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Abstract: Leaf disease is a prominent and destructive ailment that affects plants. Timely identification and early detection are crucial 

for enhancing the future probability of leaf diseases that impact plants. The investigation of soybean plant leaf disease detection has 

gained importance owing to its major impact on soybean growth, leading to decreased productivity and quality. The traditional 

method of identifying soybean leaf diseases mostly relies on agricultural specialists, resulting in a significant amount of time being 

utilized. Deep Learning (DL) models are promising techniques to identify soybean leaf disease detection. However, various ongoing 

investigations are going on to achieve an effective model with efficient practical application. To address this problem, this study 

proposes the use of a hybrid, smart and intelligent model based on dilation Convolutional Neural Network (CNN) to identify diseases 

of soybean leaves. Selecting and designing the ideal model structure is still a difficult task, even though DL networks demonstrate 

remarkable efficacy. The accuracy of plant disease detection based on leaf analysis may be improved by fine-tuning the values of the 

hyper-parameter of dilation CNN. The proposed framework has been trained using a dataset of 1620 soybean leaf images that have 

been divided into six different diseased groups. The Velocity Pausing Particle Swarm Optimization (VP_PSO), a well-studied 

metaheuristic technique, is employed to optimize the hyper-parameters of the dilation CNN. This optimization aims to improve the 

effectiveness of the dilation CNN in accurately recognizing diseases present in soybean plant leaves. The suggested hybrid model 

performs better than other standard hybrid models such as classical CNN, VGG16, MobileNetV2, ResNet101, dilation CNN and 

PSO_Dilation_CNN. As per the experimental research, the suggested VP_PSO _Dilation CNN model has a detection accuracy of 

95.32%. 
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1. INTRODUCTION  

In agricultural farming, leaf diseases are predominant 
challenges faced by the plants in producing a large 
number of agricultural products. Diseases that appear in 
plants have a detrimental effect on crop productivity. 
These leaf diseases must be identified in time. If these 
diseases cannot be detected in due time, there will be an 
adverse effect on crop production [1]. Early detection of 
leaf diseases plays a key role in the crop production 
management process [2]. This popular approach is 
implemented in identifying diseases in various crop fields 
like tomato [3], potato [4], rice [5], apple [6], soybean [7] 
etc. However, soybean has become a remarkably popular 
oil-producing crop and one of the top five most significant 
food crops in the world [8]. It has become the main source 

of edible oil now and also it produces almost a quarter i.e. 
25% of the total edible oil produced worldwide [9]. The 
nutritional characteristics of soybeans can help people 
prevent themselves from the high risk of cardiovascular 
disease and diabetes to some extent. The meal produced 
with soybean oil is highly composed of proteins making it 
a popular choice for human consumption. In addition to 
being consumed by humans, it is also often employed in 
aquaculture production systems [10]. It is also extensively 
used in many industries for the preparation of detergents, 
inks, lubricants and paints and is also used in the field of 
bio-diesel production [11]. To maintain human 
requirements in the largest growing population country 
India along with the requirements in industrial production, 
the demand for the edible oil prepared from soybean will 
undoubtedly be very high as compared to the current 
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production. Overcoming the challenges of production of 
soybean in future will require the caring of soybean plants 
to be protected from diseases with timely identification of 
diseases, which can be done through technological 
computations.  

Many agricultural specialists still rely on naked-eye 
observations as a fundamental method for detecting leaf 
diseases in plants. Nevertheless, conventional procedures 
have some inherent weaknesses. For instance, it is time-
consuming for big farms to manually detect diseases and 
the cost is significantly high due to the substantial 
expenses of agricultural experts specialized in high-
frequency observation. As a result, several automated 
strategies have been implemented to speed up the human 
observation procedure for identifying leaf diseases. These 
techniques are very practical and important since they aim 
to identify diseases by analyzing leaf images. In the past, 
these automated detection procedures were carried out by 
carefully creating a specific classifier to categorize the 
sample leaf images into healthy and unhealthy images. 
Machine learning (ML) the subfield of Artificial 
Intelligence (AI) has been utilized to identify plant leaf 
diseases at later stages of technological development [12]. 
Plant leaf disease detection in ML makes use of several 
techniques such as K-Nearest Neighbor (KNN) [13], 
Random Forest (RF)[14], Support Vector Machine 
(SVM)[15], Decision Tree (DT)[16], etc. On the other 
hand, when applied to big and diverse leaf image datasets, 
these ML methods rely on hand-crafted features for 
feature extraction using methods like Principal 
Component Analysis (PCA), Gabor transform and 
Histogram of oriented gradient [17]. As a result, these 
methods could fail to identify complex features or 
patterns. Therefore, these methods are not particularly 
reliable in big and diverse datasets. 

In contrast, another developing branch of AI popularly 
known as DL particularly the CNN has been widely 
utilized in the domain of leaf disease detection due to its 
strong ability to automatically extract and learn features 
from raw leaf images [18]. These networks are derived 
from the visual brain of humans and have been designed 
to identify complicated patterns observed in plant leaves. 
This CNN framework is widely implemented by various 
researchers in different agricultural fields to detect leaf 
diseases which lead to enhanced crop productivity. In the 
field of plant leaf disease detection, CNN has illustrated 
substantial potency through an end-to-end detection 
process [19]. However, CNN demands high computation 
resources for training and testing the model and also 
requires a huge amount of memory space due to the 
massive amount of parameters used in its fully connected 
layer which is approximately 80% of the entire neural 
network. Due to enormous parameters, sometimes it may 
face the problem of overfitting [20]. Many researchers 
have set the value of dropout in its fully connected layer 
to minimize the parameter size to create a robust model, 
which can avoid the problem of overfitting [21]. It often 

encounters the problem of analyzing the multi-scale 
feature information from the leaves required for 
identifying the symptoms of disease as this framework is 
fixed with certain receptive fields. But, for this, manual 
optimization of the dropout parameter is required which 
heavily depends upon neural network experts. Thus, some 
specific techniques are often implemented to enhance the 
disease detection capability of the CNN model by 
reducing the high computation time, which refers to the 
increment of the receptive field and also the expansion of 
the image to its original size. However, some feature 
information may be lost and that small feature information 
cannot be regenerated. To address this problem, 
enhancement of the receptive field is required without 
dropping the spatial resolution. This can be treated as the 
fundamental limitation of CNN due to its fixed size of 
receptive field. Dilated CNN can enhance the receptive 
field without minimizing the spatial resolution with the 
introduction of gaps in between the element of the kernel 
[22] and also it attains good identification results [23]. 
Therefore, superior accuracy and robustness may be 
acquired by implementing this in comparison to the basic 
CNN approach. 

