second sec- 

tion, we provide a literature review mentioning some other 
cache replacement policies and the different techniques that 
have been used for mobile cache consistency. In the third 
section, we give an overview of SACCS and in the fourth 
section, we introduce the three new replacement algorithms. 
In the fifth section, we provide the experimental results and 
discuss our findings. Finally, we conclude our work and 
suggest future directions. 

2. Literature Review 
The basic architecture of a wireless mobile computing 

consists of original servers connected to mobile support 
stations (MSS) via a wired network, and mobile users (MU) 
connected wirelessly to these stations as illustrated in 
figure 1 below [1]. The MUs have local caches that store 
within them data, and they communicate with the MSS, 
via the uplink channel, to retrieve the data that they have 
not stored in their caches. In case the MSS does not have 
the data in its cache, or the data needs to be updated, the 
MSS communicates with the original server, retrieves the 
updated/not found data and broadcasts it to the MUS via 
the downlink channel. 

It is to be noted that the MUs can get disconnected and 
then get reconnected to the MSS, leading to the rise of data 
inconsistencies. Therefore, the main goal here is finding the 
right data consistency strategy to ensure that the updated 
version of the data is in the MUs caches. 
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Figure 1. Mobile Computing Environment (Wang,2004) 

 
 

A. Caching in Mobile Computing 
Caching is a method that stores copies of the data in 

a local storage. This leads to decreasing the distance to 
access the content, which in turn speeds up data retrieval 
and decreases the bandwidth consumption [6]. However, the 
main issue with caching is figuring out what data to cache 
for the cache to be efficient i.e. having the requested data 
in the cache most of the time [1]. Another concern with 
caching is ensuring the data consistency among the different 
components of the distributed system since mobile units can 
go offline unexpectedly. For these reasons, several cache 
replacement strategies and models have been introduced and 
explored in the literature. 

B. Cache Replacement Strategies 
The cache has limited space, and  when  it  becomes full, 

a replacement strategy needs to be used to get the 
requested data item and place it in the cache. These re- 
placement strategies can be based on different factors such 
as frequency of requests, recency, and size to name a few. 
Therefore, there are different replacement strategies in the 
literature that can be used to do this [7]. 

1) Temporal Based Strategies 
These strategies rely on the fact that users will most 

likely access the same data again, so that data will remain 
within the cache [7], [8]. Examples of such strategies are: 
Least Recently Used (LRU), Most Recently Used (MRU) 
[8], CLOCK [2] and Adaptive Replacement Cache (ARC) 
[9]. 

The ARC replacement algorithm is a mix of LRU and 
LFU, such that the cache is divided into two parts: T1 and 
T2. T1 is going to be used for the recently referenced data 
and T2 is going to be used for the frequently used data [9]. 
In addition, the cache has two lists B1 and B2 that keep 

track of the cache items that have been evicted from the 
cache. This algorithm adjusts the two partitions dynamically 
by checking in which of the lists B1 and B2 the hit has 
occurred. If the hit is in B1, then T1 increases in size by 
removing a data item from T2 and vice versa. 

2) Location Based Strategies 
These strategies rely on the fact that users will most 

likely access the same data again when they are still close 
to the same server. Examples of such policies are: Man- 
hattan Distance Based Policy (MDBP) [10], Farthest Away 
Replacement (FAR) [11], Mobility Aware Replacement 
(MARS) [12] and  Predicted Region Based  Replacement 
Policy (PRRP) [13]. 

The MDBP [10] replaces the item with the highest Man- 
hattan distance between the MU location and the location 
of the data in the cache, whereas FAR [11] replaces the 
data items that are found in the out-direction portion of 
the cache first as opposed to the in-direction since they are 
farther away from the server. As for the MARS [12] and 
the PBR [13] policies, they remove the data item that has 
the lowest cost. The former is calculated by the taking into 
consideration the location of the MU and the frequency of 
access of data while the latter takes into consideration the 
size of the data, the access probability, the location of the 
MU and the location to which the MU will move to. 

