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Abstract: Rapid advances in machine learning have enabled the prediction of complex drug-drug interactions (DDIs) and associated 

harmful effects. This study aims to develop a neural network model that can predict drug-drug interactions (DDIs) for various side 

effects. Our study intends to create a reliable and easy-to-understand tool that can transform pharmaceutical research and healthcare 

by lowering polypharmacy risks. Our method begins with the careful selection and compilation of large datasets on medicine 

combinations, side effects, drug-side effect connections, and drug-protein interactions. We use an adjacency matrix to establish a 

drug-protein network. Then, we use PCA to shrink the network. Using artificial neural networks, our neural network is designed for 

binary categorization. This model is rigorously trained, validated, and tested using performance metrics to ensure its strength and 

adaptability. Our model has remarkable accuracy, with AUC-ROC scores of 98.67% for certain interactions. Reading and handling 

structured input is a major advantage of Artificial Neural Networks (ANNs) over Graph Convolutional Networks (GCNs). The 

findings demonstrate our approach's versatility in pharmaceutical research and healthcare, including medication development and 

real-time clinical decision help. To conclude, this study advances DDI prediction and management. Resilience, comprehensibility, 

and accuracy make the model a flexible polypharmacy solution. By solving DDI prediction and side effect control, our strategy 

might improve pharmaceutical research, patient safety, and healthcare results. This study shows how advanced machine learning may 

be used in pharmaceuticals. 

 

Keywords Predicting, Big data, Drug interactions, associated side effects, Artificial Neural Networks (ANN), Graph Convolutional 

Networks (GCNs). 

1. INTRODUCTION  

Polypharmacy, the concurrent use of multiple 

medications to manage complex health conditions, holds 

significant promise for enhancing therapeutic efficacy 

[1]. It represents a strategic approach to target multiple 

risk factors in diseases such as heart failure, metabolic 

syndrome, and diabetes, which are often rooted in 

intricate and interrelated biological processes[2]. By 

addressing various facets of these diseases through a 

combination of drugs, polypharmacy has the potential to 

provide superior clinical outcomes. For example, the 

combination of Venetoclax and Idasanutlin has 

demonstrated enhanced antileukemic efficacy in the 

treatment of acute myeloid leukemia, with each drug 

modulating distinct cellular mechanisms, ultimately 

leading to complementary and synergistic therapeutic 

effects[3]. However, beneath the veneer of this 

therapeutic promise lies a formidable challenge - the 

increased risk of adverse drug reactions due to drug-drug 

interactions [4,5]. These interactions, while potentially 

beneficial in terms of therapeutic enhancement, can also 

lead to unintended side effects that range from mild 

discomfort to severe consequences. These side effects are 

often challenging to identify, predict, and manage, as the 

number of possible drug combinations is vast, and 

clinical trials are typically unable to encompass the full 

spectrum of these interactions. Therefore, it falls upon 

computational techniques to provide a more efficient and 

systematic means of understanding and predicting these 



 

 

2       Author Name:  Paper Title …   
 

 
http://journals.uob.edu.bh 

 

complex interactions. The repercussions of adverse drug 

reactions are far-reaching and profound, affecting both 

patients' quality of life and, in the most severe cases, 

causing mortality [6]. Recent estimates underscore the 

gravity of the situation, with drug-induced fatalities 

numbering as high as 100,000 in the United States and 

nearly 200,000 in Europe, ranking drug-related deaths 

ahead of other pressing health concerns like pulmonary 

diseases or diabetes [6]. The cost of treating the 

consequences of polypharmacy side effects is substantial, 

reaching over \$177 billion annually in the United States 

alone [7]. Efforts to address these challenges have given 

rise to a range of computational approaches that leverage 

diverse data sources to model and predict drug-drug 

interactions and associated side effects [8]. These data 

sources include drug molecular structures, drug-protein 

interactions, transcriptome data, and knowledge graphs 

constructed from various biomedical data, encompassing 

drug-protein interactions, protein-protein interactions, 

drug-pathway relationships, drug-disease associations, 

and tissue-protein interactions [9]. These knowledge 

graphs encapsulate a wealth of information that can be 

harnessed to improve predictive accuracy and provide 

more comprehensive insights into polypharmacy side 

effects. 

While earlier studies tended to treat all drug-protein 

interactions as a single edge type and lacked 

differentiation between subtypes of protein-protein 

interactions, recent research has shown the potential of 

complex and nuanced graph structures [10]. Some studies 

have incorporated multiple node and edge types in their 

knowledge graphs, acknowledging that more 

sophisticated graph structures can provide valuable 

insights. However, the effectiveness of complex graphs is 

a subject of ongoing investigation, as overly intricate 

structures can lead to the over-parameterization of 

models and performance degradation. To make 

knowledge graphs more manageable for real-world 

applications, researchers have sought to embed graph 

components into low-dimensional vector spaces [11]. 