An appropriately configured self-learning environment 
is crucial for the dilation CNN model. This environmental 
configuration is extensively associated with the values of 
the hyper-parameter. Proper selection of certain hyper-
parameters, such as dilation rate, batch size, learning rate, 
network depth and number of epochs significantly affects 
the overall performance of the dilation CNN model. 
Improper selection of hyper-parameter values may lead to 
a reduction in the performance of the dilation CNN 
model. Due to inappropriate selection of hyper-parameter 
values loss function may not be adequately minimized 
which leads to incorrect results [24]. In general, the 
selection of hyper-parameter values involves a trial-and-
error approach due to the absence of particular 
mathematical equations. This procedure needs the 
expertise of neural network professionals and requires a 
significant amount of effort and time. The manual 
procedure of trial-and-error primarily relies on experience 
with the DL model and the independent selection of 
hyper-parameter values by the network designer. 
Therefore, manually selecting the ideal values of hyper-
parameters is an extremely challenging operation [25]. 
Numerous researches have been conducted to enhance the 
performance of DL models by optimizing their hyper-
parameter values using grid search and random search 
methods to determine suitable hyper-parameter values, 
while grid search and random search are considered 
superior alternatives to manually selecting hyper-
parameter values. Both methods are inadequate when 
dealing with high-dimensional search spaces and also 
require significant computational time [26]. Currently, 
many researchers consider the task of determining the 
right values of hyper-parameters as an optimization issue 
[27].  
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Optimization strategies are automated approaches 
used to improve the performance of a model by adjusting 
the values of hyper-parameters. These techniques have 
consistently outperformed the results produced by manual 
human professionals. Swarm Intelligence is an effective 
alternative to the automated strategy for implementing the 
complexities of dilation CNN to determine the optimal 
values of hyper-parameters [28]. This approach is inspired 
by the collective social behaviour of animals, birds, fish 
etc. available in natural environments. Many researchers 
have created various hybridized categories of CNN 
through different optimization algorithms used for hyper-
parameter selection [29-31]. Among different 
optimization algorithms, Particle Swarm Optimization 
(PSO) algorithm was introduced by Kennedy and 
Eberhert [32], which is particularly inspired by the social 
behaviour of flocking birds. Other nature-inspired 
algorithms like Genetic Algorithm (GA) [33], Ant Colony 
Optimization (ACO) [34], Firefly Algorithm  (FA)[35], 
Cuckoo Search Optimization (CSO)[36] etc. are working 
as similarly as the operation of PSO. However, PSO is the 
most preferred and popular optimization algorithm 
amongst researchers because it contains smaller 
parameters with simple computation and formulation. 
Currently, PSO is applied in various emerging and 
trending fields of neural networks, which creates a source 
of inspiration for this study. This optimization encounters 
challenges like premature convergence and insufficient 
local optimization. PSO is hindered by early convergence, 
heightened update velocity, memory requirements and 
suboptimal solutions. This is observed due to insufficient 
exploration of the complex search space. Furthermore, 
PSOs have demonstrated satisfactory outcomes on a 
particular class of optimization problems, but when this 
approach deals with a variety of challenges, their 
effectiveness has declined. The introduction of the 
VP_PSO optimization is suggested to address the 
limitations associated with this optimization technique. 
The VP_PSO incorporates the capability to stop and 
modify the particle velocity, facilitating more flexible 
control over the balance between exploration and 
exploitation, which precisely adjusted parameters for 
models used in disease diagnosis. This enhances the 
resilience and efficiency of VP_PSO making it a superior 
option for agricultural diagnostics and plant leaf disease 
monitoring. 

The main contribution of this paper is as follows: 

• This research primarily focuses on improving the 
accuracy of detecting soybean leaf diseases and 
classifying them using a swarm intelligence optimization 
approach based on dilation CNN architecture.  

• The primary goal of this study is to enhance the 
process of selecting optimal hyper-parameter values for 
the dilatation CNN architecture. This will be achieved by 
integrating the VP_PSO approach with this dilation CNN. 
The basic concept is to develop a complex and intelligent 

dilation CNN architecture that can accurately detect and 
classify soybean leaf diseases.  

• The efficiency and performance of the suggested 
VP_PSO_dilation CNN model are compared to various 
variants of the CNN framework. The results demonstrate 
its superiority, achieving an accuracy percentage of 
95.32%. 

The subsequent sections of the article are structured as 

sections 2, 3, 4, 5, 6 and 7. Section 2 describes a 

comprehensive evaluation of previous methodologies that 

are relevant to the soybean plant leaf disease detection 

field. Section 3 presents a detailed description of the 

suggested technique with other essential methodologies. 

Section 4 describes the detailed architecture and algorithm 

used in the proposed methodology. Section 5 explains the 

detailed information on the dataset and the specific 

environment in which the implementation took place. 

Section 6 discusses a thorough explanation of the findings 

obtained from the proposed model. The analysis also 

includes a comparison with several versions of the CNN 

model. Finally, this investigation is finalized in section 7 

referred to as conclusion and future scope. 

2. RELATED WORK 

Currently, researchers are placing significant emphasis 

on using ML-based neural network architecture to detect 

soybean leaf diseases. The implementation of the DL 

strategy for leaf disease classification has significantly 

improved the accuracy of the model compared to a 

traditional ML model. This section discusses the 

implementation of DL-based classification models for the 

detection of diseases in soybean plant leaves as shown by 

many research. Karlekar and Seal [37] have presented a 

dual-component model. The first step is removing the 

complex background from the leaf image to obtain the 

appropriate leaf portion. In the second section, the 

authors have presented a CNN model called SoyNet. This 

model is mainly designed for detecting diseases in 

soybean leaves using segmented leaf pictures obtained 

from the first section. The SoyNet architecture is 

primarily composed of six convolution layers with filters, 

six MaxPooling layers with filters and two fully linked 

layers. The researchers have successfully used it in the 

dataset "Image Database for Plant Disease Symptoms" 

and obtained an accuracy rate of 98.14%.  

Additionally, many pre-trained models are shown to 

accurately detect soybean leaf diseases. Noah Bevers et 

al. [38] effectively implemented a pre-trained DL model 

called DenseNet201 combined with an automated 

classifier to classify eight various types of diseased 

leaves found in soybean plants. In their study, the authors 

utilized transfer learning, data augmentation and data 

engineering techniques to enhance the training of the 

model. The researchers used a dataset consisting of about 
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9500 synthetic soybean leaf pictures, which is stored in 

the "Auburn Soybean Disease Image Dataset". They set 

the learning rate to a fixed value of 0.0001 and employed 

stochastic gradient descent as the optimizer running it for 

100 epochs. This suggested model was compared to 

various pre-trained techniques such as ResNet50, 

EfficientNetB0, Xception and VGG16 and achieved the 

highest accuracy of 96.8%.In conjunction with using pre-

trained models, several researchers have implemented the 

conventional CNN architecture with specific 

predetermined values for hyper-parameters. Pan et al. 

[39] conducted an experiment using a "two-stage feature 

aggregation network framework" to identify soybean leaf 

diseases. In their study, the authors have used the feature 

representation capability in conjunction with the feature 

information derived from the convolution layers 

employed in the model. A feature fusion framework is 

created with dilated convolutions to prevent loss of 

information during feature extraction. This framework 

expands the receptive field. The collection consists of 

approximately 9648 soybean leaf images representing 

eight different categories of disease. These images were 

acquired from the Auburn soybean leaf disease picture 

library. The authors have merged the suggested model 

with the InceptionC model to achieve a high level of 

performance accuracy of 98.18%.  