3) Function Value Based Strategies 
These strategies rely on a pre-defined function to cal- 

culate a specific value given certain parameters [14]. De- 
pending on the algorithm, the calculated value is either 
used for rearranging the elements before replacement, or for 
the replacement of the element that has the lowest value. 
Examples of such algorithms include: Least Utility Value 
(LUV) [15], Stretch Access-rate Inverse Update frequency 
(SAIU) [16], Least Valuable First(LVF) [17] and Least 
Relative Value (LRV) [18]. The above-mentioned policies 
are similar in the sense that the cached item is replaced 
if the value attained from the calculation of the function 
is the lowest when the cache is full. However, they differ 
from each other mainly in terms of parameters used in the 
functions. For instance, the LUV [15] policy considers the 
reference probability and the cost of retrieving the data item 
whereas LVF [17] considers delay, frequency, and age of the 
data to calculate the function. As for SAIU [16], it considers 
the reference probability, the data size, the relative delay and 
the update frequency while LRV [18] considers the access 
probability and the gain value from removing an item from 
the cache when calculating the function. 

4) Machine Learning Based Strategies 
These strategies depend on machine learning algorithms 

and are divided into supervised learning [19], [20], [21], 
[22], unsupervised learning [23], [24], [25] and reinforce- 
ment learning [26], [27], [28], [29]. Most of the machine 
learning strategies mentioned above deal with caching data 
items that are the most popular. 
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• Supervised Machine Learning Based Strategies: Su- 
pervised learning uses labeled data, where the inputs 
and outputs are known, to build or train models based 
on the relationships found in the data. An example is 
in [19] where they introduce the Liquid State Machine 
(LSM) algorithm to increase the data requests’ pre- 
dictions for unnamed aerial vehicles (UAVs). Further- 
more, there are several other approaches that focus on 
predicting, and later caching, popular data items such 
as those in [20], [21], [22]. 

• Unsupervised Learning Based Strategies: Unsuper- 
vised learning uses unlabeled data, where a model 
is built to detect patterns or cluster data into groups 
based on similarities. In [24] and in [23], the authors 
used k-means as their unsupervised machine learning 
strategy. In the former, they detected patterns in the 
data requests and used k-NN to cluster and cache the 
data in Ultra Dense Networks (UDNs). In the latter, 
they introduced the Cluster-Based Content Caching 
(CBCC) algorithm where they used features of the 
content such as access history and labels to calculate 
the expected popularity and compared it with  the least 
popular data item in the cache, replacing it if the 
calculated items were more popular. They proved that 
their method is more efficient than the other 
replacement algorithms such as LFU, FIFO, LRU and 
LFUDA. As for [25], the authors introduced a new 
caching algorithm known as Content Cache Value 
and User Activity (CCVUA) for D2D edge caching. 
First, they cluster users upon their physical and social 
characteristics by using a spectral clustering method 
and match these clusters with differing base stations. 
Then, they use the CCVUA that considers both the 
value of the cache and the behavior of the user to 
cache the items. 

• Reinforcement Learning Based Strategies: Reinforce- 
ment learning uses an agent to find the optimal 
results where the agent takes different actions, and 
receives rewards based on those actions. Thus, after 
training  for  a  while  it  will  learn  to  take  the  best 
actions to maximize the rewards. For example, the 
authors in [28] introduced the Grouped Linear Model 
(GLM) that uses the history of previous requests to 
predict future data requests and uses an RL approach 
with Model-Free Acceleration (RLMA) to  replace the 
cache items. In [26], the authors  proposed  a new 
algorithm that uses a contextual multi-armed method 
to perform proactive caching while in [27] the 
authors introduced a new method known as change 
point detection with reinforcement learning (CPRL) 
that notices changes in the environment and adapts 
the caching strategy to optimally fit these changes. 
Whereas in [29], the authors introduced a new 
caching method, divided into three phases, based on 
reinforcement learning that utilizes the traffic of the 
requests as well as the size of the caches used. 

For more information, please refer to [29]. 
 

