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Abstract: Reducing power consumption and improving performance are crucial requirements for many applications, especially power
hungry and time-consuming applications. This is particularly true when these applications are running in power or time-constrained
environments like battery-operated embedded systems or on Internet of Things (IoT) devices. A general-purpose processor is not
promising for this kind of applications as it cannot provide optimized performance and power consumption for specific applications.
That is why domain-specific architectures (DSA) are gaining popularity, as they promise optimized performance for these types of
applications in terms of throughput, power consumption, and overall cost. Unfortunately, the use of DSA presents inherent limitations
as it requires custom design for each group of applications and cannot offer optimized performance for each specific application.
This paper explains how to take advantage of the open standard Instruction Set Architecture (ISA) of the fifth generation of Reduced
Instruction Set Computer (RISC-V) to automate the generation of a uni-processor core customized for a certain application such that the
processor supports only the very specific instructions needed by this application. The proposed generator is capable of producing the
Register Transfer Level (RTL) description of a processor core for any desired application given its source code. This work targets Field
Programmable Gate Arrays (FPGAs) due to their re-configurability. When compared with general purpose processors, the conducted
experiments show that application specific cores generated by our approach managed to achieve energy and execution time reductions
reaching 8% and 5% respectively on some of the used benchmarks. The proposed methodology also offers the added flexibility
stemming from the possibility to automatically re-configure the FPGA when a new or upgraded software application that would benefit
from modifying the set of supported instructions is deployed.

Keywords: Power Consumption, Performance, Embedded Systems, Instruction-Level Customization, RISC-V, Rocket Chip,
FPGA, Core-generation

1. INTRODUCTION
The ever-increasing demand for various specific appli-

cations present some implementation challenges [1]; one
of the most challenging applications are those encountered
to support low-power and high-performance applications.
That is why processor customization has witnessed a rise in
interest. Researchers have explored innovative approaches
to achieve this customization; one promising way is the
utilization of Application Specific Architectures (ASAs) [2],
[3]. ASAs aim to generate processor cores optimized explic-
itly for individual applications.

Traditional methods of processor customization like
Domain Specific Architectures (DSAs), architectures that
utilize the hardware more efficiently for a certain group
of similar applications, have proven to be time-consuming
and costly, requiring extensive expertise in hardware design,
computer architecture, and system-level design. Reducing
power consumption and improving overall performance

is achievable using DSAs; however, DSAs needs to be
implemented from scratch, and each application domain
needs its own design, which requires resources like cost and
time. Furthermore, DSAs do not offer application specific
optimizations [1], [4], [5].

The primary need for the automatic generation of pro-
cessor cores is its ability to produce optimized designs
efficiently by reducing designers’ time and effort, allowing
them to focus on higher-level design tasks such as system-
level integration and software development. This paper
introduces a fully automated ASA core generator built on
top of the open standard Instruction Set Architecture (ISA)
of the fifth generation of Reduced Instruction Set Computer
(RISC-V) [6], [7]. This generator aims to organize the Field
Programmable Gate Array (FPGA) core generation process
for specific applications, requiring only the application’s
source code as input. The result is enhanced performance
and reduced power consumption. The methodology requires
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establishing the research environment, experimenting with
a general-purpose RISC-V core, designing and developing
the ASA RISC-V generator, integrating it, and conducting
experiments.

In this paper, we propose the customization of a RISC-
V core for a specific application by generating a core that
supports only the needed instructions for this application.
RISC-V is a free, open-source ISA standard that can be used
in commercial and open-source work. All RISC-V imple-
mentations must support a base collection of instructions in
addition to any number of optional groups of instructions
known as extensions [8], [9]. It is possible to customize
a RISC-V core to either include an entire extension or to
exclude it. In this paper, we propose taking this approach
one step further by increasing the granularity of the cus-
tomization to the instruction level and by automating the
full process.

The main contributions of this research are:

• Proposing an instruction-level customization of
RISC-V cores to only support instructions needed by
the target application

• Proposing a methodology to automate this customiza-
tion requiring only one input which is the source code
of the target application

• Implementing the proposed methodology and inte-
grating it with the standard Rocket Chip RISC-V core
generator

• Assessing the effectiveness of instruction-level cus-
tomization by comparing it to general purpose RISC-
V and to extension-level customization in terms of
power consumption and execution speed.