Qinghai Wu et al. [40] have developed an enhanced 

ConvNext model for accurately detecting soybean leaf 

diseases while also improving the model's resilience. To 

extract features, the authors have included a unique 

'attention module' at various levels of depth. The 

LeakyReLU activation function is used to assist the 

attention module in producing feature maps. The soybean 

dataset has been obtained from Jilin College of 

Agricultural Science and Technology in Jilin Province, 

China. It has been employed to conduct experiments on 

the ConvNext model, which has been combined with the 

purpose of the Swin Transformer. The combination of 

both strategies results in an enhanced ConvNext model. 

This model utilizes convolution operations and a stride 

value of four to extract features from soybean leaf 

pictures. In this study, the scientists have included 96 

distinct channels into the feature map and achieved a 

greater accuracy of 85.42% compared to the usual 

ConvNext, Swin Transformer, ResNet50, MobileNetV3, 

SqueezeNet and ShuffleNetV2 models. Miao Yu et al. 

[41] have employed an enhanced version of a residual 

neural network that incorporates a residual attention layer 

using an attention mechanism to address the issue of high 

computational requirements in identifying soybean leaf 

diseases. The Ostu Algorithm has been employed for the 

segmentation of soybean leaves. During the network 

training phase, the Adam optimization algorithm is 

implemented to determine different learning rates for 

different training parameters by manipulating first-order 

and second-order partial derivatives. The suggested 

model achieved a testing accuracy of 96.50%.  

A comprehensive summary of the existing literature for 

the identification of soybean leaf diseases is described in 

Table 1. This table summarizes many investigations 

along with the dataset used, methodologies employed and 

the advantages and disadvantages of each strategy. 

Table 1. Summary of existing studies 

Year 

Pro

pose

d 

Mod

el 

Datase

t 

Perform

ance 

Accuracy 

Advant

ages 

Disadva

ntages 

Ref

. 

2023 

Two
-

stage 

Feat
ure 

Aggr

egati
on 

Net

work 
Fra

mew

ork 

Auburn 

Soybea
n 

Disease 

Image 
Dataset 

98.18% 

Less an 

amount 
of loss 

in 

feature 
informat

ion due 

to the 
use of 

dilated 

convolu
tion 

Setting 

the 

appropri

ate 

values 
for the 

size of 

the 
feature 

map is 

too 
difficult 

while 

designin
g the 

Inceptio

nC 
model 

[39] 

2023 

Impr

oved 

Con
vNe

xt 

mod
el 

Soybea

n 

plantati
ons at 

Jilin 
College 

of 

Agricul
tural 

Science 

and 
Techno

logy, 

Jilin 
Provinc

e, 

China 

85.42% 

Model 
inactivit

y is 

improve
d when 

the 

input 
value is 

negative 

Less 

accurac
y in 

identifyi

ng 
diseases 

having 

high 
similarit

y-based 

features 

[40] 

2023 
YOL

Ov5 

soybea
n farm, 

Horticu

lture 

Researc

h 

Center 
(Southe

rn 

Illinois 
Univers

ity) 

95% 

Hyper-

paramet

er 

optimiz

ation is 

perform
ed by 

Genetic 

Algorith
m 

Prematu
re 

converg

ence to 

local 

optima 

in 
complex 

and 

high 
search 

space 

[46] 
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2022 

Dens

eNet
201 

Auburn 

Soybea
n 

Disease 

Image 
Dataset 

96.80% 

The 

automat
ed 

classifie

r is 
integrat

ed with 

CNN to 
classify 

soybean 

leaf 
images 

Due to 
the 

smaller 

learning 
rate 

computa

tion 
time is 

too 

high. 
Small 

Dataset 
is used 

[38] 

2022 

Impr

oved 

Resi
dual 

Neur

al 
Net

work 

Synthet

ic 
96.50% 

The 

detectio
n 

process 

is a 
speed 

Works 
efficient

ly only 

in less 
number 

of 

dataset 

[41] 

2022 

Impr
oved 

Resi

dual 
Atte

ntion 

Neur
al 

Net

work 

Synthet

ic 
98.49% 

Produce

s a fast 

and 
accurate 

system 

Difficult

y in the 

selectio
n of 

hyper-

paramet
er 

values 

[42] 

2021 

CN

N 

and 
its 

varia

nts 

Multi-

blade 
real 

crop 
image 

99.04% 

Improve

d 

technolo
gy for 

segment
ation is 

used 

For 
achievin

g 

superior 
accurac

y 

propose
d model 

can be 
improve

d with 

hyper-
paramet

er fine-

tuning 

[43] 

2021 
Nem

aNet 

NemaD

ataset 
96.76% 

Extracti
on of 

deep 

features 
in 

soybean 

leaf is 
improve

d 

Hyper-
paramet

er 

setting 
is too 

difficult 

[44] 

2020 
Soy

Net 

Image 
Databa

se of 

Plant 
Disease 

Sympto

ms 

98.14% 

Good 

accurac

y is 

achieve
d due to 

the 

enhance
ment of 

diversifi

ed 
pooling 

operatio

n 

Selectio

n of 

hyper-
paramet

er 

values 
is 

manual 

[37] 

2019 

Dee
p 

CN

N 

differen
t 

sources 

of 
online 

databas

es such 
as plant 

village 

dataset, 
forestry

image 
dataset, 

imagen

et 
dataset 

89.84% 

Better 

recognit
ion of 

importa

nt 
features 

Lower 

accurac
y and 

also 

values 
of 

Hyper-

paramet
er 

setting 
is too 

difficult 

[45] 

 

Table 1 shows that there has been a significant 

development of plant leaf disease segmentation and 

classification techniques in recent years. These 

approaches have proven useful in detecting diseases that 

affect plant leaves. Still, some drawbacks have been 

recognized for each of these methods. The CNN model 

and its many variants are often utilized. Hyper-parameter 

adjustment is essential for optimizing the accuracy of the 

basic CNN. Hyper-parameter Tuning encompasses the 

use of data augmentation and regularization approaches 

to enhance the model's resilience and ability to 

generalize, hence increasing its reliability across various 

situations. Given this reason, significant focus is placed 

on creating efficient hybrid architecture of 

VP_PSO_dilation CNN. This involves automatically 

selecting hyper-parameters by traversing a wide search 

space and achieving fast convergence speed. The primary 

objective of this study is to create a highly efficient 

model that requires little computing resources and time.  

3. METHODOLOGIES 

This section presents a comprehensive explanation of the 

complex structure of the dilation CNN architecture. 

Subsequently, an analytical description of the VP_PSO 

has been described. 