C. Data Consistency Strategies 
One of the main challenges of caching is ensuring the 

data consistency among the different elements of the mobile 
network. Several stateful [30], [31], [32], [33], [34], [35] 
stateless [30], [36], [37], [38], [39] and hybrid[1], [40], 
[41] data consistency strategies have been introduced in 
the literature to tackle this issue. Considering the stateful 
technique, the server is aware of the data items cached in the 
MUs’ systems. This means that, despite the large overhead, 
the validity of the data does not need to be checked every 
time a query  is  made.  As  for  the  stateless  approach,  it is 
a technique where the server is unaware of the state of 
the data items cached in the MUs systems. Here, the 
cache needs to check the validity of the cache’s content 
before answering a query every single time, making it less 
scalable. Therefore,  the  hybrid  data  consistency  scheme 
is introduced that combines the main benefits of the two 
mentioned techniques. One of them is called SACCS that 
is described in the section below. 

3. The  Scalable  Asynchronous  Cache  Consistency 
Scheme 
To overcome the shortcomings of the stateless and 

stateful approaches of maintaining the data consistencies 
in the mobile environment, [1] proposed a new approach 
known as (SACCS) for read systems that uses LRU for the 
replacement algorithm. The idea is that SACCS keeps track 
of some of the states’ information, specifically the MSS 
keeps track of what data items might be valid in the MUs 
cache. Hence, the database management is made simpler 
than that of the stateful approach that keeps track of all the 
data items in the MUs caches with their states. In addition, 
SACCS does not periodically broadcast the invalidation 
reports (IR) unlike the stateless techniques, which in turn 
reduces the IR messages that are being sent via the downlink 
channel. 

Regarding the consistency of the databases between the 
MSS and the Server, it is kept via wired network consistency 
algorithms. As for the consistency between the MSS and 
the MU caches, it is maintained by associating each data 
item with the flag bit. The flag bit is changed whenever 
the data item is changed on the server to indicate that a 
valid data may be found in the MU’s cache when it gets 
the data. This flag is reset only whenever the MSS gets 
an updated data item and sends the IR message  to  the MUs. 
Furthermore, the mobile user can either be in one of these 
two states: awake or sleep. Awake indicates that the MU 
is online and is connected to the Internet, whereas sleep 
indicates that the MU is disconnected due to a power off or 
a network connection issue. Therefore, if the MU receives 
an IR message when awake, then the data item is 
invalidated, and its state is changed to ID-only. However, 
if the MU is asleep, the data items are unaffected until the 
MU wakes up. In this case, when the MU wakes up, all the 
cached data items are set to an uncertain state. Furthermore, 
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Figure 2. State Transition Diagram (Wang, 2004) 

 
 

the data is “Valid” when it is found in the cache and its 
Time To Live (TTL) matches the TTL of its copy found 
in the MSS. Whereas the data is “Uncertain” when the 
data is in the cache of a MU that got reconnected after a 
disconnection, thus its state is no longer certain and needs 
to be checked. As for the “ID-Only”, it is for the data that 
has been invalidated due to an IR received by the MSS. 
This process is further illustrated in figure 2. 

As mentioned before, SACCS uses LRU as the cache 
replacement algorithm. This means that whenever a data 
item is added to the cache or is accessed (hit), that data item 
is added and or moved to the head of the cache. However, 
when the cache is full, data entries that are valid, invalid, 
and uncertain are removed from the end of the cache to 
make room for the new data item. As for validating cache 
data items, the entries with ID-Only and Uncertain states 
are kept in their same location, and data from the tail is 
deleted if the cache is full. 

4. Cache Replacement Strategies for SACCS 
A. Longest Distance First 

The longest Distance First (LDF) is a replacement 
algorithm that replaces the data that has the longest distance 
from the current data entry [3]. Here, the page that is next 
to the current page in anti-clockwise rotation is replaced 
in case two data items have the same distance. As for the 
distance calculation, the idea is to place the unique data 
entries in a circular list and see how far the current entry 
is from the other entries present in the cache in clockwise 
and anticlockwise directions, where the smaller of the two 
is chosen. Out of all the distances calculated for the data 
entries, the one that is the greatest is replaced. When it 
comes to SACCS, we have the function Find LDF() that 
finds  the  data  entry  that  has  the  longest  distance  from 

the current item. Therefore, the data item that has longest 
distance is placed at the tail of the cache to be replaced 
when the cache is full. 