Targeting FPGAs to implement the automatically gen-
erated RISC-V core, the significance of this research lies
in its ability to empower embedded and IoT devices with
reduced power consumption, improved performance, and
reconfigurability.

The remainder of this paper is structured as follows:
Section 2 provides some background about the RISC-V
ISA and some of the tools we used. Section 3 presents the
proposed methodology, while Section 4 lists and discusses
the obtained experimental results showing the superiority
of instruction-level customized cores over general purpose
and extension-level customized ones. Section 5 discusses
the limitations of our work which is concluded in Section 6
along with a discussion of possible future work and exten-
sions.

2. Background
This section provides a brief overview of the RISC-

V ISA since our main methodology depends heavily on
customizing it at the instruction-level. It also describes

some of the standard tools used to design and test RISC-V
systems. These tools were extensively used in this research
and readers need to be at least familiar with them.

A. RISC-V ISA
RISC-V is an open standard ISA, It is the fifth genera-

tion RISC ISA proposed by the Berkley Reasearch Lab in
the University of California, Berkeley. In addition to being
free to use even for commercial applications, RISC-V has
many appealing advantages including its elegant uniform in-
struction format, its modularity, and its extensibility, among
others [6], [7].

The RISC-V architecture includes a base ISA that
supports standard base integer instructions in addition to
optional standard extensions that improve the architecture’s
functionality to meet specific application requirements. The
base integer instruction set appears as the abbreviation (I)
when labeling any RISC-V implementation. For example
an implementation labelled RV32I would indicate a 32-bit
processor that supports only the base instructions (exactly
40 instructions), while an implementation labelled RV64I
would indicate a similar processor with native support
for 64-bit integers and arithmetic operations (adding 15
instructions to the ISA of RV32I). Given our interest in
embedded systems and IoT devices, this paper only focuses
on 32-bit implementations.

The most important optional standard extensions are:

• The Integer Multiply/Divide (M) extension, which
introduces instructions for efficient integer multi-
plication and division operations. This extension is
handy in applications that require complex arithmetic
computations.

• The Atomic (A) extension, which offers atomic mem-
ory operations. These operations ensure data integrity
and synchronization in multi-threaded environments
where multiple threads access shared memory con-
currently.

• The Single-Precision Floating-Point (F) extension,
which introduces instructions for performing arith-
metic operations on single-precision floating-point
numbers. This extension is beneficial for applications
that involve computations with real numbers, such as
scientific simulations or signal processing.

• The Double-Precision Floating-Point (D) extension,
which introduces instructions for performing arith-
metic operations on double-precision floating-point
numbers. This extension is useful for applications that
require high precision computations on real numbers.

Accordingly, A RISC-V implementation labelled
RV32IF would indicate a 32-bit processor supporting
the base integer instructions in addition to the optional
single-precision floating-point instructions. A processor
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supporting all the above extensions would be labelled with
a G for brevity. So an RV32IMAFD would simply be
labelled as RV32G indicating that it encompasses all of
these extensions; Integer instructions (I), Multiply/Divide
instructions (M), Atomic instructions (A), Single-Precision
Floating-Point instructions, and Single-Precision Floating-
Point instructions (D).

All RISC-V instructions are encoded in 32 bits; how-
ever, optional support for a compressed 16-bit version of
some of these instructions is possible and is indicated by
adding a (C) to the implementation name. Compressed
instructions contribute in reducing the static code size of
applications which can useful in environments with limited
memory capacity. An RV32IC implementation supports the
base integer instructions and the compressed encoding of
some of them as defined in the RISC-V specifications.

Designers can optimize processors for applications that
require specific features by including or excluding each of
the different extensions at design time.

B. Tools
The field of processor core generation for RISC-V

architectures has seen significant advancements in recent
years, driven by the need for efficient and customized
processors. Researchers have explored various techniques
and frameworks to automate the generation of RISC-V
processor cores tailored to specific applications. In this
subsection we explore the most relevant tools we relied on
in our research.