3.1 Dilation_CNN 

Convolutional kernels are essential elements of CNN, 

which have been the predominant methods for most 

computer vision problems in recent years [47]. Their 

strength is derived from their capacity to hierarchically 

represent spatial characteristics across input areas, known 

as Receptive Fields (RFs), by layering many 

convolutional layers into deep structures [48]. In modern 

times, when it comes to constructing CNN architectures, 

it is typical to employ wide receptive fields (RFs) to gain 

better performance. Dilated Convolutional Kernels 

(DCKs) have been a popular option due to their 

simplicity and efficacy [49, 50]. DCKs, unlike traditional 

equivalents, can significantly increase RFs without 

expanding the size of the kernel. CNN models with 
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dilated kernels have shown remarkable performance in 

essential tasks including semantic segmentation, object 

identification using multi-model and object 

classifications [50, 51]. In addition, DCKs outperform in 

some specialized applications showing substantial 

improvement in performance with the use of dilated 

convolutional kernels. The dilation CNN (Figure 1) has 

six different categories of layers, each with unique 

capabilities, as shown below. 

 

3.1.1 Input Layer in Dilation CNN 

The input layer receives the unprocessed data, usually in 

the form of an image and transfers it to the first dilation 

convolutional layer. The input data may be expressed as a 

tensor, which is a multi-dimensional array. For instance, 

in the case of an image, the input tensor ( 𝑇 ) has 

dimensions that correspond to its height (ℎ), width (𝑤) 

and the number of channels (𝑐).Equation 1 represents the 

input layer of dilation CNN. 

𝑑𝑙_𝑐𝑛𝑛𝑖𝑛𝑝𝑢𝑡 = 𝑇, 𝑇 ∈ 𝐼𝑚𝑎𝑔𝑒ℎ∗𝑤∗𝑐 (1) 

 

3.1.2 Dilation Convolution Layer 

The output feature map 𝑑𝑙_𝑐𝑛𝑛𝑐𝑜𝑛𝑣_𝑜𝑢𝑡𝑝𝑢𝑡  is created by 

the convolution of the input feature map 𝑑𝑙_𝑐𝑛𝑛𝑖𝑛𝑝𝑢𝑡 

with a filter 𝑓𝑖𝑙𝑡𝑒𝑟𝑑𝑙_𝑐𝑛𝑛  in a conventional convolution 

operation. A dilated convolution involves the 

introduction of a dilation factor  (𝑑_𝑟𝑎𝑡𝑒𝑑𝑙_𝑐𝑛𝑛) , which 

determines the spacing between the components of the 

filter. Equation (2) and (3) shows the dilation convolution 

operation (Figure 2). 

𝑑𝑙_𝑐𝑛𝑛𝑐𝑜𝑛𝑣(𝑖,𝑗,𝑐)

= (∑ ∑ ∑ 𝑓𝑖𝑙𝑡𝑒𝑟𝑑𝑙_𝑐𝑛𝑛(𝑝,𝑞,𝑑,𝑐)

𝑓ℎ−1

𝑞=0

𝑓𝑤−1

𝑝=0

𝑐

𝑑=0

∗ 𝑇(𝑖+𝑝∗𝑑𝑙𝑟,𝑗+𝑞∗𝑑𝑙𝑟,𝑑)) (2) 

𝑑𝑙_𝑐𝑛𝑛𝑐𝑜𝑛𝑣_𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜎(𝑑𝑙_𝑐𝑛𝑛𝑐𝑜𝑛𝑣(𝑖,𝑗,𝑐))(3) 

 𝑊ℎ𝑒𝑟𝑒, 𝑑𝑙𝑟 = 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑎𝑛𝑑 𝜎 =
𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 
3.1.3 Pooling Layer 

Pooling layers in dilation CNN are used to decrease the 

spatial dimensions (height and breadth) of the input 

volume, resulting in improved computational efficiency 

and a reduction in the number of parameters, which helps 

to prevent overfitting. Max pooling and average pooling 

are the two most frequently performed forms of pooling 

procedures. Equation (4) represents the pooling 

procedure. 

𝑑𝑙_𝑐𝑛𝑛𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑖,𝑗,𝑐)

=
1

𝑝ℎ ∗ 𝑝𝑤

∗ ∑ ∑ 𝑇(𝑖+𝑝∗𝑠ℎ,𝑗+𝑞∗𝑠𝑤,𝑑)

𝑝𝑤−1

𝑞=0

𝑝ℎ−1

𝑝=0

 (4) 

𝑊ℎ𝑒𝑟𝑒, 𝑝ℎ  𝑎𝑛𝑑 𝑝𝑤𝑎𝑟𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑎𝑛𝑑 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤, 
𝑠ℎ  𝑎𝑛𝑑 𝑠𝑤  𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑡𝑟𝑖𝑑𝑒 𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑎𝑛𝑑 𝑤𝑖𝑑𝑡ℎ  
 

3.1.4 Activation Layer 

Activation layers play a vital role in dilation CNN by 

introducing non-linearity into the model. This allows the 

model to learn and reflect more complex patterns in the 

input. The mathematical formulations of several 

activation functions, such as ReLU, Sigmoid, Tanh and 

Leaky ReLU, determine how these functions convert 

every component of the input tensor to generate the 

output tensor. Equation (5) shows the activation layer 

operation. 

𝑑𝑙_𝑐𝑛𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝜎(. ) (5) 

 

3.1.5  Fully Connected Layer 

The fully connected layers of dilation CNN have a vital 

function in acquiring knowledge about overall patterns 

and connections within the data. They facilitate the 

connection of all the characteristics from the preceding 

levels to the output layer allowing the network to 

generate predictions based on these acquired 

representations. CNN offers great performance on tasks 

like image classification, object identification and 

segmentation by integrating local information acquired 

via a dilation convolutional layer and pooling layers with 

global information acquired through fully connected 

layers. Fully connected layers can be expressed in 

equation (6). 

𝑑𝑙_𝑐𝑛𝑛𝑓𝑐𝑙 = 𝜎(𝑑𝑙_𝑐𝑛𝑛𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑖,𝑗,𝑐)
𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑) (6) 

 

3.1.6 Output Layer 

The configuration of the output layer in a dilated CNN is 

dependent upon the specific task that the network is 

designed to perform. The output layer of a neural 

network can produce meaningful predictions or 

segmentations by selecting a suitable activation function 

and layer design, which utilizes the learnt characteristics 

from the input data. 

 

 
 

Figure 1. General architecture of dilation CNN 
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Figure 2. Dilation convolution operations 
 

4. PROPOSED SYSTEM 

This section presents a comprehensive description of the 

VP_PSO approach and the suggested framework for 

detecting plant leaf diseases. 

4.1 Velocity Pause Approach with Particle Swarm 

Optimization 

The VP_PSO method includes the idea of velocity 

pausing, which enables particles to keep away from 

changing their velocity throughout each iteration [52]. 

Furthermore, a particle can retain its velocity from the 

previous iteration. This principle allows particles to have 

the ability to move at three different speeds: a slower 

speed, a quicker speed and a constant speed. In contrast 

to the typical PSO method, which restricts particles from 

moving at either a faster or slower velocity, this approach 

allows for more flexibility in particle movement. 

Velocity pausing introduces a significant advantage by 

offering an additional choice for movement, such as 

maintaining a consistent pace. This option facilitates the 

preservation of a harmonious equilibrium between 

exploration and exploitation, hence mitigating the issue 

of premature convergence often seen in conventional 

PSO algorithms. To enhance the resistance of PSO to 

early convergence, one approach is to exclude the inertia 

weight component from the initial velocity element in the 

velocity equation of the typical PSO algorithm. Equation 

(7) introduces the first velocity term (𝑘) to represent the 

velocity for VP_PSO. 