B. Clock 
The Clock algorithm, an approximation of the LRU 

algorithm, replaces data based on the flag bit and the clock 
hand [2]. It keeps a circular list of all the data items in the 
cache, where each entry has a flag, set to 0 or 1, and a 
‘clock hand’ that moves forward after each data insertion. 
Whenever the cache is full, the flag bit pointed to by the 
clock hand will be checked. If the flag bit is set to 0, then 
the data will be replaced, and the clock hand will move 
forward. However, if the flag bit is set to 1, then the flag 
bit will be set to 0 and the clock hand will move forward 
till it finds a data entry whose flag bit is 0 so that it can 
replace it. When it comes to SACCS, the new data item is 
added to the front of the list with its flag bit set to 1, and 
the clock hand is updated by moving one step backwards. 
We are moving backwards since we are adding items to 
the head of the cache that we have. If the data item has 
been referenced, then the flag bit is set to 1. However, if 
the cache is full and the flag bit of the data item pointed to 
by the clock is 0, then the data item is replaced. If the bit 
is 1, then the clock moves backwards until it finds a data 
item with its flag bit set to 0. 

C. Least Frequently Used with Dynamic Aging 
The Least Frequently Used with Dynamic Aging (LFU- 

DA)[4], [42] is an approach that is used to deal with the 
issue of cache pollution caused by LFU. We have cache 
pollution in LFU since it would keep highly requested data 
items in the cache for long periods of time even if they are 
not being accessed currently. Hence, by adding an aging 
factor to the frequency of accesses, it leads to these old 
items being removed from the cache eventually. The idea 
is to have a global variable Cache-Age, set to 0 initially, 
that is added to the frequency (F) of the cached data item, 
where the key K(i) is: K(i) = F(i) + cache   age 

When a cache is full, the data item that has the least 
key value is replaced, where the cache-age is set to the 
key value. In case two or more key values are the same, 
the data item that has been least recently used is removed. 
Furthermore, every time a data item is accessed or added 
to the cache, the key value is calculated again following 
the formula above. When it comes to SACCS, the new data 
item is added to the front of the list with the cache-age set 
to 0 initially. Every time a data item is accessed or added 
to the cache later on, its key value is updated. When the 
cache is full, the data item that has the least key value is 
removed, with the cache-age being set to its key value. 

D. Other Cache Replacement Algorithms 
We have compared the above-mentioned approaches 

with the previous work that has been done on other cache 
replacement algorithms to evaluate their performance[5]. 
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1) Least Recently Used 
The least recently used (LRU) algorithm is a replace- 

ment algorithm that replaces the least recently used item 
when the cache is full. It is the algorithm that has been 
initially proposed to be used with SACCS, where the least 
recently used items are found at the tail of the cache. When 
the cache is full, the data items at the tail are marked for 
removal. 

2) First in First Out 
The first in first out (FIFO) algorithm is a replacement 

algorithm that replaces the first item that has been cached. 
When it comes to SACCS, the first items that have been 
cached are at the end of the cache, and hence replaced 
because newly cached items are added to the head of the 
cache. 

3) Most Recently Used 
The most recently used (MRU) algorithm is a replace- 

ment algorithm that replaces the item that has been most 
recently used. When it comes to SACCS, the item that has 
been recently accessed is placed at the tail of the cache to 
be replaced when the cache is full. 

4) Most Frequently Used 
The most frequently used (MFU) algorithm is a replace- 

ment algorithm that replaces the item that has been most 
frequently used. When it comes to SACCS, every data item 
would have an access number that is incremented every 
time the item is accessed. The item that has been the most 
frequently used is placed at the tail of the cache to be 
replaced when the cache is full. 

