
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  
11	  
12	  
13	  
14	  
15	  
16	  
17	  
18	  
19	  
20	  
21	  
22	  
23	  
24	  
25	  
26	  
27	  
28	  
29	  
30	  
31	  
32	  
33	  
34	  
35	  
36	  
37	  
38	  
39	  
40	  
41	  
42	  
43	  
44	  
45	  
46	  
47	  
48	  
49	  
50	  
51	  
52	  
53	  
54	  
55	  
56	  
57	  
60	  
61	  
62	  
63	  
64	  
65	  

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. , No. (Mon-20..)

http://dx.doi.org/10.12785/ijcds/XXXXXX

Self-learning Topics for Multiple Activities Mobile Application
with Multimedia Integration in Android Programming

Learning Assistance System
Yan Watequlis Syaifudin1, Nobuo Funabiki2, Andi Baso Kaswar3, Triana Fatmawati1, Mustika

Mentari2, Pramana Yoga Saputra1, Yuri Ariyanto1 and Abdul Rahman Patta3

1Department of Information Technology, Politeknik Negeri Malang, Malang, Indonesia
2Department of Electrical and Communication Engineering, Okayama University, Okayama, Japan

3Department of Computer Engineering, Universitas Negeri Makassar, Makassar, Makassar

Received Mon. 20, Revised Mon. 20, Accepted Mon. 20, Published Mon. 20

Abstract:
The widespread use of Android smartphones underscores the growing need for skilled mobile developers and highlights the importance of
effective Android programming education in IT curricula. The rapid evolution of technology and the demand for practical programming
skills create significant challenges in delivering up-to-date and impactful Android programming classes. The Android Programming
Learning Assistance System (APLAS) has been developed to address these challenges by supporting autonomous learning through Test-
Driven Development (TDD) and automating the validation of code submissions. This study presents novel implementations within APLAS
for two key learning topics: Multiple Activities and Multimedia Resources, integral to the Interactive Application stage. These topics
are designed to foster self-directed learning and practical application of Android programming concepts. In the Multiple Activities topic,
students develop an interactive application, learning to manage multiple Activities, use Intents, and apply advanced UI elements. The
Multimedia Resources topic involves creating a dynamic application, incorporating various multimedia elements such as images, videos,
and animations. The evaluations show a high success rate for both topics, with 90% of students successfully completing the Multiple
Activities assignments and 100% succeeding on the first attempt for Multimedia Resources. Feedback highlights improved skills, problem
solving capabilities, and overall satisfaction, despite suggestions for enhanced guidance and technical support. The consistent progress
observed in student performance underscores the effectiveness of the APLAS framework in fostering robust Android development skills,
while also pointing to areas needing further refinement for addressing complex topics and technical challenges.
Keywords: Self-learning system, Android, Test-driven development, Multiple Activities, Multimedia

1. Introduction
The widespread popularity of Android smartphones is

reflected in Statista’s data[1], which reports a substantial
number of global users that reach 2.7 billion[2]. This vast
user base highlights the increasing demand for mobile pro-
grammers who can develop applications for this dominant
platform. Consequently, mobile programming has emerged
as a main subject in IT departments across educational
institutions, emphasizing its critical role in contemporary
technology education. However, delivering effective An-
droid programming classes presents challenges, such as
keeping the curriculum up to date with rapid technological
advancements and ensuring students acquire the practical
skills[3]. Addressing these challenges is essential for opti-
mizing the learning experience to meet the evolving needs
of the mobile development industry.

The Android Programming Learning Assistance System

(APLAS)[4] has been introduced in prior research as a plat-
form designed to support autonomous learning in Android
programming by incorporating the Test-Driven Develop-
ment (TDD) methodology[5]. It helps students to write Java,
XML, and Gradle DSL source codes within Android Studio
and validates these codes using JUnit[6] and Robolectric[7],
thus eliminating the need for teacher verification. APLAS
also features an online web platform that distributes learning
materials and collects student submissions through a server-
side validator program[8]. To offer a structured learning
experience on diverse topics, APLAS organizes its content
into four stages[9].