𝑉𝑖
(𝑘+1)

= 𝑉𝑖
(𝑘)𝑅𝐴𝑁𝐷(0,1)∗𝑠(𝑘)

+ 𝑐1 ∗ 𝑟1

∗ (𝑆𝐿𝑏𝑒𝑠𝑡(𝑖) − 𝑋𝑖
(𝑘)

) + 𝑐2 ∗ 𝑟2

∗ (𝑆𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖
(𝑘)

)   (7) 

𝑊ℎ𝑒𝑟𝑒 𝑠(𝑘) 𝑐𝑎𝑛 𝑏𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑎𝑠: 𝑒𝑥𝑝
−(

𝑏𝑘
𝐾

)
𝑏

,′ 𝑏′𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 
 𝑐1 𝑎𝑛𝑑 𝑐2
∶ 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠, 𝑟1 𝑎𝑛𝑑 𝑟2: 𝑅𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠, 

𝑉𝑖
(𝑘)

: 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑠𝑤𝑎𝑟𝑚, 𝑋𝑖
(𝑘)

: 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑤𝑎𝑟𝑚, 

𝑆𝐿𝑏𝑒𝑠𝑡(𝑖): 𝑆𝑤𝑎𝑟𝑚 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑏𝑒𝑠𝑡, 𝑆𝐺𝑏𝑒𝑠𝑡: 𝑆𝑤𝑎𝑟𝑚 𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 

To update its velocity in the VP_PSO algorithm, a 

particle utilizes the velocity pausing perception technique 

while incorporating the modified velocity from Equation 

(7). Subsequently, the exact location of a particle is 

revised using Equation (8). 

𝑉𝑖
(𝑘+1)

= {
𝑉𝑖

(𝑘)
, 𝑖𝑓 𝑅𝐴𝑁𝐷(0,1) < 𝛼𝑣𝑝𝑝𝑠𝑜

𝑉𝑖
(𝑘+1)

, 𝑎𝑠 𝑝𝑒𝑟 𝐸𝑞. (10)  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (8) 

The parameter 𝛼𝑣𝑝𝑝𝑠𝑜 indicates the velocity pausing. 

If the value of the pause parameter 𝛼𝑣𝑝𝑝𝑠𝑜 exceeds 1, 

each particle will adjust its velocity throughout each 

iteration using the normal PSO technique. This 

situation is unfavorable since it prevents any velocity 

interruptions. Conversely, a very small value of 

𝛼𝑣𝑝𝑝𝑠𝑜 will force particles to maintain a uniform 

velocity and restrict them from accelerating or 

decelerating. Therefore, it is crucial to choose the 

most suitable value for 𝛼𝑣𝑝𝑝𝑠𝑜 to get a well-balanced 

velocity pausing situation, which may eventually 

lead to optimal performance. The value of  𝛼𝑣𝑝𝑝𝑠𝑜 is 

assumed to be 0.3 according to reference [52]. 

The VP_PSO approach divides the whole population 

𝜃  into two distinct swarms to maintain diversity and 

avoid premature convergence. The initial swarm 

consists of 𝜃 𝑝1 particles that modify their velocities 

and positions using the conventional PSO technique, 

with a little alteration as follows: Equation (8) adds a 

revision to the first part of the velocity equation and 

includes the idea of velocity pausing. The second 

swarm consists of 𝜃 𝑝2  particles that change their 

locations based on the global best ( 𝑆𝐺𝑏𝑒𝑠𝑡 ). Each 

particle inside the second swarm changes position 

according to Equation (9). 

 

𝑥𝑖
(𝑘+1)

= {
 𝑆𝐺𝑏𝑒𝑠𝑡 + 𝑎(𝑘) ∗ 𝑅𝐴𝑁𝐷(0,1) ∗ | 𝑆𝐺𝑏𝑒𝑠𝑡|𝑎(𝑘)

, 𝑖𝑓 𝑅𝐴𝑁𝐷(0,1) < 0.5 (9.1)

 𝑆𝐺𝑏𝑒𝑠𝑡 − 𝑎(𝑘) ∗ 𝑅𝐴𝑁𝐷(0,1) ∗ | 𝑆𝐺𝑏𝑒𝑠𝑡|𝑎(𝑘)
,    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (9.2)

 

 

 

4.2  VP_PSO with Dilation CNN 

The dilation CNN structure is represented as   𝜑 =
{𝜑𝐷_𝐶𝐿 , 𝜑𝑃𝐿 , 𝜑𝐹𝐶𝐿}, where 𝜑 represents the collection 

of structural parameters that include the parameter 

annotations of dilation convolution layer ( 𝜑𝐷_𝐶𝐿 ), 

pooling (𝜑𝑃𝐿) and fully-connected layers (𝜑𝐹𝐶𝐿). The 

dilation convolutional parameter set 𝜑𝐷_𝐶𝐿  is 

specified in the problem as 𝜑𝐷_𝐶𝐿 = {𝑐1, 𝑐1, … . 𝑐𝑘−1}, 

where ′𝑘′  represents the number of dilation 

convolutional layers and 𝑐𝑖 =
(𝑐𝑐𝑜𝑢𝑛𝑡 , 𝑐𝑠𝑖𝑧𝑒 , 𝑐𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒)  represents the 

configuration tuple of the 𝑖𝑡ℎ  layer in the dilation 

convolutional layer. 𝑐𝑐𝑜𝑢𝑛𝑡  reflects the number of 

kernels in each layer, whereas 𝑐𝑠𝑖𝑧𝑒  defines the size 

of the kernel and 𝑐𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 describes the dilation 

rate in the 𝑖𝑡ℎ dilation convolutional layer. Similarly, 

𝜑𝑃𝐿  represents the set of pooling layers, denoted as 
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𝜑𝑃𝐿  = {𝑝𝑙1, 𝑝𝑙2, … … , 𝑝𝑙𝑘−1}. 𝜑𝐹𝐶𝐿 represents the set 

of fully connected layers, denoted as 𝜑𝐹𝐶𝐿 =
{𝑓𝑐𝑙1, 𝑓𝑐𝑙2, … … , 𝑓𝑐𝑙𝑘−1} . While the structural 

parameters of dilation CNN have an important role 

in its performance, the hyper-parameters such as the 

activation function (𝜎𝑑𝑙_𝑐𝑛𝑛), learning rate (𝛼𝑑𝑙_𝑐𝑛𝑛), 

hidden neurons ( 𝜇𝑑𝑙_𝑐𝑛𝑛 ) and optimizer (𝜌𝑑𝑙_𝑐𝑛𝑛) 

have a significant impact on obtaining optimal 

performance. Let 𝜃  be the set of possible hyper-

parameters for a dilation CNN denoted as  𝜌 =
{𝑓𝑐𝑜𝑢𝑛𝑡 , 𝑓𝑠𝑖𝑧𝑒 , 𝜎𝑑𝑙_𝑐𝑛𝑛 , 𝛼𝑑𝑙_𝑐𝑛𝑛 , 𝜇𝑑𝑙_𝑐𝑛𝑛 , 𝜌𝑑𝑙_𝑐𝑛𝑛} . The 

objective is to identify the optimal configuration 𝜃∗ 

that minimizes the classification error. In the dilation 

CNN classification problem, each hyper-parameter 

in the search space corresponds to an individual 

swarm in the VP_PSO optimization. The boundaries 

are determined by upper and lower limitations as 

shown in Table 2. The suggested VP_PSO with 

dilation CNN complete construction framework is 

shown in Table 3. Additionally, various frameworks 

illustrated those that have been optimized using the 

PSO algorithms. The general structure of the 

proposed VP_PSO with the dilation CNN algorithm 

(Algorithm 1) is demonstrated in Figure 3. 