5) Least Frequently Used 
The least frequently used (LFU) algorithm is a replace- 

ment algorithm that replaces the item that has been least 
frequently used. When it comes to SACCS, every data item 
would have an access number that is incremented every 
time the item is accessed. The item that has been the least 
frequently used is placed at the tail of the cache to be 
replaced when the cache is full. 

5. Experimental Results 
To evaluate the performance of the three suggested 

replacement algorithms with SACCS, they are implemented 
and compared to some of the previous algorithms that have 
been used with SACCS. To perform the simulation, the 
environment is set up with fixed and changeable parameters 
using the C++ programming language. We have used a 
one cell slot that has 100 mobile users, each with a 300- 
cache size, a thousand data entries that have different access 
commands, a random data size (in bytes) and an average 
data update interval (in sec) that is changeable. Furthermore, 
the downlink and uplink data transmission use one channel 
with a bandwidth of 1250 bps, where the message size is 64 
bytes. Concerning the mobile units, they can be in either 
sleep or wakeup state that is randomized using the two- 
state Markov chain. The simulation is performed by varying 

 

 
Figure 3. Total Hit Vs Time 

 

 
Figure 4. Total Hit 

 
 

eight time slots. As for the performance metrics, we have 
used the total hit/time, total miss/time, total hit, total miss, 
miss ratio, total delay, average delay, bytes per query and 
downloaded bytes per query. 

The total hit is the total number of times the data item 
queried is found in the MU’s cache. Figure 3 below shows 
the total hit results versus the specific time while Figure 4 
shows the total hit for each replacement algorithm. 

As one can see from the results above, the CLOCK 
algorithm has the best total hit (5333) as opposed to the 
other tested algorithms. As for LRU (5086) it is the second 
best followed by the LFUDA (5052) and LDF (4963). The 
CLOCK algorithm has the best total hit due to setting the 
access bit to one every time a new data is added to the 
cache as opposed to only setting it to one during re-access, 
giving every data item an equal head start. Furthermore, 
the CLOCK hand moves, after filling the cache, only when 
the cache is full. Thus, when removing a data item, the one 
that is added first  or  that  has  been  added  first and not 
been referenced for a while will most likely be removed. 
Concerning LFUDA, it is close to LRU since both algorithms 
make use of the temporal locality, where the latter is 
replacing based on recency and the former based on 
frequency and recency. Furthermore, if we examine 
LFUDA, we note that it takes into consideration both the 
frequency and the recency for the replacement, thus it does 
not allow old items that have high frequencies to remain in 
the cache longer than necessary. As for LDF, it is shown to 
be better than FIFO since instead of relying on removing 
the item that has been added first, it removes the data item 
that is the farthest from the current data item. This in turn 
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Figure 5. Total Miss Vs Time 

 

 
Figure 6. Total Miss 

 
 

mimics prediction, where data items that are the farthest 
from each other, based on their initial accesses, are less 
likely to be accessed again. 

As for the total miss, it is the total number of times the 
data item is invalid or not found in the MUs cache. Figure 
5 below shows the total miss results versus the specific time 
on the different caching algorithms while Figure 6 shows 
the total miss for each replacement algorithm. Based on 
these two figures, the CLOCK (11,421) has the least total 
misses as opposed to the LFUDA (11598), LRU (11,666), 
LDF (11,816) and the other algorithms. 

The total miss ratio is the ratio of all the number of times 
the data is not found in the cache over all the data items 
that are requested. Figure 7 below shows the total miss ratio 
results versus the specific time after running the simulation 
on the different caching algorithms. Based on this figure, 
the CLOCK has the least miss ratio as opposed to LFUDA 
followed by LRU, LDF and the other tested algorithms. 

 
 

 
Figure 7. Miss Ratio Vs Time 

Figure 8. Total Delay 
 

 
Figure 9. Average Delay 

 
 

As for the total delay, based on the figure 8 above, the 
CLOCK has the least total delay (5652.57) followed by the 
LFUDA (5921.56), LRU (6121.15), FIFO (6275.44), LDF 
(6360.79) and the other tested algorithms. This is due to the 
fact that delay measures the time between a request and its 
receival, hence if the requested data items are in the cache 
most of the time, requesting missed data items would be 
low. 

