
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

paulus.mudjihartono@uajy.ac.id, andi.emanuel@uajy.ac.id, joanna.mita@uajy.ac.id, fedelis.brian@uajy.ac.id,
shuib_basri@utp.edu.my

 http://journals.uob.edu.bh

Real-Time Human Action Recognition using OpenPose and

Sequence-Based Classification

Paulus Mudjihartono 1*, Andi W. R. Emanuel 2, Joanna Ardhyanti Mita Nugraha3,
Fedelis Brian Putra Prakasa4, Shuib Basri5

1,2,3,4 Departemen Informatika,Universitas Atma Jaya Yogyakarta, Yogyakarta, Indonesia

5Department of Computer and Information Sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar, 32610 Seri Iskandar
Perak, Malaysia

Email: paulus.mudjihartono@uajy.ac.id 1*, andi.emanuel@uajy.ac.id2, joanna.mita@uajy.ac.id3, fedelis.brian@uajy.ac.id4,

shuib_basri@utp.edu.my5

Received ## Mon. 20##, Revised ## Mon. 20##, Accepted ## Mon. 20##, Published ## Mon. 20##

Abstract: Human Action Recognition is one important area of Artificial Intelligence that is still in development. The ability to
recognize action in human objects will significantly increase the understanding of images or videos for many practical purposes. This
research employs three sequence-based algorithms to detect human actions, which are LSTM, CNN-LSTM, and CONVLSTM, to
predict human action sequences in videos. The steps taken are 1) Collect action videos from video clips of actions as the data source.
Convert the video clips into data sets for model training and testing. 2) Build the model using the datasets and the selected sequence-
based classification algorithms. The best model from each algorithm is then implemented to get the inference engines. 3) Build
inference engines for each algorithm. Action videos are collected and extracted by their key points using OpenPose; these 30 frame
key points data are used to train the models. The results are the ability to predict seven human actions with an accuracy of 83.1429%
in the LSTM model, 83.7143% in the CNN-LSTM model, and 83% in the CONVLSTM model. Inference engines for these models
converted in TFLite were built to demonstrate that the systems can detect real-time action in recorded or webcam. The TFLite
versions of LSTM, CNN-LSTM, and CONVLSTM inference times are 0.5ms, 0.25ms, and 0.5ms, respectively.

Keywords: Human Action Recognition, sequence-based algorithm, real-time inference, OpenPose.

1. INTRODUCTION

Artificial Intelligence has developed significantly in
the past decade, and almost all aspects of our lives have
been influenced by Artificial Intelligence (AI). One of the
aspects of AI that has evolved in maturity is the ability of
computers to detect objects or object detection. The
ability includes the capability to detect single or many
objects in a very short time [1], the capability to recognize
a human face with high accuracy [2], and the capability to
detect human illness based on the image from medical
images [3], and many more. This capability of detecting
objects enables computers to detect the "subject" and the
"object" of the image or video. But there's one thing
missing from understanding an image or video: figuring
out what the objects in the image or video are doing.
Human action and emotion are detected based on object

movement [4]. Also, it illustrates that are 25 joints
generated using kinetics, and their connectivity helped
identify human emotions.

Human Action Recognition is one area of computer
science that needs to be improved to increase computer
understanding of images or videos. Understanding
images or videos requires the ability to detect the objects
(can be the subject or objects) and their action so
computers can better describe the image or videos. This
condition is particularly important in images or videos
involving humans as the subject or object; the capability
to better comprehend the image or videos will improve
many areas of human surveillance. This capability
includes the capability of computers to give early warning
and prevent harmful incidents to human operators in case
of elderly falling, human drowning in the pool, and many

IJCDS 1571056335

1

2 Paulus Mudjihartono, Andi W. R. Emanuel, Joanna A. M. Nugraha,
Fedelis B. P. Perkasa, Shuib Basri: Real-Time Human Action Recognition using OpenPose and Sequence-Based
Classification

http://journals.uob.edu.bh

more, which will improve our ability to protect and
prevent further incidents [5] [6] [7].

This research continues our previous research [8],
which attempts to identify human action based on a single
snapshot of an image. The recognition of human action
based only on a single snapshot has some potential
weaknesses, such as predicting action based on a single
snapshot will have many interpretations since many
actions can have similar poses if inferred from a single
image. The next logical step is to predict human action
based on the sequence of poses in videos, and they will be
inferred using a sequence-based algorithm, which is
LSTM, CNN-LSTM, and CONVLSTM.

2. RECENT STUDIES

 Many kinds of research on human action recognition
emphasize using some types of networks or frameworks.
These models/frameworks include skeleton edge motion
networks [9], Depth Map Sequences [10], and deep view-
invariant human action recognition framework [11].
Spatial-temporal dual-attention network (STDAN) [12],
recognition of objects through hands and arms using Bi-
GRU [13], Attention-based Hybrid 2D/3D CNN-LSTM
[14], LSTM+YOLOv4 [15], Inception inspired CNN-
GRU hybrid network [16], frames in Videos using
double-feature double-motion (DDNet) [17], ResNet with
Bi-LSTM [18].

 Temporal Attention-Augmented Graph Convolutional
Network [19], the fusion of skeletal joint dynamics and
structural features [20], Self-Attention Network [21],
multi-stream 3D CNN structure [22], Mixed 3D/2D
Convolutional Tube [23], Bayesian Hierarchical Model
[24], Semantic-Guided Neural Networks [25], SRNet:
Structured Relevance Feature Learning Network [26],
Spatio-Temporal Graph Deconvolutional Network [27],
Attention Residual 3D Network [28], histogram of
Oriented Gradient-Based Fusion of Features [29]. Some
of those models emphasize skeletal framework, and
others emphasize neural networks.