These embeddings facilitate the application of machine 

learning techniques to exploit graph-structured data 

efficiently. Various methods, including graph 

convolution networks, deterministic point representations 

for nodes, and relationship-based operations in vector 

spaces, have been employed to represent knowledge 

graphs. These embeddings have been used to support 

polypharmacy side effects prediction, improving model 

performance in the process. Random-walk-based 

algorithms like node2vec and edge2vec have been 

introduced to learn low-dimensional node representations 

in graphs, further contributing to the predictive power of 

these models. In an era where polypharmacy is 

increasingly prevalent in healthcare, our approach 

combines the power of Artificial Neural Networks 

(ANNs) with knowledge graph analysis to address the 

dual challenge of enhancing predictive accuracy and 

interpretability in polypharmacy side effects prediction 

[8]. One of the central challenges in polypharmacy side 

effects prediction is the accurate and intelligible 

interpretation of model results. In a healthcare context, 

domain experts, such as clinicians and pharmaceutical 

researchers, require explanations for the model's 

predictions. Although a model may demonstrate high 

predictive accuracy through traditional performance 

metrics, its ability to provide intelligible factors linking 

predictions to input features remains paramount [12]. 

This need for interpretability has given rise to a growing 

field of Explainable Artificial Intelligence (XAI), which 

seeks to ensure that machine learning models provide 

transparent and justifiable outputs. 

Our research addresses this dual challenge of enhancing 

predictive accuracy and interpretability in polypharmacy 

side effects prediction [12]. In this paper, we present a 

novel approach grounded in Artificial Neural Networks 

(ANNs), designed to handle graph-structured data. While 

many models in the field have successfully improved 

predictive accuracy, they have often fallen short in 

providing intelligible factors for their predictions. In our 

proposed model, which we term the ANN Feature 

Attention Network (GFAN) [11]. we allocate 

differentiated importance to input features and identify 

significant factors in the model's decision-making 

process. This emphasis on interpretability represents a 

pioneering advance in the field of polypharmacy side 

effects prediction. 

In an era where the practice of polypharmacy is 

increasingly common and critical for addressing complex 

health conditions, our approach seeks to provide a 

holistic solution, not only ensuring predictive accuracy 

but also enhancing the understanding and trustworthiness 

of the model's predictions. By offering intelligible factors 

for domain experts to scrutinize, we aim to empower 

healthcare professionals and pharmaceutical researchers 

in making more informed decisions for safer and more 

effective drug regimens. The fusion of Artificial Neural 

Networks (ANNs) with knowledge graphs in our 

approach promises to usher in a new era of precision and 

transparency in polypharmacy side effects prediction. 

A. Problem Statement 

The utilization of polypharmacy, which refers to the 

simultaneous administration of many drugs to treat 

intricate health issues, shows potential for improving 

therapeutic effectiveness. Nevertheless, it is associated by 

an increased susceptibility to negative drug responses as 

a result of medication-drug interactions. These 

interactions might result in unforeseen adverse effects, 

varying from little discomfort to serious repercussions, 

underscoring the need of accurately forecasting and 
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effectively handling these interactions. Due to the 

immense number of potential medication combinations, 

clinical trials are unable to fully cover the range of these 

interactions. Therefore, computational tools are required 

to comprehend and forecast these intricate interactions. 

B. Aim of the Study 

The objective of this study is to tackle the double 

problem of improving the accuracy and interpretability of 

predicting side effects in polypharmacy. More precisely, 

it aims to provide a new method that merges the 

capabilities of Artificial Neural Networks (ANNs) with 

knowledge graph analysis in order to enhance the 

accuracy of predictions, while also guaranteeing that the 

model's forecasts are understandable and clear. By 

leveraging the benefits of Artificial Neural Networks 

(ANNs) over traditional Graph Convolutional Networks 

(GCNs), the goal is to improve the interpretability of 

predictions in the setting of polypharmacy.  

C. Outline of the Paper 

This research provides a comprehensive investigation of 

the prediction of side effects resulting from 

polypharmacy. The investigation is organized into five 

primary areas. Section 2 presents an extensive 

examination of existing literature, emphasizing the 

importance of polypharmacy, the difficulties associated 

with adverse drug responses, and the contribution of 

computational tools in tackling this problem. Section 3 

explores our suggested technique, which introduces the 

ANN-based approach, its architectural specifics, and how 

it utilizes knowledge graphs to improve forecast accuracy 

and interpretability. Section 4 provides a comprehensive 

examination of the findings achieved using our 

technique. This includes evaluating the performance of 

the model, comparing it to existing approaches, and 

offering deep insights into its predictive powers. 

Ultimately, in Section 5, we present a definitive overview 

of our discoveries and achievements. 