1) Chipyard
Chipyard is an open-source, purpose-built framework for

designing and exploring full-system hardware and software
stacks based on the RISC-V ISA. It provides a com-
prehensive set of tools, libraries, and infrastructure that
enable researchers, developers, and designers to build and
customize their RISC-V-based chips and systems. Chipyard
offers a wide array of open-source digital IP blocks that can
be easily combined and expanded. Incorporating multiple
simulation and implementation tools enables higher-quality
development, ensuring verification, validation, and system
integration [10].

One of the critical components of Chipyard is the Rocket
Chip Generator, which generates RTL descriptions of RISC-
V cores that can be customized to suit individual needs. This
feature allows users to design their processor cores to meet
their specific requirements.

In addition to the hardware design aspects, Chipyard
also includes support for software development. It provides
a complete software stack, including bootloaders, device
drivers, operating systems, and development tools, allowing
users to develop and run software on their custom RISC-V-
based systems.

Chipyard is a versatile platform for generating
instruction-based (RTL) designs through the Rocket Chip

generator. It facilitates benchmark simulation using the
Verilator simulator while supporting FPGA prototyping by
providing constraint files and RTLs for FPGA simula-
tion [10].

2) Rocket Chip
Rocket Chip is an open-source SoC generator capable

of producing many design instances consisting of synthe-
sizable RTL; Rocket Chip enables easy customization for
specific applications by changing a single configuration file.
Also, it provides a modularity feature as its component
libraries are independent repositories.

The Rocket Chip generator constructed the RISC-V
platform, which utilizes various configurable chip-building
libraries to create numerous SoC variants. The Rocket Chip
generator comprises several sub-components: Core, Cache,
Tile, Tile-Link, and Peripherals.

Rocket Chip includes many parts of the SoC besides
the CPU. By default, Rocket Chip uses Rocket core, which
generates an in-order RISC-V CPU. Additionally, one can
configure it to use the Berkeley Out-of-Order Machine
(BOOM) core generator [11] or another custom CPU gen-
erator.

3) Rocket Core
Rocket core is an in-order 5-stage pipeline processor

core generator. It is used as a component within the Rocket
Chip SoC generator.

The Rocket core is written in the Chisel hardware
description language. It supports the open-source RV32GC,
and it has an MMU that supports page-based virtual mem-
ory, a non-blocking data cache, and a front-end with branch
prediction. Several parameters are exposed, including the
optional support of some ISA extensions (M, A, F, D), the
number of floating-point pipeline stages, and the cache and
TLB sizes.

Rocket core consists of the following stages: Program
Counter (PC), Instruction Fetch (IF), Instruction Decode
(ID), Execute (EX), Memory (MEM), and Write Back
(WB) besides the floating-point pipeline stages, as shown
in Figure 1.

4) RISC-V Test Suite
The RISC-V Test Suite primarily focuses on evaluating

the functionality and compliance of RISC-V processors. It
includes a variety of individual test programs and bench-
marks designed to assess the power consumption, uti-
lization, and performance of instruction-level optimization.
Twelve different benchmarks were used in this research.
Each benchmark tests a specific aspect; for example, some
benchmarks exclusively target variables with integer data
types, while others work on data floating-point data types.
The following lists enumerates the twelve benchmarks we
used with a brief description for each.
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Figure 1. Rocket Core Pipeline. Reproduced from [11].

1) median: It calculates the median value from a large
data set. It tests the processor’s ability to perform
mathematical operations and manipulate data effi-
ciently.

2) dhrystone: A well-known benchmark. It measures
the performance of a processor by executing a list
of instructions involving integer arithmetic, string
operations, and logical operations [12].

3) mm: This benchmark is written in both C and
assembly language. It uses multi-threading in the
matrix multiplication operation.

4) mt-matmul: It is a multi-threaded version of the
Matrix Multiplication benchmark. It measures the
performance of a processor’s multi-threaded matrix
multiplication operations.

5) mt-vvadd: It is a multi-threaded version of the
Vvadd benchmark. It assesses the performance of
a processor in multi-threaded vector addition opera-
tions.

6) multiply: It evaluates the processor’s performance in
multiplication operations. It measures the execution
time for multiplying two matrices.