Furthermore, many human action recognition models
have been developed based on specific algorithms.
Examples of these models encompass CNN-Based
Multistage Gated Average Fusion (MGAF) using depth
and inertial sensors [30], Learning Graph Convolutional
Network [31], Convolutional LSTM with Spatio-
temporal networks [32]. As well as Bidirectional LSTM
[33], Densely-connected Bi-directional LSTM (DB-
LSTM) [34], Depthwise Spatio-Temporal STFT
Convolutional Neural Networks for Human Action
Recognition [35], deep ensemble learning in still images
[36], Deep Learning Method in limited sensory data [37],

Deep Belief Network [38], Geometric Deep Neural
Network [39], the union of deep learning and swarm-
based optimization [40].

Algorithms such as CNN and LSTM are among the
favored ones. By using deep learning models such as
CNN, LSTM, or two-stream networks, objects are
detected and classified, but still, models lack contextual
information during activity [41], and they are limited to
standing, sitting, downstairs, upstairs, jogging, and
walking [42], but objects and their skeleton based action
were not focusing on many actions not reported

The majority of models are somewhat time-consuming
to infer. Similarly, the study of the previous researchers is
lacking by not implementing real-time inference. Even
though the objects that the model identifies are only
images of human poses, they, unfortunately, lead to an
extensive inference. This condition exists because the
method requires a substantial number of resources. The
new study proposed by the authors focuses on how to
infer categorization in real-time. This study differs from
past studies on the inference engine's real-time nature.
Even if the objects represent human movements, the
model must be lightweight to permit the real-time
inference of the action.

3. RESEARCH METHODOLOGY

To build the model as the main building block for
the inference engines. These steps are implemented:

1. Collect action videos: Use video clips of
actions as the data source. Convert the video
clips into data sets for model training and
testing.

2. Model building, evaluation, and selection:
Build the model using the datasets and the
selected sequence-based classification
algorithms. The best model from each
algorithm is then implemented to get the
inference engines.

3. Building inference engines: Build inference
engines for each algorithm.

A. Collect Action Videos

The videos for data sources are collected from
YouTube with the following assumptions about which of
the videos of action should be saved and collected for
further processing:

1. A sequence of frames constitutes action.
2. The is only a single person in the video clip.
3. One sequence of action consists of 30 frames.

2

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 3

http://journals.uob.edu.bh

The collected videos are processed using OpenPose
[43] to get the keypoints information, and then those
keypoints are saved into a CVS file for further processing
to be ready for the next phase, which is model building.

B. Model Building, Evaluation, and Selection

The next step is building the classification model.
The model is built using a Personal Computer with
Ubuntu 20.04 LTS Operating System, CUDA 11.5 with
CUDNN version 7.5 and 8, Caffee and OpenCV support,
Python3, OpenPose, and TensorFlow. The PC's
hardware is CPU Ryzen 7 1700X (8 core, 16 threads)
with single GPU configurations using NVIDIA
GTX1660 Ti 6GB and NVIDIA RTX3060 12GB.

The python script used in the research is the
adaptation from [45] with some modifications based on
the collected dataset. Three sequence-based classification
algorithm models are selected: LSTM, CNN-LSTM, and
CONVLSTM. These three algorithms are selected since
LSTM is the more advanced version of the Recurrent
Neural Network algorithm, and the CNN-LSTM and
CONVLSTM are slight variations of the algorithm,
which may provide better performance and accuracy.

For the LSTM model, the model architecture is
constructed using python code as shown below:

model = Sequential()
model.add(LSTM(120,
input_shape=(n_timesteps,n_features)))
model.add(Dropout(0.7))
model.add(Dense(80, activation='relu'))
model.add(Dense(n_outputs, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])

Whereas the model fitting is:

model.fit(trainX, trainy, epochs=epochs,
batch_size=batch_size, verbose=verbose)

For the CNN-LSTM model, the model architecture is
constructed using python code as shown below:

model = Sequential()
model.add(TimeDistributed(Conv1D(filters=64,
kernel_size=3, activation='relu'),
input_shape=(None,n_length,n_features)))
model.add(TimeDistributed(Conv1D(filters=64,
kernel_size=3, activation='relu')))
model.add(TimeDistributed(Dropout(0.5)))
model.add(TimeDistributed(MaxPooling1D(pool_siz
e=2)))
model.add(TimeDistributed(Flatten()))
model.add(LSTM(100))

model.add(Dropout(0.5))
model.add(Dense(120, activation='relu'))
model.add(Dense(n_outputs, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])

Also, the model fitting is:

model.fit(trainX, trainy, epochs=epochs,
batch_size=batch_size, verbose=verbose)

Finally, for the CONVLSTM model, the model architecture
is constructed using python code as shown below:

model = Sequential()
model.add(ConvLSTM2D(filters=64,
kernel_size=(1,3), activation='relu',
input_shape=(n_steps, 1, n_length, n_features)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(80, activation='relu'))
model.add(Dense(n_outputs, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])

In this case, the model fitting is:

model.fit(trainX, trainy, epochs=epochs,
batch_size=batch_size, verbose=verbose)

The hyperparameters of all the LSTM, CNN-LSTM, and
CONVLSTM models vary based on trial and error to find
the best accuracy values. For the LSTM model, the
hyperparameters modified during modeling trials were the
memory unit, hidden layer, and dropout values. As for
the CNN-LSTM model, modified hyperparameters are
n_steps, n_length, memory unit, hidden layer, filter, and
dropout values. Finally, for the CONVLSTM model,
modified hyperparameters are n_steps, n_length, hidden
layer, filters, kernel size, and dropout values. For all the
models, the number of epochs and batch size also varied
to find the best possible accuracy for the model. Each
model is evaluated by observing the confusion matrix of
each model, and the model with the best accuracy is
saved. The fitting time during training is also observed
and recorded for further analysis. Each model was also
verified by testing using the unused dataset (dataset from
Table I that is not being used for either training or
testing). The best model from each algorithm was saved
from being used for the inference engine.