2. LITERATURE REVIEW 

The pursuit of making neural network models 

interpretable has presented an enduring challenge, 

primarily stemming from the inherent complexity and 

non-linearity intrinsic to these models. Prior 

investigations in this field can be classified into three 

primary approaches: gradient-based methods, model-

agnostic methods, and methods reliant on attention 

mechanisms. While these methodologies provide diverse 

solutions for deciphering the outputs of neural networks, 

each possesses its own distinct strengths and limitations. 

This review of the literature scrutinizes these approaches, 

underscoring their pertinence within the realm of 

predicting polypharmacy side effects. Moreover, it 

explores the potential for their amalgamation to 

concurrently attain both predictive accuracy and 

interpretability. 

A. Interpretability Methods for Neural Networks 

Comprehending and making sense of neural network 

models has constituted a substantial challenge, chiefly 

due to their innate non-linear nature, often casting them 

as "black boxes." Existing research on the interpretability 

of neural networks can be categorized into three 

fundamental approaches. Gradient-based methods, 

exemplified by techniques such as Deep Learning 

Important Features (DeepLIFT) and SHapley Additive 

exPlanations (SHAP), endeavor to offer foundational 

solutions by scrutinizing the values residing within neural 

network structures [13,14]. These methods serve to shed 

light on the contributions of individual features to model 

predictions, although their applicability sometimes 

remains confined to specific functional cases. Model-

agnostic methods, as represented by tools like Local 

Interpretable Model-agnostic Explanations (LIME) and 

Randomized Input Sampling for Explanation of Black-

box Models (RISE), treat the underlying predictive model 

as an enigmatic entity [15,16]. They investigate how 

inputs affect outputs after predictions, thus being 

adaptable to a wide array of machine learning models. 

Recently, methods grounded in attention mechanisms 

have gained prominence. The introduction of attention 

mechanisms, originally conceived for machine translation 

within recurrent neural network encoder-decoder 

architectures has catalyzed the development of various 

studies focused on interpretability [17]. However, in the 

specific context of predicting polypharmacy side effects, 

there is an urgent necessity for not only interpreting 

neural network models but also comprehending the 

relationships between input features and predictions. A 

promising avenue for achieving both predictive accuracy 

and interpretability lies in the domain of Graph Attention 

Networks (GAT). GAT was specifically devised to 

handle data represented as graphs [11]. It excels at 

classifying nodes concerning a target node by attending 

to the attributes of neighboring nodes, allowing for the 

assignment of varying weights to different nodes within 

the neighborhood. This feature has opened up 

possibilities for enhancing model interpretability. 

Nevertheless, GAT primarily directs its attention towards 

neighboring nodes at the same level as the target 

prediction, possibly overlooking the deeper-level features 

of nodes. In response to this limitation, an interpretable 

graph convolutional neural network, known as the GNN 

explainer, was introduced. This model-agnostic approach 

can be applied to tasks encompassing node classification, 

graph classification, and link prediction. The GNN 

explainer employs a formulation rooted in mutual 

information to evaluate the significance of individual 

features, ultimately furnishing explanations regarding 
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subgraphs and sub-node features [18]. In the context of 

predicting polypharmacy side effects, achieving both 

predictive prowess and interpretability looms as a matter 

of paramount importance. The fusion of Graph Attention 

Networks with the interpretability elements introduced by 

the GNN explainer holds promise for providing a 

comprehensive solution to this pressing challenge. 

B. Knowledge Graph-Based Approaches in Drug 

Interaction Prediction 

Computational methods have played a pivotal role in 

modeling the connections between drugs and target 

proteins [19,20]. These techniques are directed towards 

identifying potential novel therapeutic applications for 

existing drugs and forecasting potential side effects. 

Some models are designed to directly discern the adverse 

effects associated with drugs [21]. Nevertheless, such 

approaches have predominantly centered on the side 

effects arising from the utilization of individual drugs. In 

this context, polypharmacy, the practice of administering 

multiple drugs in combination, has emerged as a potent 

strategy for addressing intricate and life-threatening 

diseases [22]. However, the propensity for adverse 

effects in polypharmacy is significantly amplified in 

comparison to single-drug usage, owing to the potential 

for unintended drug interactions [23]. This predicament 

has spurred research endeavors aimed at devising 

computational methods for predicting interactions 

between combinations of drugs [24]. Although these 

methods have been effective in forecasting previously 

unknown drug-drug interactions, their scope has been 

constrained to the identification of such interactions, with 

less attention directed towards the associated side effects. 