 

Table 2. Hyper-parameter details with their specified search space 

Hyper-parameters Specified search space 

Number of filters (𝑓𝑐𝑜𝑢𝑛𝑡) [8,16,32,64,128] 

Filter size (𝑓𝑠𝑖𝑧𝑒) [2,3,4,5] 

Activation function 

(𝜎𝑑𝑙_𝑐𝑛𝑛) 
[‘sigmoid’, ‘relu’, ‘tanh’] 

Learning rate (𝛼𝑑𝑙_𝑐𝑛𝑛) [0-1] 

No. of  neurons for hidden 

layers (𝜇𝑑𝑙_𝑐𝑛𝑛) 
[32,64,128,256] 

Optimizer (𝜌𝑑𝑙_𝑐𝑛𝑛) 
[‘Adam’, ‘AdaDelata’, ‘AdaMax’, 

‘Nadam’, 

‘AdaGrad’, ‘SGD’, ‘RMSprop’] 

 
Table 3. Optimized hyper-parameters representation of 

dilation CNN model utilizing different optimization 

techniques  

 Optimal hyper-parameters values 

Fixed Layers for all 

experimental 

dilation CNN model 

PSO with dilation 

CNN 

VP_PSO with 

dilation CNN 

Dilation Convolution 

Layer: 3 

Pooling Layer: 3 
Hidden Layer in 

FCN: 2 

𝑓𝑐𝑜𝑢𝑛𝑡 = 64 

𝑓𝑠𝑖𝑧𝑒 = 3 

𝜎𝑑𝑙_𝑐𝑛𝑛 = ′𝑡𝑎𝑛ℎ′ 
𝛼𝑑𝑙_𝑐𝑛𝑛 = 0.002 

𝜇𝑑𝑙_𝑐𝑛𝑛 = 64 

𝜌𝑑𝑙_𝑐𝑛𝑛 = ′𝑆𝐺𝐷′ 

𝑓𝑐𝑜𝑢𝑛𝑡 = 32 

𝑓𝑠𝑖𝑧𝑒 = 2 

𝜎𝑑𝑙_𝑐𝑛𝑛 = ′𝑟𝑒𝑙𝑢′ 
𝛼𝑑𝑙_𝑐𝑛𝑛 = 0.001 

𝜇𝑑𝑙_𝑐𝑛𝑛 = 32 

𝜌𝑑𝑙_𝑐𝑛𝑛 = ′𝐴𝑑𝑎𝑚′ 

 

 

Algorithm 1. VP_PSO  

1. Declare the essential parameters of VP_PSO 

           𝜃 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠, 𝑀𝑎𝑥𝑖𝑡𝑟 =
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

           𝜃 𝑝1 = 𝐹𝑖𝑟𝑠𝑡 𝑔𝑟𝑜𝑢𝑝 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠, 𝜃 𝑝2 =

𝑆𝑒𝑐𝑜𝑛𝑑 𝑔𝑟𝑜𝑢𝑝 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

𝑋(𝑖) = 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑉(𝑖) = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠, 

 𝑓𝑑𝑙_𝑐𝑛𝑛() = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑆𝐿𝑏𝑒𝑠𝑡

= 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑏𝑒𝑠𝑡 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,  
𝑆𝐺𝑏𝑒𝑠𝑡 = 𝐺𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 

𝜌 = 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 ℎ𝑦𝑝𝑒𝑟 − 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 
𝑟1, 𝑟2 = 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠, 𝛼

= 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑝𝑎𝑢𝑠𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝑐1, 𝑐2 = 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠, 𝐷 = 𝐷𝑎𝑡𝑎𝑠𝑒𝑡, 𝐾
= 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ 

2. Randomly generate the particle position 𝑥(𝑖_𝑘), (𝑖 =

1,2,3, … , 𝜃), (𝑘 = 1,2, … , 𝐾) 

3. Assign 0 to all  the particle velocity 𝑉(𝑖_𝑘), (𝑖 =

1,2,3, … , 𝜃), (𝑘 = 1,2, … , 𝐾) 

4. Compute the fitness value of each particle by  𝑓𝑑𝑙_𝑐𝑛𝑛(. ) 

fitness function  
5. Set all computed fitness values of each particle  as individual 

best value  𝑆𝐿𝑏𝑒𝑠𝑡(𝑖_𝑘) 

                       𝑆𝐿𝑏𝑒𝑠𝑡(𝑖_𝑘) = 𝑓𝑑𝑙_𝑐𝑛𝑛(𝑥(𝑖_𝑘)) ,  (𝑖 =

1,2,3, … , 𝜃), (𝑘 = 1,2, … , 𝐾) 

6. Set best-computed fitness value among all populations as 

global best value 𝑆𝐺𝑏𝑒𝑠𝑡(𝑘) 

                       𝑆𝐺𝑏𝑒𝑠𝑡(𝑘) = 𝑚𝑎𝑥 (𝑆𝐿𝑏𝑒𝑠𝑡) 

7. 𝑓𝑜𝑟 𝑖𝑡𝑟 = 1 𝑡𝑜 𝑀𝑎𝑥𝑖𝑡𝑟, 𝑑𝑜 

8.        𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝜃 , 𝑑𝑜 

9.              𝑖𝑓 𝑖 ≤ 𝜃 𝑝1, 𝑡ℎ𝑒𝑛  

10.                 update the velocity 𝑉(𝑖_𝑘) for each particle 𝑖 by 

applying 𝐸𝑞. (8) 

11.                 update the position 𝑥(𝑖_𝑘) for each particle 𝑖 by 

applying 𝐸𝑞. (9.1) 

12.           𝑒𝑙𝑠𝑒 

13.                 update the position 𝑥(𝑖_𝑘) for each particle 𝑖 by 

applying 𝐸𝑞. (9.2) 

14.          𝐸𝑛𝑑 𝑖𝑓 

15.      𝐸𝑛𝑑 𝑓𝑜𝑟  

16.      𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝜃 , 𝑑𝑜 

17.           compute fitness value of new particle 

position𝑓𝑑𝑙_𝑐𝑛𝑛(𝑥(𝑖_𝑘)) 

18.           𝑖𝑓 𝑖 ≤ 𝜃 𝑝1, 𝑡ℎ𝑒𝑛 

19.                𝑖𝑓 𝑓𝑑𝑙_𝑐𝑛𝑛(𝑥(𝑖_𝑘)) > 𝑓𝑑𝑙_𝑐𝑛𝑛(𝑆𝐿𝑏𝑒𝑠𝑡(𝑖_𝑘)) 