C. Building Inference Engine

The last phase is building the inference engine for
each model. The inference engines are built using
TensorFlow and CUDA using single GPU and dual GPU
configurations. The saved models and the TFLite

3

4 Paulus Mudjihartono, Andi W. R. Emanuel, Joanna A. M. Nugraha,
Fedelis B. P. Perkasa, Shuib Basri: Real-Time Human Action Recognition using OpenPose and Sequence-Based
Classification

http://journals.uob.edu.bh

converted models are used to observe the performance
and differences amongst these models. The inference
engine was built to infer actions from recorded or live
webcam video. The conversion from original models to
TFLite models is an adaption from the script from Google
Collaboration Research [44].

4. RESULT AND DISCUSSION

A. Collect Action Videos

Initially, 2771 video clips of actions were collected,
consisting of 85772 frames. Each video clip is then
truncated based on the action, with each truncated video
clip consisting of 30 frames. After initial assumptions of
32 actions, the collection focuses only on seven pre-
determined actions with sufficient datasets defined to be
at least 500. The later data collection is focused on
completing those seven actions to achieve the 500
datasets as the minimum requirement.

All the video clips are then processed with OpenPose
[43] to get the sequence of keypoints during the actions.
The OpenPose will extract 25 keypoints from each frame,
and a single dataset is a sequence of keypoints (x and y
coordinates) from 30 frames of action. The saved
coordinates consists of 50 points which are x_Nose,
y_Noze, x_Neck, y_Neck, x_RShoulder, y_RShoulder,
x_RElbow, y_RElbow, x_RWrist, y_RWrist,
x_LShoulder, y_LShoulder, x_LElbow, y_LElbow,
x_LWrist, y_LWrist, x_MidHip, y_MidHip, x_RHip,
y_RHip, x_RKnee, y_RKnee, x_RAnkle, y_RAnkle,
x_LHip, y_LHip, x_LKnee, y_LKnee, x_LAnkle,
y_LAnkle, x_REye, y_REye, x_LEye, y_LEye, x_REar,
y_REar, x_LEar, y_LEar, x_LBigToe, y_LBigToe,
x_LSmallToe, y_LSmallToe, x_LHeel, y_LHeel,
x_RBigToe, y_RBigToe, x_RSmallToe, y_RSmallToe,
x_RHeel, y_RHeel. Each coordinate is the offset at the
top corner of the body box, as shown in Figure 1, and the
x and y coordinates are then stored in CSV format for
further processing, with the first column being the
filename and the last column being the action name.

The next process is the data cleaning of the
keypoints. The data cleaning process is conducted by
removing bad datasets. Based on the data observations,
the bad frame is determined by the following criteria: 1)
frames that lost more than 11 keypoints (more than 44%
of keypoints missing), 2) the dataset with more than two
consecutive frames (missing more than 7% of the
sequences), and 3) the dataset with less than 14 frames
are also removed (missing more than 0.5 seconds of
actions). These bad frames are removed from the dataset.

Figure 1. OpenPose Keypoints Coordinates and Body box

The next data cleaning process involves the
imputation of the missing keypoints and missing frames.
Like the previous approach from the research [8], the
missing keypoints are then imputed with the closest
keypoints. The missing frames consist of three
conditions: missing first, middle, and last frames, with
different treatments for each condition. The missing first
frame is replaced with the keypoints from the second
frame. Meanwhile, the missing last frame is replaced
with the keypoints from the previous frame. Next, the
missing midframes are replaced with the linear
interpolation of keypoints from the adjacent frames. If
the missing frame is only one, the interpolation is just
replaced with the average values of adjacent frames, but
if the missing frames are two, the interpolation replaces
the missing dataset with the 0.33 and 0.67 summations of
the adjacent frames. Finally, the last imputation is for
the missing 16 or more frames; the imputation is
conducted by taking the remaining frames from the
previous adjacent sequence of actions (from the same
video clip).

There are 5808 datasets due to the previous two data
cleaning processes and data imputations. Table I
summarizes 5808 datasets ready for the next research
phase: model building.

4

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 5

http://journals.uob.edu.bh

TABLE I. DATASET FOR LSTM CLASSIFICATION

Action
ID

Action
Name

Dataset
Total

Training
Dataset

Testing
Dataset

Alternate
Testing
Dataset

1 Dribble 1042 400 100 542
2 Kick 652 400 100 152
3 Run 1288 400 100 787
4 Sit 778 400 100 278
5 Squat 752 400 100 252
6 Stand 548 400 100 48
7 Walk 748 400 100 248

TOTAL 5808 2800 700 2307

The dataset is reduced to 500 datasets for each
action. The reduction is to set equal values or a balanced
dataset for each action to remove the possibility of a
biased result. So, the total dataset is 3500 (500 datasets x
7 actions). For the model building, the data is split into
80% for training and 20% for testing (400 datasets for
training and 100 datasets for testing). The remaining
dataset is later used for further analysis to confirm the
model's accuracy and is labeled as an alternate testing
dataset.