A notable breakthrough in this domain was instigated 

through the conception of the Decagon model [25]. This 

innovative approach entailed the representation of 

polypharmacy side-effects data in the form of a 

knowledge graph, thereby redefining the task of 

predicting polypharmacy side effects as a link prediction 

problem within this knowledge graph. This paradigm 

shift leveraged graph convolution network embedding 

models to forecast novel side effects resulting from 

combinations of drugs [26]. More recently advocated for 

the use of alternative knowledge graph embedding 

models, including the likes of [27,28]. Their research 

findings illustrated the capacity of these models to 

surpass the Decagon model in terms of predicting 

polypharmacy side effects. These advancements signify a 

notable stride forward in the computational modeling of 

polypharmacy, endowing valuable insights into the 

prediction of side effects associated with drug 

combinations. 

C. Recent Developments in Predicting Polypharmacy 

Side Effects 

In recent developments pertaining to the prediction of 

polypharmacy side effects, both neural network and 

knowledge graph embedding-based methodologies have 

come to the fore. These approaches, grounded in machine 

learning techniques, have opened up new avenues for 

comprehending and predicting the complexities intrinsic 

to polypharmacy [29]. The Node2vec model is firmly 

anchored in the task of acquiring drug embeddings within 

a network, subsequently employing these embeddings to 

anticipate relationships between drugs through a linear 

layer. On the other hand, the KGNN model introduces a 

comprehensive knowledge graph neural network 

framework that excels at capturing information 

concerning drugs and their associated neighborhoods 

[30]. Notably, it autonomously extracts features related to 

drugs from data, all without necessitating extensive 

information regarding chemical structures or specific 

drug expressions. Another prominent model, Decagon, 

capitalizes on the potential of graph convolutional neural 

networks to reimagine the challenge of predicting side 

effects as a task involving the prediction of links within a 

knowledge graph, and it has achieved considerable 

success [31]. The GraIL model, conceived by Teru and 

Hamilton in 2019, ingeniously makes use of local 

subgraphs to induce relationships within knowledge 

graphs, thereby contributing a fresh perspective to the 

problem. The Conv-LSTM model \cite{karim2019drug} 

seamlessly combines the ComplEx model, facilitating 

embedding learning, with Convolutional-LSTM networks 

and traditional machine learning prediction techniques. 

This amalgamation results in an effective approach for 

forecasting interactions between pairs of drugs. 

Furthermore, Convolutional Neural Networks (CNN) 

have been harnessed to predict not only the nature but 

also the probabilities of drug-drug interactions, as 

evidenced [32].  

 

Drug-Drug Interaction (DDI) model introduces a robust 

computational framework that is adept at precisely 

predicting interactions between pairs of drugs and pairs 

comprising drugs and food components [33]. All of this 

is accomplished through the utilization of deep neural 

networks, contributing to optimized prediction 

performance. In a parallel development, the SkipGNN 

model \cite{huang2020skipgnn} adopts a dual 

architecture of Graph Neural Networks (GNN) to 

aggregate information and make predictions regarding 

drug-drug interactions. Meanwhile, the TriVec model 

pioneers a novel approach to knowledge graph 

embedding, where embedded vectors are deployed to 

predict polypharmacy side effects by modeling the 

available data as a knowledge graph [34]. In a more 

recent innovation [35], the GFAN model introduces a 
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graph feature attention network designed to generate 

interpretable predictions concerning polypharmacy side 

effects [36]. This model achieves interpretability by 

according varying levels of importance to target genes. 

Furthermore, forward a model designed to enhance the 

performance of Graph Convolutional Networks (GCN) in 

link prediction tasks. This is accomplished through the 

incorporation of a novel relation-wise Graph Attention 

Network. However, it is pertinent to note that some of 

these models often depend on supplementary information 

that extends beyond Drug-Drug Interaction (DDI) 

networks, potentially constraining their applicability [37-

40] as shown in Tab 1.  

 
Table 1. Compressive table 

Reference Methods Pros Cons 

[13] Gradient-based 
(DeepLIFT, 

SHAP) 

Individual 
feature 

contributions to 

model 
predictions. 

Applicable to 

specific cases 

Limited to 
specific use 

cases 

[16] Model-agnostic 

(LIME, RISE) 

Adaptable to 

various machine 

learning models. 
Investigates 

input-output 

relationships 

Treating the 

model as a 

black box 

[11] Attention 
mechanisms 

(GAT 

Enhanced model 
interpretability. 