7) pmp: It is a security feature in hardware-based found
in some computer architectures, including RISC-V.
It enables the partitioning and isolating of memory
spaces, protecting specific physical memory regions
from unauthorized access. It tests the functional-
ity and performance of physical memory protection
mechanisms implemented in the processor.

8) qsort: It evaluates the performance of a processor’s
sorting algorithm. It measures the time to sort a given
array of elements using the Quick Sort algorithm.

9) rsort: Another sorting benchmark. It assesses the
processor’s performance by measuring the time to
sort a given array of elements using the Radix Sort
algorithm.

10) spmv: The name of this benchmark stands for Sparse
Matrix-Vector Multiplication. It tests a processor’s
performance in multiplication operations involving
sparse matrices and vectors.

11) towers: It measures the processor’s execution speed
for recursive operations by solving the Tower of

Hanoi puzzle.
12) vvadd: It tests the performance of a processor’s

vector addition capabilities. It measures the time
taken to perform the element-wise addition of two
vectors.

In the next section, we explore how we used and ex-
tended the aforementioned tools to implement the proposed
instruction-level custom RISC-v core generator.

3. Methodology
As highlighted earlier, the goal of this research is to au-

tomate the process of generating a RISC-V core customized
to support a single specific software application given its
source code. To achieve this goal, we need to automate
the generation of an RTL description of a RISC-V core
that supports only the specific instructions needed by this
application. This proposed instruction-level customization
is expected to create the simplest possible core implemen-
tation that would support the application of interest leading
to potential performance and power consumption gains as
demonstrated in Section 4.

The process to accomplish our goal is depicted in
Figure 2. The input to the entire process is the source code
of the application that we would like to run. The output is
the RTL description of the application-specific instruction-
level customized RISC-V core. The process requires going
through three main steps implemented by three main com-
ponents, namely, a RISC-V compiler, a unique instruction
Extractor, and a RISC-V Generator. The subsections below
are dedicated to explaining each of these three components.

A. Compilation
The first step in the process is to compile the desired

application using the RISC-V toolchain compiler (gcc).
For this step We use the riscv64-unknown-elf-gcc
command. The input is the application source code and
the output is the corresponding assembly code. The RISC-
V toolchain compiler can be configured via command line
arguments to target various implementations of the RISC-V
processor such as the RV32I, RV32IMA, RV32G, RV32GC,
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Figure 2. Application Specific Core Generation Process

etc. Since, we are still intending to customize the core
to support only the needed instructions at a later stage,
at this stage we want to allow the compiler to use any
instruction that it Sees fit. We, however, exclude compressed
instructions since these instructions do not provide any
additional functionality and will require additional hardware
to be decoded. Therefore, in this stage, we always configure
the compiler to target the RV32G architecture by using
the command line argument “-march rv32g” with gcc.
Another important aspect of the compilation step is that
it can be done with various optimization levels such as -
O0, -O1, -O2, -O3, and -Os. Different optimizations levels
will produce different assembly programs in some cases
avoiding the use of certain instructions or certain constructs.
We experiment with different optimization levels to see their
effect on the overall performance of the resulting RISC-V
code.

B. Unique Instructions Extraction
The second step in the process is to analyze the assembly

program resulting from the compilation step extracting a list
of unique instructions used in that program. Depending on
the input program and on the optimization level used in
the compilation program, we will end up with a different
mixture of instructions that need to be supported by the
underlying core. We wrote a simple Python script to ac-
complish this task. The script takes the assembly program
as an input and produces a list of all unique instructions
which is then saved into a JSON file.

C. RTL Generation
The third step in the process is the generation of the

RTL description of RISC-V core that supports only the
instructions generated by second step. The input it the
JSON file containing the list of unique instructions and the
output is a synthesizable RTL description of the desired
core. Instead of building this ASA RISC-V generator from
scratch, we extended the open-source Rocket Chip generator
to support a finer granularity of customization. So in this
step the extracted instructions are forwarded to our ASA

RISC-V generator built upon the Rocket Chip generator
whose configuration files are written in Chisel.