B. Model Building, Evaluation, and Selection

LSTM Model:

The LSTM model was trained with 150 epochs,
batch size 64, and varying other hyperparameters to find
the best model in terms of accuracy. The script is
repeated more than 100 times to find the best possible
hyperparameter, and it was then found that the best
hyperparameters were LSTM 120, dense 80, and dropout
0.7. These hyperparameters were used to find the best
possible model in terms of accuracy value.

Due to the heuristic nature of the LSTM algorithm,
the script was repeated more than 2000 times using these
selected hyperparameters to find the best model in
accuracy. The training time of the LSTM model took an
average of 38.232 to 45.637 seconds in each iteration.
The model with the best accuracy of 83.1429% was
discovered, with the training process consuming 931 MB
of GPU memory. The Confusion Matrix for the best
LSTM Model is shown in Table II.

Table III shows that LSTM models work best for
predicting action 6 (Stand), followed by action 4 (Sit) and
action 7 (Walk). The model has moderate prediction
accuracy for action 3 (Run), Action 2 (Kick), and action
1 (Dribble) and the worst accuracy for action 5 (Squat).
Table III shows the Classification Report for the best
LSTM Model.

TABLE II. CONFUSION MATRIX FOR THE BEST LSTM MODEL

Predicted
1 2 3 4 5 6 7

Actual
1 72 10 16 0 0 1 1
2 11 77 11 0 0 1 0
3 12 5 79 0 1 0 3
4 0 3 0 95 2 0 0
5 2 14 6 0 69 6 3
6 0 1 0 0 0 99 0
7 3 3 2 0 0 1 91

Note: 1: Dribble, 2: Kick; 3: Run; 4: Sit, 5: Squat, 6: Stand, 7: Walk

TABLE III. CLASSIFICATION REPORT FOR THE BEST LSTM MODEL

Action
ID

Precision Recall F1-
Score

Support

1 0.72 0.72 0.72 100
2 0.68 0.77 0.72 100
3 0.69 0.79 0.74 100
4 1.00 0.95 0.97 100
5 0.96 0.69 0.80 100
6 0.92 0.99 0.95 100
7 0.93 0.91 0.92 100

Note: 1: Dribble, 2: Kick; 3: Run; 4: Sit, 5: Squat, 6: Stand, 7: Walk

Table III shows that the LSTM model has the best
overall classification performance for action 4 (Dribble),
action 6 (Stand), and action 7 (Walk). Action 5 (Squat)
has good precision but moderate numbers for recall and
F1-score values. The moderate recall value is due to
some of the datasets for action 5 (Squat) being
misclassified as other actions, and this also contributes to
the moderate number of F1-score. The model was then
further verified using the alternate testing dataset, which
showed a similar value in accuracy.

CNN-LSTM Model:
The CNN-LSTM model was trained with 150

epochs, batch size 64, and varying other hyperparameters
to find the best model in terms of accuracy. The script is
repeated more than 100 times to find the best possible
hyperparameter, and it was then found that the best
hyperparameters were n_steps 3, n_length 10, LSTM 100,
Dense 120, filters 64, and dropout 0.5. These
hyperparameters were used to find the best possible
model regarding accuracy value.

Due to the heuristic nature of the CNN-LSTM
algorithm, the script was repeated more than 2000 times
using these selected hyperparameters to find the best
model in accuracy. The training time of the CNN-LSTM
model took an average of 38.765 to 45.672 seconds in
each iteration. The model with the best accuracy of
83.7143% was discovered, with the training process
consuming 1219 MB of GPU memory. The Confusion
Matrix for the best CNN-LSTM model is shown in Table
IV.

5

6 Paulus Mudjihartono, Andi W. R. Emanuel, Joanna A. M. Nugraha,
Fedelis B. P. Perkasa, Shuib Basri: Real-Time Human Action Recognition using OpenPose and Sequence-Based
Classification

http://journals.uob.edu.bh

TABLE IV. CONFUSION MATRIX FOR THE BEST CNN-LSTM
MODEL

Predicted
1 2 3 4 5 6 7

Actual
1 74 7 18 0 1 0 0
2 9 79 12 0 0 0 0
3 8 5 84 0 0 0 3
4 0 3 0 90 7 0 0
5 4 11 5 3 70 2 5
6 0 0 0 0 2 98 0
7 3 1 5 0 0 0 91

Note: 1: Dribble, 2: Kick; 3: Run; 4: Sit, 5: Squat, 6: Stand, 7: Walk

It can be seen from Table IV that the CNN-LSTM
Model works best for predicting action 6 (Stand),
followed by action 7 (Walk) and action 4 (Dribble). The
model has moderate prediction accuracy for actions 3
(Run), action 2 (Kick), action 1 (Dribble), and action 5
(Squat).

Table V shows the Classification Report for the best

CNN-LSTM. In detail, Table V shows that the CNN
LSTM model has the best overall classification
performance for action 4 (Dribble), action 6 (Stand), and
action 7 (Walk). Action 5 (Squat) has good precision but
moderate numbers for recall and F1-score values. The
moderate recall value is due to some of the datasets for
action 5 (Squat) being misclassified as other actions, and
this also contributes to the moderate number of F1-score.
The model was then further verified using the alternate
testing dataset, which showed a similar value in accuracy.

CONVLSTM Model:

The CONVLSTM model was trained with 150
epochs, batch size 64, and varying other hyperparameters
to find the best model in terms of accuracy. The script is
repeated more than 100 times to find the best possible
hyperparameter, and it was then found that the best
hyperparameters n_steps 5, n_length 6, filters 64, Dense
80, and dropout 0.4. These hyperparameters were used to
find the best possible model in terms of accuracy value.