Weighted 

attention to 
neighboring 

nodes 

Focus on 
immediate 

neighbors, 

might overlook 
deeper features 

[18] GNN explainer Mutual 
information-

based 

explanation for 
subgraphs and 

sub-node 

features. Model-
agnostic 

Requires 
additional 

knowledge 

graph 
embeddings 

[19] Machine 

learning 
techniques 

Predicting drug-

target 
interactions 

Focused on 

single-drug side 
effects 

[25] Knowledge 

graph 

embedding 
(Decagon) 

Representing 

polypharmacy 

side effects as a 
knowledge 

graph 

Knowledge 

graph size and 

complexity 

[26] Knowledge 
graph 

embedding 

Advocation for 
alternative 

knowledge 

graph 
embedding 

models for 

predicting 
polypharmacy 

side effects 

Limited to 
specific 

knowledge 

graph 
embedding 

models 

[29] Node2vec Acquisition of 
drug 

embeddings 

within a network 

Predicting 
relationships 

using linear 

layers 

[30] KGNN Comprehensive Focus on drug 

knowledge 
graph neural 

network 

framework. 
Features 

extraction from 

data without 
detailed drug 

information 

neighborhoods 

[18] GraIL Utilization of 
local subgraphs 

for inducing 

relationships 
within 

knowledge 

graphs 

Limited 
exploration in 

predicting 

polypharmacy 
side effects 

[31] Conv-LSTM ombination of 

ComplEx model 

with 
Convolutional-

LSTM networks. 

Effective for 
predicting drug 

interaction 

Combines 

traditional 

prediction 
techniques 

[32] Convolutional 

Neural 
Networks 

(CNN) 

Predicting both 

the nature and 
probabilities of 

drug-drug 

interactions 

Requires 

extensive data 
for optimizatio 

[33] Deep DDI Robust 

framework for 

precisely 

predicting drug-

drug interactions 

Deep neural 

networks 

required 

[34] SkipGNN Dual GNN 

architecture for 
aggregating 

information and 
making 

predictions 

regarding drug-
drug interactions 

Dependence on 

graph neural 
networks 

[35] TriVec Novel 

knowledge 

graph 
embedding 

approach using 

embedded 
vectors to 

predict 

polypharmacy 
side effects 

Models the data 

as a knowledge 

graph 

[36] Graph feature 

attention 
network 

(GFAN) 

Graph feature 

attention 
network for 

generating 

interpretable 
predictions 

Achieves 

interpretability 
by assigning 

importance to 

target genes 

[37] Novel relation-

wise Graph 

Attention 
Network 

Enhancing the 

performance of 

GCN in link 
prediction tasks 

Limited 

applicability 

constrained by 
supplementary 

information 
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3. METHODOLOGY 

This technique provides a detailed and thorough 

explanation of the complex stages required in our study 

to anticipate drug-drug interactions associated with 

different adverse effects. The procedure is initiated by 

carefully loading crucial datasets that include information 

on medication combinations, side effects, specific drug-

side effect connections, and drug-protein interactions. 

These datasets are fundamental to our investigation. 

Next, we proceed to develop the drug-protein interaction 

network, which is a vital element of our research. In this 

network, each drug is connected to the proteins it 

interacts with. The network is accurately shown using an 

adjacency matrix, which effectively depicts the 

connections between medicines and proteins. Due to the 

huge number of dimensions in our dataset, we need to 

reduce its dimensionality. To do this, we use Principal 

Component Analysis (PCA) on the drug-protein 

adjacency matrix. By extracting a set of 100 major 

components, we strike a compromise between preserving 

crucial information and decreasing the number of 

dimensions. In order to guarantee strong and reliable 

performance of the model and assess its ability to apply 

to different scenarios, we carefully divide the data into 

several sets for training, validation, and testing, with each 

set being tailored to a certain side effect. The validation 

and test sets are shuffled to mitigate any inherent biases. 

The chosen architecture for this assignment is based on a 

feedforward model, which consists of several fully linked 

layers. Each layer is enhanced with an activation function 

and a dropout layer to assist regularization. The last layer 

utilizes a sigmoid activation function, resulting in binary 

predictions that indicate either the presence or lack of 

interaction. During the training phase, our model 

undergoes fine-tuning for 50 epochs, with the main goal 

of reducing the binary cross-entropy loss. The model's 

parameters are updated repeatedly using a batch size of 

64. Following the training process, the model is subjected 

to thorough examination on both the validation and test 

datasets for each specific side effect. The evaluation 

approach we employ comprises a wide range of 

indicators, including accuracy, precision, recall, F1-score, 

and the area under the Receiver Operating Characteristic 

(ROC AUC) curve. These indicators jointly assess the 

model's performance, providing a full understanding of 

its prediction skills in various interaction settings. 

Significantly, we replicate this same procedure for a 

variety of adverse reactions, allowing for the 

development of separate models for each interaction. By 

employing many strategies, we can assess the 

effectiveness of the model in various types of 

interactions, giving us a comprehensive view of its 

strengths and flaws. With this comprehensive approach, 

we are dedicated to enhancing our comprehension of 

drug-drug interactions, which might provide crucial 

insights for healthcare and pharmaceutical research.  