20.                    𝑆𝐿𝑏𝑒𝑠𝑡(𝑖_𝑘) = 𝑥(𝑖_𝑘) 

21.                𝐸𝑛𝑑 𝑖𝑓 
22.                𝑖𝑓 𝑓𝑑𝑙_𝑐𝑛𝑛(𝑃𝐿𝑏𝑒𝑠𝑡(𝑖_𝑘)) >  𝑓𝑑𝑙_𝑐𝑛𝑛(𝑆𝐺𝑏𝑒𝑠𝑡(𝑘)) 

23.                    𝑆𝐺𝑏𝑒𝑠𝑡(𝑘)=𝑆𝐿𝑏𝑒𝑠𝑡(𝑖_𝑘) 

24.                𝐸𝑛𝑑 𝑖𝑓 

25.          𝑒𝑙𝑠𝑒 

26.                 𝑖𝑓 𝑓𝑑𝑙_𝑐𝑛𝑛(𝑥(𝑖_𝑘)) > 𝑓𝑑𝑙_𝑐𝑛𝑛(𝑆𝐺𝑏𝑒𝑠𝑡(𝑘)) 

27.                      𝑆𝐺𝑏𝑒𝑠𝑡(𝑘) = 𝑥(𝑖_𝑘) 

28.                𝐸𝑛𝑑 𝑖𝑓 

29.          𝐸𝑛𝑑 𝑖𝑓 

30.      𝐸𝑛𝑑 𝑓𝑜𝑟 

31.𝐸𝑛𝑑 𝑓𝑜𝑟 

32. Obtain the optimal 𝑆𝐺𝑏𝑒𝑠𝑡  
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Figure 3: Architectural diagram of proposed VP_PSO with dilation 
CNN 

 

5 DATASET OVERVIEW AND SIMULATION 

ENVIRONMENT 

This section presents details regarding the specifications 

of the soybean leaf disease dataset and the simulation 

environment adopted to implement the suggested 

framework for enhanced performance. 

5.1.  Dataset Overview 

The soybean leaf dataset comprised six types of diseased 

leaf images acquired from Xiangyang Farm, Jiusan Farm 

and Nengjiang Farm of Northeast Agricultural University 

in Heilongjiang Province from June to late September 

2019 and is publicly available in IEEE Dataport [53], 

which is utilized here for the evaluation of the 

performance of the proposed model. This soybean leaf 

disease dataset contains 1620 diseased leaf images of six 

different classes. Six diseased classes include the name of 

the disease as a bacterial disease, downy mildew, 

pesticide, spider mite, viral disease and worm eye. The 

collected classes of diseased soybean leaf images are 

illustrated in Figure 4. 

 

 
 

Figure 4. Six diseases leave samples of the soybean dataset 

 

All the soybean leaf images are classified into two parts 

i.e. 1) training set and 2) testing set in a proportion of 

80% and 20% described in Table 4. These two kinds of 

data have been implemented in this proposed model for 

learning and testing of this model. 

 
Table 4. Number of soybean leaf images used for training and testing 

Disease Type 

in Soybean 

Dataset 

Total Samples 

Training 

Samples 

(80%) 

Testing 

Samples 

(20%) 

Bacterial 
disease 

270 216 54 

Downy mildew 270 216 54 

Pesticide 270 216 54 

Spider Mite 270 216 54 

Viral disease 270 216 54 

Worm eye 270 216 54 

 

5.2. Simulation Environment 

The experimental setup deployed an adequate system 

configuration including an 11th Generation Intel(R) Core 

(TM) i7-11300H processor working at a clock speed 

ranging from 3.10GHz to 3.11GHz. It is accompanied by 

32GB of RAM and runs on the Windows 11 operating 

system. By using the computational capabilities of 

Google Colab Pro's Jupyter Notebook environment, the 

experimenting process has been made convenient. The 

effective application of Python libraries such as 

TensorFlow and Keras facilitated the exploitation of the 

functionalities of DL frameworks, allowing for effective 

building, training and assessment of models. The scikit-

image (skimage) and io libraries were implemented to 

assist image pre-processing, guaranteeing efficient data 

preparation. Matplotlib has been employed for 

visualizing the findings and conducting data analysis. 

 

6 RESULT ANALYSIS 

This section demonstrates an explanation of the 

suggested VP_PSO _ dilation CNN model along with 

other experimental models that have been employed in 

diagnosing soybean leaf diseases. The experimental 

results of these models are also shown.  

 

6.1  Performance Measures 

Table 5.  Details of performance measures with their formulas 

Performanc

e Metric 

Usage of the 

metric 

The formula used for this 

metric 

Accuracy 

Accuracy is one 

approach to 
determine how 

frequently our 

proposed 

)10(
NPNP

NP

FFTT

TT

+++

+
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classification 

models accurately 
classify a leaf 

image and also 

offers the 
percentage of 

actual results. 

Recall 

The total true 

positive and false 
negative of every 

class are added to 

evaluate the 
efficacy of the 

classifier in 

identifying class 
labels. 

)11(
NP

P

FT

T

+
 

Precision 

Agreement exists 

between the 

classifiers and true 
class labels. 

Classifiers are 

determined by 
combining all true 

positive and false 

positive of all the 
system for every 

class. 

)12(
PP

P

FT

T

+
 

F1 Score 

It evaluates the 

effectiveness of 

the identification 
of leaf images by 

proving equal 

importance to 
recall as well as 

precision. 

Specifically, it is 

the harmonic mean 

of recall and 
precision. 

)13(
RePr

RePr
2

callecision

callecision

+




 

𝒘𝒉𝒆𝒓𝒆, PT : 𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆, NT : 𝒕𝒓𝒖𝒆 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆, 

 PF : 𝒇𝒂𝒍𝒔𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒂𝒏𝒅 NF : 𝒇𝒂𝒍𝒔𝒆 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 

 

6.2 Result Analysis 

The results of the proposed VP_PSO_Dilation CNN 

architecture and various other classifiers like 

PSO_Dilation CNN, Dilation CNN, ResNet101, 

MobiNetV2, VGG16 and classical CNN are shown in 

below Table 6. The highest accuracy achieved by the 

proposed VP_PSO_Dilation CNN is 95.32%. According 

to other performance metrics calculated, the value of 

recall is 0.9537, the value of precision is 0.9538 and the 

value of F1 Score is 0.9536. The classifier PSO_Dilation 

CNN has obtained the value of precision is 0.9474, the 

value of recall is 0.9472and the value of F1 Score is 

0.9473. This PSO_Dilation CNN classifier has achieved 

an accuracy of 94.72% which remains the second-highest 

accurate classifier in this paper. In comparison to these 

above-mentioned architectures, Dilation CNN, 

ResNet101, MobiNetV2, VGG16 and classical CNN 

have achieved the accuracy of 74.16%, 41.66%, 72.50%, 

55.83% and 73.33% respectively. The F1 score of 

Dilation CNN, ResNet101, MobiNetV2, VGG16 and 

classical CNN are 0.7512, 0.3648, 0.6900, 0.5560 and 

0.7498 respectively. Based on the experimental analysis, 

VP_PSO_Dilation CNN architecture has maintained its 

supremacy based on accuracy and F1 score. 
Table 6. Performance analysis of the proposed method with other DL 

approaches 

Model Precision Recall F1 Score 
Accuracy 

(%) 