Due to the heuristic nature of the CONVLSTM
algorithm, the script was repeated more than 2000 times
using these selected hyperparameters to find the best
model in accuracy. The training time of the
CONVLSTM model took an average of 136.370 to
153.885 seconds in each iteration, which was more than
three times longer than LSTM and CNN-LSTM. The
model with the best accuracy of 83% was discovered,
with the training process consuming 1113 MB of GPU
memory. The Confusion Matrix for the best
CONVLSTM Model is shown in Table VI.

TABLE V. CLASSIFICATION REPORT FOR THE BEST CNN-LSTM
MODEL

Action
ID

Precision Recall
F1-

Score
Support

1 0.76 0.74 0.75 100
2 0.75 0.79 0.77 100
3 0.68 0.84 0.75 100
4 0.97 0.90 0.93 100
5 0.88 0.70 0.78 100
6 0.98 0.98 0.98 100
7 0.92 0.91 0.91 100

Note: 1: Dribble, 2: Kick; 3: Run; 4: Sit, 5: Squat, 6: Stand, 7: Walk

TABLE VI. CONFUSION MATRIX FOR THE BEST CONVLSTM
MODEL

Predicted
1 2 3 4 5 6 7

Actual
1 78 8 11 0 0 1 2
2 16 76 7 0 0 0 1
3 18 2 75 0 0 1 4
4 0 3 0 92 3 0 2
5 1 17 7 2 69 3 1
6 0 0 0 0 1 99 0
7 3 1 4 0 0 0 92

Note: 1: Dribble, 2: Kick; 3: Run; 4: Sit, 5: Squat, 6: Stand, 7: Walk

It can be seen from Table 6 that the CONVLSTM model
works best for predicting action 6 (Stand), action 4
(Dribble), and action 7 (Sit). The model has moderate
accuracy in predicting action 1 (Kick), action 2 (Kick),
and action 3 (Run). The worst accuracy is for action 2
(Walk).

Table VII shows the Classification Report for the
best CONVLSTM Model. In detail, Table VII shows that
the CONVLSTM model has the best overall
classification performance for action 4 (Dribble), action 6
(Stand), and action 7 (Walk). Action 5 (Squat) has good
precision but moderate numbers for recall and F1-score
values. The moderate recall value is due to some of the
datasets for action 5 (Squat) being misclassified as other
actions, and this also contributes to the moderate number
of F1-score. The model was then further verified using
the alternate testing dataset, which showed a similar
value in accuracy.

FPS vs. Accuracy:

Since the models were built based on a dataset from
30 frames, the next step is to conduct sensitivity analysis
based on the varying value of fps in the video. This
analysis is conducted to anticipate the situation where the
videos (recorded or from webcam) were not had an ideal
framerate of 30 fps. This sensitivity analysis needs to be
conducted to know the decrease in the accuracy for
videos with less than 30 fps. The best models were then
tested using videos with reduced framerates, assuming
the acceptable accuracy was at least 70% as shown in
Fig.2.

6

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 7

http://journals.uob.edu.bh

TABLE VII. CLASSIFICATION REPORT FOR THE BEST CONVLSTM
MODEL

Action
ID

Precision Recall F1-Score Support

1 0.67 0.78 0.72 100
2 0.71 0.76 0.73 100
3 0.72 0.75 0.74 100
4 0.98 0.92 0.95 100
5 0.95 0.69 0.80 100
6 0.95 0.99 0.97 100
7 0.90 0.92 0.91 100

Note: 1: Dribble, 2: Kick; 3: Run; 4: Sit, 5: Squat, 6: Stand, 7: Walk

Figure 2. FPS vs. Accuracy of LSTM, CNN-LSTM, and

CONVLSTM Models

Fig. 2 shows the accuracy values of LSTM, CNN-
LSTM, and CONVLSTM for varying fps videos. It is
shown that the CNN-LSTM Model reached the threshold
values faster, starting from 10 fps, followed by the
CONVLSTM model, starting from 13 fps, and the LSTM
model reaching the threshold at 14 fps.
To conclude, during model building with all three
models, the following observations are made:

1. The accuracy of LSTM, CNN-LSTM, and
CONVLSTM models is similar and can reach 83%
or more.

2. The CNN-LSTM model has the best accuracy,
with 83.7143%, followed by the LSTM model,
with 83.1429%, and the CONVLSTM model, with
83%. These accuracy values were discovered after
more than 2000 iterations of model building.

3. The LSTM and CNN-LSTM models have similar
training times, averaging 38 to 46 seconds in each
model building. The CONVLSTM has the longest
training time, averaging 136 to 154 seconds.

4. All models reached acceptable accuracy
(accuracy value of 70% or more), with CNN-
LSTM starting from 10 fps, CNVLSTM starting
from 13 fps, and LSTM starting from 14 fps.

C. Building inference Engines

Inference time plays a crucial role in achieving real-
time prediction. For 30 fps video, the maximum
allowable time to compute time and infer is at most 33ms

to make the video playback smoothness intact. However,
the inference engines using the original models were
found to be very slow since the inference times were
50ms for each frame in dual GPU configuration (GTX
1660Ti + GTX 1650) and 40ms for single GPU
configuration (GTX 1660Ti). The inference engine
based on these models cannot give a real-time action
inference for videos with 30 FPS due to the slow
inference times.

The saved models were then converted to the TFLite
model resulting in faster inference times. The inference
time of the LSTM model was 0.5ms, the CNN-LSTM
model was 0.25ms, and the CONVLSTM model was
0.5ms. These inference times are acceptable for real-time
inference, and the prediction can be conducted with a
normal video speed of 30 frames per second. The
inference engines can also predict the actions of up to 10
people in a single frame with limited tracking
capabilities. The TFLite Model's accuracy is also
compared to the original model, and it was found to have
no difference in confusion matrices.