Chisel is an open-source Hardware Description Lan-
guage (HDL) that facilitates circuit generation for ASIC
and FPGA; Chisel extends the capabilities of the Scala pro-
gramming language by introducing hardware construction
primitives. By empowering designers with the capabilities
of a modern programming language, Chisel enables them
to create parameterizable circuit generators that generate
synthesizable Verilog code.

The main configuration Scala file of the Rocket chip
generator allows it to generate either:

1) A general-purpose RISC-V core: This is the default
RTL description of a general-purpose RISC-V core
(RV32G), or

2) An extension-level customized RISC-V core: This
is done by enabling or disabling certain extensions
by setting parameter values in the configuration file.
For example, if a use wants to generate a core
suitable to execute an application that does not utilize
the multiplier not the Floating Point Unit (FPU)
extensions, both (M) and (F) extensions can be
disabled in the configuration file. This feature allows
the Rocket Chip generator to generate the following
six combinations of RTLs to be generated: RV32I,
RV32IM, RV32IF, RV32IA, RV32IMF, RV32IMA,
and RV32IAF.

The Rocket Chip generator does not support instruction-
level customization. So it either includes support for the full
extension (a collection of related instructions) or not, but
it cannot include support for individual instructions from
an extension or even from the base instruction set while
ignoring the rest of the instructions in the set. Here are
the main modifications to the Rocket Chip generator that
we implemented in order to support this instruction-level
customization that we are proposing:

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


194 Yehia, et al.: Instruction-Level Customization and Automatic Generation of ES Cores for FPGA

• In the Rocket Chip configuration files, some updates
have been made to incorporate instruction parameters
from a JSON file; a spray-json library is used in the
files to provide an easy way to work with JSON and
make these files read their parameters from the JSON
files extracted from the unique extractor. Five specific
configuration files have been modified: ALU scala
file, Atomic scala file, FPU scala file, Multiplier scala
file, and Main Configurations scala file.

• In each of these files, a new class has been intro-
duced. This class takes the JSON file as input and
assigns “true” to the instruction parameter if enabled
or “false” if disabled. These instruction parameters
control the main class, allowing it to disable the hard-
ware components associated with the corresponding
instructions based on their enabled or disabled status.

• The necessary verilog constructs supporting needed
instructions are generated, while unused constructs
are eliminated. For example, if an application only
requires multiplication functionality from the Mul-
tiplier Extension, instructions such as division and
remainder will be entirely disabled despite being part
of the same extension. This level of optimization
allows for the customization of instructions based
on the precise needs of the application, ensuring
that unnecessary instructions are disabled to optimize
performance and resource utilization.

Further improvements are still required to achieve more
optimization in instruction-level customization since some
limitations in the current implementation still need to be
addressed as explained in section 5.

4. Results
To evaluate the usefulness of the proposed instruction-

level customization, we needed to run several experiments
assessing the effect of such customization on the execution
time and on the power consumption of various application.
The compiled benchmarks were simulated on the generated
RISC-V cores using the cycle-accurate Verilator simulator
capturing the number of cycles required for their execution.
This information is crucial for calculating the execution
time and evaluating the performance of the chip design.
The design utilization was calculated using Xilinx Vivado
assuming a Zedboard Zynq-7000 FPGA board which we
used in our experiments. Vivado was used for synthesis,
mapping, placing, and routing of the generated cores and
to produce post-implementation utilization and power con-
sumption reports.

This section is split into subsections listing our ex-
perimental results. The first subsection is concerned with
extension-level customization while the second subsection
is concerned with instruction-level customization.

A. Extension-Level Customization Results
Benchmark testing is conducted on all RISC-V exten-

sions to assess their performance and power consumption.
This process involves establishing a baseline and reference
point for comparison. The reference benchmark used is the
RISC-V general-purpose (RV32G) extension.

In Table I, the utilization information of various
extension-level customizations is compared to that of the
RV32G extension shown in the first row. As expected,
the RV32G extension has the highest number of Lookup
Tables (LUTs), Multiplexers (MUXes), D Flip flops, and
digital signal processors (DSPs). The remaining exten-
sions follow in the following order: RV32IMF, RV32IAF,
RV32IF, RV32IMA, RV32IM, RV32IA, and RV32I, which
is also anticipated since the FPU followed by the multiplica-
tion/division unit are expected to be the largest components.