CNN 0.7614 0.7558 0.7498 73.33 

VGG16 0.5720 0.5681 0.5560 55.83 

MobiNetV2 0.8238 0.7128 0.6900 72.50 

ResNet101 0.3391 0.4677 0.3648 41.66 

Dilation CNN 0.7652 0.7423 0.7512 74.16 

PSO_Dilation 

CNN 
0.9474 0.9472 0.9473 94.72 

Proposed 

VP_PSO_Dilation 

CNN 

0.9538 0.9537 0.9536 95.32 

 

The training and testing accuracy of classical CNN, 

VGG16, MobileNetV2, ResNet101 and dilation CNN are 

shown in Figure 5(a), 6(a), 7(a), 8(a) and 9(a) 

respectively. As per the outcomes of these experimental 

results, dilation CNN achieves an adequate convergence 

level at the starting level. In this article, all the 

experiments are done with the epoch value 200. The 

testing accuracy of VGG16 and ResNet101 is too low, so 

they do not satisfy the objectives. In comparison to CNN 

and MobileNetV2, dilation CNN is performing better in 

connection with training and testing accuracy. 

Furthermore, it offers an adequate growth rate after the 

epoch of 110. The effectiveness of dilation CNN 

increased gradually during both the training and testing 

phases. The training and validation loss of classical CNN, 

VGG16, MobileNetV2, ResNet101 and dilation CNN are 

depicted in Figure 5(b), 6(b), 7(b), 8(b) and 9(b). The 

experiment observes that CNN, VGG16, MobileNetV2 

and ResNet101 have obtained an inappropriate loss while 

reaching the epoch at 200.  In comparison to CNN, 

VGG16, MobileNetV2 and ResNet101, the dilation CNN 

model performs well, demonstrating a steady reduction in 

train and validation loss after epoch 150. However, as per 

the loss analysis, the effectiveness of this classifier is 

declining during the training and testing phase. 
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(a) CNN_Accuracy 

 
(b) CNN_Loss 

 
Figure 5. Accuracy and loss analysis of the CNN model 

 

 
(a) VGG16_Accuracy 

 
(b) VGG16_Loss 

 

Figure 6. Accuracy and loss analysis of the VGG16 model 

 

  

(a) MobileNetV2_Accuracy 

 

(b) MobileNetV2_Loss 
Figure 7. Accuracy and loss analysis of MobileNetV2 model 

 

ResNet101_Accuracy ResNet101_Loss 

 
Figure 8. Accuracy and loss analysis of the ResNet101 model 

 

 

 

 

(a) dilation CNN 
_Accuracy 

 

 
(b) dilation CNN _Loss 

 

Figure 9. Accuracy and loss analysis of the ResNet101 model 

 

Figure 10 displays the testing accuracy of 

VP_PSO_Dilation CNN and PSO_Dilation CNN. The 

testing accuracy of VP_PSO_Dilation CNN and 

PSO_Dilation CNN shows strong efficiency in 

convergence at the start of the epoch, ranging from 4 to 

10. In the recent study, the maximum range of epochs 

taken in this investigated architecture with all optimized 

techniques is 50. However, the efficacy of the 

PSO_Dilation CNN model is compared with the 

VP_PSO_Dilation CNN model to achieve the purpose. 

VP_PSO_Dilation CNN has a sustainable increase in 

consistency after epoch 38. The VP_PSO_Dilation CNN 

continuously augmented the testing accuracy of 95.32% 

and surpassed comparable methodologies such as CNN, 



 

 

12       Author Name:  Paper Title …   
 

 
http://journals.uob.edu.bh 

 

VGG16, MobileNetV2, ResNet101, dilation CNN and 

PSO_Dilation CNN. 

 

 
 

Figure 10. Accuracy analyses of VP_PSO_Dilation CNN and 
PSO_Dilation CNN models 

Figure 11 shows the testing loss for VP_PSO_Dilation 

CNN and PSO_Dilation CNN. The loss incurred during 

the testing phase of VP_PSO_Dilation CNN and 

PSO_Dilation CNN signifies a sustainable convergence 

while reaching the epoch value at 37. This optimized 

framework is experimented with a maximum epoch value 

of 50. The effectiveness of the PSO_Dilation CNN model 

is compared with the VP_PSO_Dilation CNN model to 

obtain a significant minimization in the loss. The 

VP_PSO_Dilation CNN continuously enhanced its 

testing accuracy and outperformed models like CNN, 

VGG16, MobileNetV2, ResNet101, dilation CNN and 

PSO_Dilation CNN. From Figure 10, it is obvious that 

VP_PSO_Dilation CNN has a very trivial probability of 

under-fitting as well as over-fitting. 

 
Figure 11. Loss analyses of VP_PSO_Dilation CNN PSO_Dilation 

CNN models 

The proposed VP_PSO_Dilation CNN is analyzed with 

another optimized technology-based model such as 

PSO_Dilation CNN, as well as compared with the most 

emerging techniques like CNN, VGG16, MobileNetV2, 

ResNet101 and dilation CNN. The outcomes of 

comparative analysis for Precision, Recall and F1 score 

are shown in Figures 12, 13 and 14. The proposed 

VP_PSO_Dilation CNN approach attains a precision of 

0.9538, recall of 0.9537 and a best possible F1 score of 

0.9536 in comparison with other empirical outcomes. 

Figure 15 presents an overall comparison of all the 

experimented models that were investigated altogether 

and the proposed VP_PSO_Dilation CNN model is found 

to be a superior model across all other models with 

respect to all the performance metrics. 

 
 

Figure 12. Precision analyses of all comparison models with the 

proposed model 

 
 

Figure 13. Recall analyses of all comparison models with the proposed 

model  
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Figure 14. F1 score analyses of all comparison models with the 

proposed model 

 
Figure 15. Overall performance analysis of VP_PSO_Dilation CNN 

with all comparison models 

7  CONCLUSION AND FUTURE SCOPE 

The goal of this research is to develop a meta-heuristic 

strategy that implements the VP_PSO methodology to 

design a classification system for infectious diseases of 

soybean leaves. Moreover, the VP_PSO is accountable 

for automatically optimizing the dilation CNN 

architecture’s hyper-parameter values. A detailed 

experimental analysis on the proposed VP_PSO_dilation 

CNN models with the PSO_dilation CNN algorithms 

implemented for hyper-parameter optimization has been 

performed. Comparing the simulation results with those 

of other comparable methods, like PSO_dilation CNN 

exposes that the method proposed here is quite promising 

and outperforms those other approaches. The future 

scope of this research will involve an expanded 

investigation that uses more sophisticated swarm 

intelligence-based algorithms and applies them to 

automatically create CNN architecture on bigger datasets 

of soybean leaf disease. 
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