Figure 3. Inference Engine using TFLite version of LSTM Model

Fig. 3 is the LSTM inference engine snapshots using
the TFLite version of the LSTM model. The inference
shown in the frame is based on the last 30 frames of the
videos and is continuously updated in every frame.

7

8 Paulus Mudjihartono, Andi W. R. Emanuel, Joanna A. M. Nugraha,
Fedelis B. P. Perkasa, Shuib Basri: Real-Time Human Action Recognition using OpenPose and Sequence-Based
Classification

http://journals.uob.edu.bh

Figure 4. Inference Engine using TFLite version of CNN-LSTM

Model

Fig. 4 is the snapshots of the CNN-LSTM inference
engine using the TFLite version of the CNN-LSTM
model. The inference shown in the frame is based on the
last 30 frames of the videos and is continuously updated
in every frame. The right figure shows the inference
engine's capability to predict two people simultaneously.

Figure 5. Inference Engine using TFLite version of CONVLSTM

Model

Fig. 5 is a snapshot of the CONVLSTM inference
engine using the TFLite version of the CONVLSTM
model. The inference shown in the frame is based on the
last 30 frames of the videos and is continuously updated
in every frame. The right figure shows the inference
engine's capability to predict four people simultaneously.

5. CONCLUSION

This research can build the model using LSTM,
CNN-LSTM, and CONVLSTM to predict seven real-
time actions from video or webcam. The accuracies of
the model are 80.26% for the LSTM model, 81.57% for
the CNN-LSTM model, and 81.57% for the
CONVLSTM model. The shortest model building time

was the LSTM model, followed by the CNN-LSTM
model, and the longest was the CONVLSTM model,
which consumes four times longer. Inference engines for
the three best models are successfully built by converting
all saved models into the TFLite model. The inference
times are 0.5ms for the TFLite version of the LSTM
model, 0.25ms for the TFLite version of the CNN-LSTM
model, and 0.5ms for the TFLite version of the
CONVLSTM model. The short inference time makes it
possible for real-time inference from streaming video or
webcam.

The inference engines from LSTM, CNN-LSTM,
and CONVLSTM show promising results in predicting
action in real-time. The inference engines also design for
inferring up to 10 people in a single frame, but the
performance will be degraded significantly due to the
limited computing capability. The inference engines can
also trace the movements of each person in the image by
using the shortest distance comparison. However, the
tracing capability will suffer when two or more people
overlap, confusing the tracking algorithm. More
sophisticated algorithms for tracking and Multi-Stage
Attention using GCN must be developed in further
research.

ACKNOWLEDGMENT

The authors would like to thank Departemen Informatika,
Fakultas Teknologi Informasi, and LPPM Universitas
Atma Jaya Yogyakarta, Indonesia; also, Department of
Computer and Information Sciences, Universiti
Teknologi Petronas, Malaysia, for supporting this
research.

REFERENCES
[1] Kumar, A., Zhang, Z. J., and Lyu, H. 2020. Object Detection in

real time based on improved single shot multi-box detector
algorithm. EURASIP Journal on Wireless Communications and
Networking. Vol. 204. Pp 1-18

[2] Izhar, F., Ali, S., Ponum, M., Mahmood, M. T., Ilyas, H., and
Iqbal, A. 2020. Detection & recognition of veiled and unveiled
human face on the basis of eyes using transfer learning.
Multimedia Tools and Applications.

[3] Rawal, K., and Sethi, G. 2020. Chapter 6: Medical Image
Processing in Detection of Abdomen Diseases. Advancement of
Machine Intelligence in Interactive Medical Image Analysis,
Algorithms for Intelligent Systems. Springer Nature Singapore.
Pp 153 – 166.

[4] Xu, S., Fang, J., Hu, X., Ngai, E., Wang, W., Guo, Y., & Leung,
V. C. (2022). Emotion recognition from gait analyses: Current
research and future directions. IEEE Transactions on
Computational Social Systems.

[5] Afgari, A. P., Haque, M. M., and Washington, S. 2020. Applying
a joint model of crash count and crash severity to identify road

8

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 9

http://journals.uob.edu.bh

segments with high risk of fatal and serious injury crashes.
Accident Analysis and Prevention, Vol. 144. Pp 1 – 11

[6] Tian, J., Hu, N., Li, X., and Zhang, F. 2021. Research on a
Computer Aid Risk Control System Using Classification
Capabilities of Support Vector Machines. Proceeding of IPEC
2021 (Journal of Physics: Conference Series), Vol. 1952(2021)
042090

[7] Frasch, M. G., Strong, S. B., Nilosek, D., Leaverton, J., and
Schifrin, B. S. 2021. Detection of Preventable Fetal Distress
During Labor From Scanned Cardiotocogram Tracings Using
Deep Learning. Frontiers in Paediatrics, Vol. 9, Article 736834

[8] Emanuel, A.W.R., Paulus, M., and Nugraha, J.A.M. 2021.
Snapshot-Based Human Action Recognition using OpenPose and
Deep Learning. IAENG International Journal of Computer
Science, Vol. 48, Issue 4. Pp 862-867.

[9] Wang, H., Yu, B., Xia, K., Li, J., and Zuo, X. 2021. Skeleton edge
motion networks for human action recognition. Neurocomputing,
Vol. 423. Pp 1 – 12.

[10] Ji, X., Zhao, Q., Cheng, J., and Ma, C. 2021. Exploiting spatio-
temporal representation for 3D human action recognition from
depth map sequences. Knowledge-Based System, Vol. 227,
107040.