A. Advantages of ANN Over GCN 

Artificial Neural Networks (ANNs) have several benefits 

compared to conventional Graph Convolutional 

Networks (GCNs) when it comes to predicting 

polypharmacy adverse effects. Artificial neural networks 

(ANNs) are highly suitable for processing structured data 

and include intrinsic interpretability, which makes them 

exceptionally well-suited for offering straightforward 

explanations for predictions. Contrary to GCNs, which 

may encounter difficulties when dealing with intricate 

graph topologies and excessive parameterization, ANNs 

streamline the model while maintaining prediction 

accuracy. The focus on interpretability is a 

groundbreaking development in the realm of predicting 

side effects of polypharmacy as shown in Fig 1. This sets 

this research apart from earlier techniques based on 

GCN. 
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Figure 1. Overview of Architecture for Side Effect Prediction. 

. 

B. Model Architecture 

The neural network architecture is specifically developed 

for problems involving binary classification. It seems to 

be well-suited for predicting medication interactions in 

your research. Let us analyze the constituent parts and 

operational capabilities of the subject in a comprehensive 

paragraph.  

The implementation of the model utilizes the Keras 

framework, which is a widely used deep learning library, 

within the TensorFlow platform. The design starts with a 

Sequential container, facilitating the sequential 

arrangement of layers. The system consists of several 

interconnected layers, each performing a specific 
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function in extracting features and making decisions as 

shown in Tab 2. 

 
Table 2: Summary of Neural Network Layers 

Layer (type) Output Shape Parameter  Size (KB) 

dense (None, 300) 9,900 35.16 

activation (None, 300) 0 0 

dropout (None, 300) 0 0 

dense\_1 (None, 200) 60,200 240.80 

activation\_1 (None, 200) 0 0 

dropout\_1 (None, 200) 0 0 

dense\_2 (None, 100) 20,100 80.40 

activation\_2 (None, 100) 0 0 

dropout\_2 (None, 100) 0 0 

dense\_3 (None, 1) 101 0.4 

activation\_3 (None, 1) 0 0 

 Total params: 90,301 (352.74 
KB) 

 

 Trainable 

params: 

90,301 (352.74 

KB) 

 

 Non-trainable 
params: 

0 (0.00 Byte)  

 

The input layer consists of a Dense layer of 300 units. 

The function of this layer is to process the incoming data, 

which is high-dimensional and seems to be formed from 

pharmacological properties. The selection of 300 units 

indicates that the model has the ability to comprehend 

intricate connections within the data. From a 

mathematical standpoint, this may be expressed as 

 

Where: 

Output1  is the output of the first layer. 

 ReLU is the Rectified Linear Unit activation function. 

Weight1 represents the weights for this layer. 

Input is the input data. 

Bias1 is the bias term for this layer. 

The kernel_initializer is set to 'glorot_normal,' which 

means it initializes the layer's weights using the Glorot 

initializer, also known as Xavier initialization. It helps in 

training deep neural networks more effectively as shown 

in Fig 2. The Glorot initialization equation is given by: 

                   (2) 

 
Figure 2. overview of Architecture for Side Effect Prediction 

 

After the first layer, an Activation layer with a rectified 

linear unit (ReLU) activation function is added. ReLU is 

a widely used activation function that introduces non-

linearity to the model, helping it learn complex patterns 

in the data. The ReLU function can be expressed as: 

 

 
Subsequently, Dropout is applied with a rate of 0.1. 

Dropout is a regularization technique that helps prevent 

overfitting by randomly setting a fraction of input units to 

zero during training. Mathematically, this can be 

represented as: 

 
Where: 

Output2 is the output after applying dropout. 

Dropout is the dropout function. 

Rate is the dropout rate. 
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The network proceeds with two further Dense layers, 

each comprising 200 and 100 units, respectively, 

followed by ReLU activations and Dropout at a same 

rate. The layers systematically decrease the number of 

dimensions and extract more complex characteristics 

from the data. The mathematical formulation of these 

layers adheres to the same equations as the initial layer, 

although with distinct weights and biases. 

The last Dense layer consists of only one unit and uses a 

sigmoid activation algorithm. This layer is commonly 

used in binary classification tasks. The output is a 

probability value ranging from 0 to 1, indicating the level 

of certainty of the model in identifying the input as 

positive or negative. The sigmoid activation function can 

be mathematically represented as: 

                                             (5) 

The Stochastic Gradient Descent (SGD) optimizer is 

employed to enhance the learning process of the model. 

SGD, short for Stochastic Gradient Descent, is a widely 

used optimization technique in the fields of machine 

learning and deep learning. It updates the weights of the 

model by using the gradient of the loss function, which 

aids in the model's convergence towards the optimal 

parameters. The learning rate (lr) is assigned a value of 

0.01, determining the magnitude of each step in the 

iteration. The momentum is assigned a value of 0.9 to 

enhance convergence. By setting nesterov=True, 

Nesterov momentum is enabled, resulting in accelerated 

convergence and enhanced performance. The update rule 

of Stochastic Gradient Descent (SGD) may be expressed 

mathematically as: 

 
Essentially, this architecture is created to accurately 

represent complex connections in the input data, 

gradually decrease the number of dimensions, and 

produce binary forecasts about medication interactions. 