Table I also presents the minimum clock period utilized
in the RTL files generated for the general-purpose RISC-V
core and various extension combinations. The table shows
that only the RV32I core has an advantage in this regard.

Since power consumption of an FPGA is bound to
increases with its utilization, these results demonstrate that
generating RTL designs that support only the required
extensions for each application have the potential of enhanc-
ing performance and power consumption. These findings
motivates the work in this paper which mainly proposes
taking extension-level customization one step further to
implement instruction-level customization.

B. Instruction-Level Customization Results
To assess the effectiveness of the instruction-level cus-

tomization, we need to conduct more experiments assessing
the effect of such customization for different benchmarks.
We use the previously described list of twelve benchmarks
in our experiments. As described in Section 3, each of
twelve the benchmarks in the RISC-V test suite is compiled
for RV32G using the RISC-V toolchain, then a list of unique
instruction is extracted into a JSON file which in turn is fed
to our extended version of the Rocket Chip generator. The
resulting output is an RTL description of an instruction-
level customized core suitable for each benchmark. Vivado
is used to analyze the resulting RTL in terms of utilization,
minimum clock period, and total on chip power, while
Verilator is used to simulate the execution of the benchmark
on the generated core to compute the number of cycles
needed to execute the benchmark. Results are compared
against the general-purpose RISC-V and the extension-
level customized RISC-V. The following tables show this
comparative analysis.

Table II shows that generating an instruction-level based
core for some benchmark tests (median, rsort, towers,
vvadd) leads to a 5% decrease in the clock period used;
this reduction, as expressed by the subsequent equation,
translates into a 5% decrease in execution time compared
to running the same test on the general-purpose core and on
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TABLE I. All Extensions Utilization Information

RTL Number of LUTs Number of D Flip flops F7 Muxes F8 Muxes DSPs Clock period

RV32G 28528 15824 911 121 4 22
RV32IMF 28349 15741 903 118 4 22
RV32IAF 27924 15702 910 120 2 22
RV32IF 27739 15620 944 111 2 22
RV32IMA 23131 13396 391 107 2 22
RV32IM 22880 13914 418 98 2 22
RV32IA 22442 13875 425 99 0 22
RV32I 22270 13793 420 98 0 21

the extension-level custom core. However, it is noteworthy
that other tests have maintained the same execution time.
The number of cycle values presented in Table II correspond
to the -O2 optimization level. Similar results were obtained
for other optimization levels.

Execution Time = Clock Period × Number of Cycles

Table III presents each benchmark’s total on-chip power
and energy. The Vivado tool is utilized to extract the total
on-chip power values, while the energy consumption is
computed using the following equation:

Energy = Power × Number of Cycles × Clock Period

This equation quantifies the energy consumption by mul-
tiplying the power with the number of cycles and the
clock period. Then, the general-purpose RV32G and the
customized generated RTL at the instruction level are com-
pared. It also illustrates the reduced power consumption
achieved using the benchmark’s custom-generated RTL
at the instruction level compared to the general-purpose
RV32G. The presented percentage represent the extent of
power and energy reduction achieved by the customized
RTL implementation, The table also shows that tests with
clock period optimization (median, rsort, towers, and vvadd)
have a maximum energy reduction percentage, as illustrated
by the equation above. In comparison, other tests have the
same power and energy reduction percentage.

Table IV presents the utilization data extracted from
Vivado for the general-purpose RV32G and the benchmark’s
customized generated RTL on the instruction level.

Table V demonstrates the variation in the number of
cycles for different benchmarks when executed on simu-
lators using different compiler optimization levels (-O0, -
O1, -O2, -O3, -Os). Expectedly, the findings reveal that the
utilization of Size optimization (-Os) leads to a reduction in
the number of cycles, while the absence of any optimization
(-O0) results in the highest number of cycles.