[11] Dhiman, C., and Vishwakarma, D. K. 2020. View-Invariant Deep
Architecture for Human Action Recognition Using Two-Stream
Motion and Shape Temporal Dynamics. IEEE Transactions on
Image Processing, Vol. 29. Pp 3835 – 3844

[12] Zhang, Z., Lv, Z., Gan, C., & Zhu, Q. (2020). Human action
recognition using convolutional LSTM and fully-connected
LSTM with different attentions. Neurocomputing, 410, 304-316.

[13] Tong, L., Ma, H., Lin, Q., He, J., & Peng, L. (2022). A novel deep
learning bi-gru-i model for real-time human activity recognition
using inertial sensors. IEEE Sensors Journal, 22(6), 6164-6174.

[14] Bayoudh, K., Hamdaoui, F., & Mtibaa, A. (2022, January). An
Attention-based Hybrid 2D/3D CNN-LSTM for Human Action
Recognition. In 2022 2nd International Conference on
Computing and Information Technology (ICCIT) (pp. 97-103).
IEEE.

[15] Lu, J., Nguyen, M., & Yan, W. Q. (2020, November). Deep
learning methods for human behavior recognition. In 2020 35th
International Conference on Image and Vision Computing New
Zealand (IVCNZ) (pp. 1-6). IEEE.

[16] Dua, N., Singh, S. N., Semwal, V. B., & Challa, S. K. (2022).
Inception inspired CNN-GRU hybrid network for human activity
recognition. Multimedia Tools and Applications, 1-35.

[17] Phan, H. H., Nguyen, T. T., Phuc, N. H., Nhan, N. H., Tran, C. T.,
& Vi, B. N. (2021, August). Key frame and skeleton extraction
for deep learning-based human action recognition. In 2021 RIVF
International Conference on Computing and Communication
Technologies (RIVF) (pp. 1-6). IEEE.

[18] Li, Y., & Wang, L. (2022). Human activity recognition based on
residual network and BiLSTM. Sensors, 22(2), 635.

[19] Heidari, N., and Iosifidis, A. Temporal Attention-Augmented
Graph Convolutional Network for Efficient Skeleton-Based
Human Action Recognition. Proceeding of 2020 25th
International Conference on Pattern Recognition (ICPR).

[20] Muralikrishna, S. N., Muniyal, B., Acharya, U. D., and Holla, R.
2020. Enhanced Human Action Recognition Using Fusion of
Skeletal Joint Dynamics and Structural Features. Hindawi Journal
of Robotics, Vol. 2020, 16 pages

[21] Cho, S., Maqbool, M., Liu, F., and Foroosh, H. 2020. Self-
Attention Network for Skeleton-based Human Action
Recognition. Proceedings of the IEEE/CVF Winter on
Applications of Computer Vision (WACV). Pp 635 – 644

[22] Chenarlogh, V. A., and Razzazi, F. 2018. Multi-stream 3D CNN
structure for human action recognition trained by limited data.
IET Computer Vision, Vol. 13, Issue 3. Pp 338 – 344

[23] Zhou, Y., Zha, Z. J., and Zen, W. 2018. MiCT: Mixed 3D/2D
Convolutional Tube for Human Action Recognition. Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2018. Pp 449 – 458

[24] Zhao, R., Xu, W., Su, H., and Ji, Q. 2019. Bayesian Hierarchical
Dynamic Model for Human Action Recognition. Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) 2019. Pp 7733 – 7742

[25] Zhang, P., Lan, C., Zen, W., Xin. J., Xue, J., and Zheng, J. 2020.
Semantics-Guided Neural Networks for Efficient Skeleton-Based
Human Action Recognition. Proceedings of the IEEE/CVF
Conference on Computer Vidio and Pattern Recognition (CVPR)
2020. Pp 1112 – 1121

[26] Nie, W., Wang, W., and Huang, X. 2019. SRNet: Structured
Relevance Feature Learning Network From Skeleton Data for
Human Action Recognition. IEEE Access, Vol. 7. Pp 132161 –
132172

[27] Peng, W., Shi, J., Zhao, G. 2021. Spatio Temporal Graph
Deconvolutional Network for Skeleton-Based Human Action
Recognition. IEEE Signal Processing Letter, Vol. 28. Pp 244 –
248

[28] Dong, M., Fang, Z., Li, Y., Bi, S., and Chen, J. 2021. AR3D:
Attention Residual 3D Network for Human Action Recognition.
MDPI Sensors, Vol. 21, 1656

[29] Patel, C., Labana, D., Pandya, S., Modi, K., Ghayvat, H., and
Awais, M. 2021. Histogram of Oriented Gradient-Based Fusion of
Features for Human Action Recognition in Action Video
Sequences. MDPI Sensors, Vol. 20, 7299

[30] Ahmad, Z., and Khan, N. 2021. CNN-Based Multistage Gated
Average Fusion (MGAF) for Human Action Recognition Using
Depth and Inertial Sensors. IEEE Sensors Journal, Vol. 21, Issue
3. Pp 3623 – 3634

[31] Peng, W., Hong, X., Chen, H., and Zhao, G. 2020. Learning
Graph Convolutional Neural Network for Skeleton-Based Human
Action Recognition by Neural Searching. Proceeding of The
Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-
20). Pp 2669 – 2676

[32] Sarabu, A., and Santra, A. K. 2021. Human Action Recognition in
Videos using Convolutional Long Short-Term Memory Network
with Spatio-Temporal Networks. Emerging Science Journal, Vol.
5 No. 1. Pp 25 – 33

[33] Li, W., Nie, W., and Su, Y. 2018. Human Action Recognition
Based on Selected Spatio-Temporal Features via Bidirectional
LSTM. IEEE Access Special Section on Big Data Learning and
Discovery, Vol. 6. Pp 44211 – 44220