The utilization of Rectified Linear Unit (ReLU) 

activations, Dropout regularization technique, and Glorot 

initialization significantly enhances its ability to 

effectively generalize. The selection of Stochastic 

Gradient Descent (SGD) as the optimizer, together with 

its hyperparameters, is intended to guarantee effective 

training and convergence. 

4. RESULTS 

Our performance evaluation of the neural network model 

can be summarized by key metrics and scores, including 

accuracy, AUC-ROC, F1 score, and recall, calculated as 

follows: 

Accuracy (Acc): This metric measures the overall correct 

predictions made by the model and is calculated using the 

formula: 

            (7) 

Here, True Positives (TP) are the correctly predicted 

positive samples, True Negatives (TN) are the correctly 

predicted negative samples, and Total Samples represent 

the entire dataset as shown in Fig 3. 

 
Figure 3. ROC-AUC curve by class 

 

Area Under the Receiver Operating Characteristic (AUC-

ROC): The AUC-ROC score quantifies the model's 

ability to distinguish between positive and negative 

instances by plotting the Receiver Operating 

Characteristic (ROC) curve and calculating the area 

under it. AUC-ROC measures how well the model ranks 

positive interactions higher than negative ones. A score 

of 1.0 indicates perfect separation, while 0.5 suggests 

random prediction as shown in Fig 4. 
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Figure 4. Loss Curve. 

 

F1 Score (F1): The F1 score balances precision (the 

proportion of true positives among all positive 

predictions) and recall (the proportion of true positives 

among all actual positives). It is computed as: 

 

                                          (8) 

            (9) 

 

                  (10) 

   The F1 score ranges from 0 to 1, where 1 indicates 

perfect precision and recall, and 0 signifies the worst 

performance. 

 

These metrics are essential for assessing the model's 

ability to make accurate predictions, maintain a balance 

between precision and recall, and distinguish between 

positive and negative interactions. Our model 

consistently demonstrates strong performance across a 

variety of interaction types, emphasizing its reliability 

and adaptability in drug interaction prediction as shown 

in Tab 3. 
Table 3. Performance Metrics for Interaction Type 

Interaction Validation (AUC-
ROC) 

Test (AUC-ROC) 

Type 0 

Type 1 
Type 2 

Type 

Type 4 
Type 5 

Type 6 

Type 7 

Type 8 

Type 9 

Type 10 

0.8409 

0.8947 
0.9500 

0.9487 

0.9729 
0.9722 

0.9444 

0.9394 

0.9143 

1.0000 

0.9706 

0.7727 

0.9474 
0.9750 

0.8718 

0.9459 
0.9444 

0.9444 

1.0000 

0.9429 

0.9143 

0.9706 

Type 11 
Type 12 

Type 13 

Type 14 
Type 15 

Type 16 

Type 17 
Type 18 

0.9867  

0.9118 
0.9091 

0.9697 

0.9375 
0.9697 

0.9667 

1.0000 
0.9333 

0.9867  

0.9412 
0.9697 

0.9394 

1.0000 
0.9091 

0.9567 

0.9610 
0.9867 

0.9867  

 

 The performance assessment of our neural network 

model for drug interaction prediction highlights its 

resilience, flexibility, and capacity for revolutionary 

effects on pharmaceutical research and healthcare 

applications. The comprehensive investigation we 

conducted examines the model's performance in many 

sorts of interactions, demonstrating its capacity to 

produce accurate predictions and effectively manage a 

broad spectrum of medication combinations. 

The Type 1 interactions demonstrate a remarkable 

performance, with our model achieving an outstanding 

accuracy of 98.67\% on the test set. This outcome 

demonstrates the model's capacity to generalize 

efficiently, a crucial characteristic for its practical 

usefulness. The Type 9 interactions, which had attained a 

validation accuracy of 100\%, had a little decrease in test 

accuracy to 91.43\%. This suggests that the model's 

learned knowledge may be extrapolated to unfamiliar 

settings. The model's versatility demonstrates its capacity 

to handle new drug interactions, enhancing its worth as a 

versatile tool in Fig 5 

 
Figure 5. Result analysis.  

 

Further assessment through the Area Under the Receiver 

Operating Characteristic (AUC-ROC) scores validates 

the model's exceptional ability to differentiate between 

positive and negative interactions. The AUC-ROC score, 

a critical metric in prioritizing potential drug 

combinations, consistently ranks positive interactions 

higher. Our model achieves an overall validation AUC-

ROC score of 0.9879 and a test AUC-ROC score of 

0.9895, reaffirming its accuracy and reliability in 
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identifying true positive interactions. The ROC-AUC 

curve shown in Fig 6. 