5. Limitations
One limitation of this work stems from difficulties to

exclude certain instructions from the generated RTL due
to how the Rocket Chip generator is implemented. For

instance, When the (F) extension is enabled, only multipli-
cation and division instructions can be excluded from the
RTL generation while other instructions remain enabled.
Similarly, in the (A) extension, instructions such as “amo-
max”, “amomin”, and “amoswap” cannot be excluded. On
the other hand, in the (M) and (I) extensions, all instructions
can be enabled or disabled individually except for the “add”
instruction which cannot be excluded. Surpassing these
constraints requires implementing more significant changes
in the Rocket Chip generator.

6. Conclusion and FutureWork
This paper proposed a methodology to automate the

implementation of custom RISC-V cores optimized for their
target applications. Given the source code of an application,
a generator will produce the RTL of a RISC-V core that
supports only the specific mixture of instructions needed
by that application. When compared with general purpose
processors, the conducted experiments demonstrated that
the cores generated by our approach managed to achieve
energy and execution time reductions reaching 8% and 5%
respectively on some of the used benchmarks. These savings
can be beneficial for battery-operated embedded systems
and IoT devices. FPGAs are the target platform for this
research since they are naturally designed to be reconfigured
for each new application.

In conclusion, the research demonstrates the potential
benefits of utilizing the RISC-V ISA and the automated
approach for developing ASAs. Future refinements and
optimizations in ISA extensions and customization tech-
niques hold promise for achieving even more remarkable
power efficiency and resource utilization improvements,
reinforcing the value of our approach to develop efficient
and specialized chip designs.
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TABLE II. Clock Period and Number of Cycles of Different Benchmarks on Three RTLs: General-purpose, Extension-level Customized RTL, and
Instructions-level Customized RTL

TestName RTL Clock Period Number of cycles

median
RV32G 22 83900
RV32IMF 22 83900
RV32-instructions-level 21 83900

dhrystone
RV32G 22 171398
RV32IMF 22 171398
RV32-instructions-level 22 171398

mm
RV32G 22 141535
RV32IMAF 22 141535
RV32-instructions-level 22 141535

mt-matmul
RV32G 22 96029
RV32IMAF 22 96029
RV32-instructions-level 22 96029

mt-vvadd
RV32G 22 320803
RV32IMAF 22 320803
RV32-instructions-level 22 320803

multiply
RV32G 22 67830
RV32IMF 22 67830
RV32-instructions-level 22 67830

pmp
RV32G 22 203729
RV32IMF 22 203729
RV32-instructions-level 22 203729

qsort
RV32G 22 192261
RV32IMF 22 192261
RV32-instructions-level 22 192261

rsort
RV32G 22 260976
RV32IMF 22 260976
RV32-instructions-level 21 260976

spmv
RV32G 22 373790
RV32IMF 22 373790
RV32-instructions-level 22 373790

towers
RV32G 22 64277
RV32IMF 22 64277
RV32-instructions-level 21 64277

vvadd
RV32G 22 87252
RV32IMF 22 87252
RV32-instructions-level 21 87252

Finally, we would like to thank the broader research
community, which continues to develop and support open-
source solutions like RISC-V and its toolchain.
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TABLE IV. Full Utilization Data For Each Benchmark

RTL Number Of LUTs D-Flip flops F7 Muxes F8 Muxes DSPs

RV32G 28528 15824 911 121 4
median Instruction level 25972 15369 870 174 2
dhrystone Instruction level 25936 15369 869 174 2
mm Instruction level 27287 15710 921 121 4
mt-vvadd Instruction level 27243 15710 921 121 4
mt-matmul Instruction level 26071 15451 868 175 2
multiply Instruction Level 25936 15369 869 174 2
pmp Instruction Level 25927 15369 869 174 2
qsort Instruction Level 25972 15369 870 174 2
rsort Instruction Level 25972 15369 870 174 2
spmv Instruction Level 15628 15640 921 120 4
towers Instruction Level 25972 15369 870 174 2
vvadd Instruction Level 25972 15369 870 174 2

TABLE V. Number of Cycles of Different Benchmarks on Five Optimization Levels

Benchmark O0 O1 O2 O3 Os

median 115268 83836 83900 110103 80804
dhrystone 210766 170813 171398 197601 165461
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rsort 296797 260976 260976 288148 257880
spmv 404467 373099 373790 399754 369747
towers 95965 61633 64277 91645 58925
vvadd 116684 86736 87252 113460 83836
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