[34] He, J.Y., Wu, X., Cheng, Z.Q., Yuan, Z., and Jiang, Y.G. 2021.
DB-LSTM: Densely-connected Bi-directional LSTM for human
action recognition. Neurocomputing, Vol. 444. Pp 319 – 331

[35] Kumawat, S., Verma, M., Nakashima, Y., and Raman, S. 2022.
Depthwise Spatio-Temporal STFT Convolution Neural Network
for Human Action Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 44, Issue 9. Pp 4839 –
4851

[36] Yu, X., Zhang, Z., Wu, L., Pang, W., Chen, H., Yu, Z., and Li, B.
2020. Deep Ensemble Learning for Human Action Recognition in
Still Images. Hindawi Complexity, Vol. 20, 23 pages.

[37] Tufek, N., Yalcin, M., Altintas, M., Kalaoglu, F., Li, Y., and
Bahadir, S. K. 2020. Human Action Recognition Using Deep
Learning Methods on Limited Sensory Data. IEEE Sensors
Journal, Vol. 20, Issue 6. Pp 3101 – 3112

[38] Abdellaoui, M., and Douik, A. 2020. Human Action Recognition
in Video Sequences Using Deep Belief Network. Traitement du
Signal, Vol. 37, No. 1. Pp 37 – 44

[39] Friji, R., Drira, H., Chaieb, F., Kchok, H., and Kurtek, S. 2021.
Geometric Deep Neural Network using Rigid and Non-Rigid
Transformations for Human Action Recognition. Proceedings of

9

10 Paulus Mudjihartono, Andi W. R. Emanuel, Joanna A. M. Nugraha,
Fedelis B. P. Perkasa, Shuib Basri: Real-Time Human Action Recognition using OpenPose and Sequence-Based
Classification

http://journals.uob.edu.bh

the IEEE/CVF International Conference on Computer Vision
(ICCV) 2021. Pp 12611 – 12620

[40] Basak, H., Kundu, R., Singh, P. K., Ijaz, M. F., Wozniak, M., and
Sarkar, R. 2022. A union of deep learning and swarm-based
optimization for 3D human action recognition. Scientific Reports,
Vol. 12:5494

[41] Islam, M. M., Nooruddin, S., Karray, F., & Muhammad, G.
(2022). Human activity recognition using tools of convolutional
neural networks: A state of the art review, data sets, challenges,
and future prospects. Computers in Biology and Medicine,
106060.

[42] Shiranthika, C., Premakumara, N., Chiu, H. L., Samani, H.,
Shyalika, C. & Yang, C. Y. (2020, December). Human Activity
Recognition Using CNN & LSTM. In 2020 5th International
Conference on Information Technology Research (ICITR) (pp. 1-
6). IEEE.

[43] Chao, Z., Hidalgo, G., Simon, T., Wei, S. -E., and Sheik, Y. 2017.
Real-time Multi-Person 2D Pose Estimation using Part Affinity
Fields. Proceedings of 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Pp7291-7299

[44] Google Collaboration, 2022. Keras LSTM fusion Codelab.ipny.
Google Collaboration Research. Accessed: 1 May 2022.
Available:
https://colab.research.google.com/github/tensorflow/tensorflow/bl
ob/master/tensorflow/lite/examples/experimental_new_converter/
Keras_LSTM_fusion_Codelab.ipynb#scrollTo=Z7gEg4DRBwbO

[45] Brownlee, J. 2018. LSTM for Human Activity Recognition Time
Series Classification. Machine Learning Mastery: Making
Developers Awesome at Machine Learning. 24 September 2018.
Available: https://machinelearningmastery.com/how-to-develop-
rnn-models-for-human-activity-recognition-time-series-
classification/

Paulus Mudjihartono is an
Associate Professors (junior scale) in
Informatics Department of
Universitas Atma Jaya Yogyakarta,
Indonesia. He has more than 20 years
of experience in teaching and
research. His area of interest includes
computational intelligence, data
science, and parallel computing.

Andi W.R. Emanuel is a Professor in
Informatics Department, Universitas
Atma Jaya Yogyakarta. He has more
than 20 years of experience in
teaching and research. His areas of
interest include Software Engineering,
Open-Source Software, Software
Metrics, Software Quality,
Information Systems, Knowledge
Discovery, and Artificial Intelligence.

Joanna Ardhyanti Mita Nugraha is
a lecturer at the Informatics, Faculty
of Industrial Technology, Atma Jaya
University, Yogyakarta. Completed
undergraduate education in the
Information Systems Department and
continued Masters in the Information
Systems Masters Department. The
author specializes in data mining,
machine learning and deep learning.

Fedelis Brian Putra Prakasa is a
lecturer in the computer science study
program at Universitas Atma Jaya
Yogyakarta. He has four years of
teaching and research experience. It
focuses on major research areas with
topics like UI/UX, gamification, and
mobile development, while minor
research areas focus on data
visualization and machine learning.

Shuib Basri is currently a Senior
Lecturer with the Department of
Computer and Information Sciences
Universiti Teknologi Petronas,
Malaysia, lecturing undergraduate
and post-graduates and supervising
research for Master’s and Doctoral
students. In addition to the above, he
is also a cluster leader for the
Software engineering cluster

mandated to manage the department's education program and
any related research and innovation activities. He has been the
external examiner of Master’s and Doctoral theses and
dissertations for various national and international universities.
He is also a selected assessor and reviewer for various national
research grants and program accreditation in Malaysia, namely
MOSTI and MBOT national bodies.

10