Concerning the average delay, based on the figure 9 
above, between issuing a data request and receiving that 
request on average. below shows the average  delay  VS time 
after running the simulation on the different caching 
algorithms. Based on figure 9, the CLOCK (0.847589) has 
the least average delay as opposed to LFUDA (0.894496), 
LRU (0.916117), FIFO (0.954294), LDF (0.966686) and the 
other tested algorithms. 

As for the bytes/query, Figure 10 below shows the bytes 
per query after running the simulation on the different 
caching algorithms. Based on the figure below, the CLOCK 
has the least bytes/query (754.433) as opposed to LFUDA 
(788.321),  LRU  (793.541),  LDF(830.943)  and  the  other 
tested algorithms. 

The data downloaded/query shows the number of bytes 
downloaded per query. Figure 11 below shows the data 
downloaded/query after running the simulation on the differ- 
ent caching algorithms. Based on the figure below, the clock 
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Figure 10. Bytes Per Query 

 

 
Figure 11. Data Download Per Query 

 
 

has the least data download/query (0.515428) as opposed to 
LFUDA (0.539196) LRU (0.541938), LDF (0.562619) and 
the other tested algorithms. The low ratios are attributed to 
finding the data items in the cache, since data is downloaded 
only when there is a miss or there is an update. 

Based on the results above, the proposed CLOCK al- 
gorithm seems to be the best in comparison to the other 
tested algorithms. This can be attributed to the fact that the 
Clock has the most hits with the least misses. Furthermore, 
having the most hits translates to having the least total and 
average delay, since the algorithm would spend less time 
getting data from the MSS as most of the data would be 
found in their caches. The same reasoning could be applied 
as to why the data downloaded per query is the least in the 
CLOCK algorithm. As for LFUDA, it is the second best 
due to having the second-best hits. The reasoning behind 
this could be since MUs tend to request the same content 
repeatedly, and LFUDA replaces the data items that have 
been accessed least frequently dynamically thanks to the 
cache age. 

6. Conclusion 
Caching has been proven to show improvements in 

bandwidth utilization in wireless mobile computing. How- 
ever, the major issue with caching in these networks is effi- 
ciency and validity. In the former, we have stated efficiency 
since we need to ensure that the requested data items are 
found in the cache most of the time. As for the validity of 
the data, mobile devices are prone to disconnections from 
the network due to power-offs or bad network connections. 
For these reasons, several cache replacement algorithms and 
data consistency schemes have been studied in the literature. 
As mentioned, several cache replacement strategies have 

been explored in the literature that are temporal, location 
or function based, each with their improvements and draw- 
backs. The temporal based algorithms depend on the fact 
that data recently accessed will be accessed again, while 
the location-based algorithms depend on the fact that data 
items placed closer to the server will be accessed again. As 
for the function based, these algorithms depend on a value 
obtained from a function to make the cache replacement. In 
addition to these methods, several Machine learning-based 
algorithms have been proposed that mostly rely on learning 
to cache data items that are highly requested. Concerning 
the validity of data, several stateful, stateless and hybrid 
consistency approaches have been developed to ensure the 
validity of the cached items. Both the stateful and stateless 
approaches have drawbacks, where the former has a large 
overhead in order to keep track of the MUs states while 
the latter is redundant and not scalable due to sending IRs 
periodically. Hence, the aim of the hybrid method such as 
SACCS is to utilize the benefits of the stateful and stateless 
approaches while avoiding their drawbacks. In this paper, 
we have used SACCS with other replacement strategies 
such as CLOCK, LDF and LFUDA, and compared them 
with other replacement strategies. We note that the CLOCK 
algorithm is the most efficient out of LRU, LFUDA, LDF, 
FIFO, MRU, MFU and LFU since it has the highest hit 
rate and lowest bandwidth utilization with LFUDA coming 
at a close second. Despite this, it would be interesting to 
evaluate these algorithms after performing network analysis. 
Another future direction could be using machine learning 
models with SACCS to better cache data items at the MSS 
as well as the MUS. 
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