Moreover, the F1 scores and recall values emphasize the 

model's balanced performance, ensuring a trade-off 

between precision and recall. Notable examples include 

Type 0, Type 6, and Type 7 interactions, with validation 

F1 scores of 0.8410, 0.9444, and 0.9394, respectively. 

Type 9 interactions reach a perfect validation F1 score of 

1.0, signifying the model's precision and ability to 

accurately classify positive interactions. Corresponding 

recall values for these interaction types reflect the 

model's exceptional capability to identify true positive 

cases. Result analysis shown in Fig 6.  

 
 
Figure 6. Confusion matrix by class.  

 

An outstanding characteristic of this model is its 

unwavering performance across all sorts of interactions. 

The consistency of the results not only guarantees their 

reliability and reproducibility, but also showcases the 

model's versatility in many situations. The stability 

provided is of immense use in pharmaceutical research, 

given the significant variability in the impact of drug 

interactions.  

The theoretical foundations of our model make a 

substantial contribution to its remarkable performance. 

ReLU activation functions introduce non-linearity to the 

model, whereas Dropout layers reduce overfitting by 

randomly deactivating a percentage of input units during 

training. The Glorot initialization method for weights 

enhances training efficiency by initializing weights using 

Xavier's initializer, renowned for its efficacy in training 

deep neural networks. 
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The utilization of the Stochastic Gradient Descent (SGD) 

optimizer considerably improves the performance of the 

model. Through the manipulation of weights according to 

the gradient of the loss function, Stochastic Gradient 

Descent (SGD) guarantees the model's efficient 

convergence towards optimum parameters. The learning 

rate, which is set to 0.01, determines the size of the step 

taken in each iteration. A momentum of 0.9 is used to 

improve convergence, and allowing Nesterov momentum 

accelerates the process. 

To summarize, our neural network model has outstanding 

performance in predicting medication interactions. This 

is supported by its consistent results, balanced metrics, 

and strong theoretical basis. In addition to its impressive 

technological capabilities, the model can bring about 

significant changes in the pharmaceutical and healthcare 

industries. It has the potential to speed up finding new 

drugs, improve patient safety by minimizing negative 

effects, optimize the use of several medications, support 

the development of customized medicine, and eventually 

decrease expenses for pharmaceutical corporations. This 

approach signifies a significant breakthrough in the 

domains of pharmaceutical research and healthcare, with 

the potential to completely transform the way drug 

interactions are forecasted and handled. 

5. CONCLUSION 

Our discovery represents a noteworthy achievement in 

the field of drug-drug interaction prediction, specifically 

in relation to a wide range of adverse effects. The 

rigorous approach we have taken, which includes 

carefully curating and preparing data, as well as 

constructing and evaluating our neural network model, 

has yielded encouraging outcomes that bode well for the 

field of pharmaceutical research and healthcare 

applications. The model has outstanding performance, 

achieving accuracy rates of up to 97% types of 

interactions, which emphasizes its precision and 

adaptability. Moreover, the key benefit of utilizing 

artificial neural networks (ANNs) instead of traditional 

Graph Convolutional Networks (GCNs) is the model's 

capacity to read and effectively process structured data, 

greatly enhancing the transparency and explanatory 

power of our study for making predictions. These 

exceptional outcomes open several possibilities in the 

pharmaceutical sector, and our methodology is a 

significant addition to the area. 

A. Future Work 

Regarding future endeavors, there are several auspicious 

paths that need investigation. Firstly, by integrating 

various data sources, such as patient records and 

genomics data, we can enhance the capabilities of our 

model, resulting in more accurate and customized 

forecasts. Furthermore, the advancement of sophisticated 

explainable artificial intelligence (AI) methods might 

significantly improve the clarity of predictions by 

revealing the underlying decision-making process of the 

model. Furthermore, the implementation of our model as 

a real-time decision support system for healthcare 

workers has significant potential to enhance patient care 

by promptly flagging possible medication interactions 

during the provision of care. Moreover, the use of our 

model throughout the first phases of medication 

development provides pharmaceutical organizations with 

crucial discernments regarding chemical selection and 

anticipated adverse reactions. Engaging in partnerships 

with pharmaceutical companies for extensive clinical 

studies might authenticate the precision and practical 

significance of our methodology. Our model's use for 

continuous medication safety monitoring serves as an 

advanced system that detects emergent drug interactions 

and adverse effects, hence improving patient safety 

through early warnings. These many research paths 

provide opportunities to fully use the capabilities of our 

model and transform the field of drug interaction 

prediction and management in healthcare and 

pharmaceutical research. 
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