The user interface (UI), along with multiple activities
and multimedia resources, significantly influences the user
experience and functionality of an Android application[10].
The UI provides the visual representation that guides user
interactions, making it essential to design an intuitive and

E-mail address: qulis@polinema.ac.id*, funabiki@okayama-u.ac.jp, a.baso.kaswar@unm.ac.id, triana@polinema.ac.id,
pqt85hm5@s.okayama-u.ac.jp, pramanay@polinema.ac.id, yuri@polinema.ac.id, abd.rahman.patta@unm.ac.id

http:// journals.uob.edu.bh

IJCDS 1571057117

1

http://dx.doi.org/10.12785/ijcds/XXXXXX
http://journals.uob.edu.bh


190 First Author, et al.: Paper Title.. (short in one line).

engaging layout. Multiple activities organize application
functions into separate screens, enhancing navigation and
task execution. The Activity class provides the screens or
windows, with each Activity having its own lifecycle. The
Intent class facilitates navigation between Activities, while
the Fragment class allows for modular UI components to be
embedded within an Activity. Multimedia resources, such
as images, videos, audio, and animations, enrich the appli-
cation’s content and interaction, creating a more immersive
experience. Android applications leverage these components
to develop interactive, user-centered apps[11].

This study presents novel implementations for two key
learning topics in APLAS: Multiple Activities and Multi-
media Resources. These topics are integral to the Interactive
Application stage, a critical component of foundational An-
droid programming education[9]. Designed to support the
self-learning process in mobile programming classes, these
topics allow students to independently learn essential con-
cepts. In practical case studies, the Multiple Activities topic
requires students to develop a SoccerMatch application,
while the Multimedia Resources topic involves creating
an AnimalTour application. These projects aim to enhance
students’ hands-on experience and self-directed learning by
applying concepts in real-world scenarios, thereby support-
ing a more effective and engaging mobile programming
education. Students can submit their Android projects to the
server to receive verification and validation results for their
code, ensuring accuracy and providing feedback to enhance
their learning experience.

The Multiple Activities topic explores the development
of Android applications that utilize multiple Activities
through the use of Intent and Fragment components. This
lesson plan is structured around six key learning objec-
tives, including mastering application resources, managing
multiple Activities, designing UI layouts, and implementing
Java and Android classes, with a focus on event listeners
for interactive features. The assignment is divided into
eight tasks, guiding students through creating the appli-
cation from initial setup and UI design to finalizing user
interactions. To complete the assignment for hands-on ex-
perience, students develop SoccerMatch application that is
designed with four Activities and various UI elements. The
application integrates various widgets like CardView, Recy-
clerView, and Chronometer, and implementing three main
Activities (MainActivity, PlayActivity, and LogActivity).

The Multimedia Resources topic is designed to assist
students developing Android applications that integrate mul-
timedia elements effectively. It is structured around five
key learning objectives: using application resources, design-
ing multimedia user interfaces, incorporating multimedia
components like images, videos, and YouTube videos, ap-
plying animations, and handling user events. To complete
the assignment hands-on experience, students follow eight
specific tasks to develop AnimalTour application that is
designed with four Activities and various UI elements.

The application utilizes multimedia elements such as im-
ages, video files, animations, and YouTube videos, and
incorporates animations, animated transitions, and gesture
interactions.

The evaluation of the Multiple Activities and Multime-
dia Resources topics in Android programming involved a
structured assessment of student proficiency through prac-
tical assignments. For the Multiple Activities topic, 90% of
the students completed the assignments successfully within
the allotted three days. Despite a few students needing
additional time to address specific issues. In contrast, the
Multimedia Resources topic resulted in a 100% success
rate on the first attempt by all students, reflecting a high
level of competence in integrating multimedia elements into
Android applications. Feedback from students was predom-
inantly positive, highlighting satisfaction with the learning
experience and assignments, though some suggested im-
provements in areas such as UI design and technical issues.
The creative modifications students made to the assignments
further demonstrate their growing skills and confidence.

The paper content is organized into six sections: Section
2 presents some related theoretical approaches. Section
3 reviews the Android Programming Learning Assistance
System containing automatic source code validation and
online web platform. Section 4 explains the structure of
learning materials in APLAS consisting of the lesson plan
and package of learning materials. Section 5 delineates the
fundamental concept of multiple Activities and multimedia
resources in Android applications for interactive applica-
tions. Section 6 presents the implementation of Multiple
Activities topic. Section 7 presents the implementation of
Multimedia Resources topic. Section 8 presents the eval-
uation results of the two topics implementations. Section
9 discusses related findings based on evaluation results.
Finally, Section 10 concludes this paper with future works.

2. Literature Review
This section presents some theoretical approaches re-

lated to the fundamentals of Android applications, test-
driven development in Android applications, and related
research on Android programming learning tools.

A. Android Application Development
Android is an open-source and Linux-based operating

system that is specifically designed to be installed on smart-
phones and tablet devices[12], and also adjusts from low-
end specifications to high-end specifications[13]. Currently,
Android now belongs to Google. Due to the open-source li-
cense, many parties or companies use this operating system.
To develop Android apps, some programming languages,
such as Kotlin, Java, and C++, can be used to write
code[14]. It is supplemented by various resources provided
in terms of XML layout and data files, image files, raw data
files, and so on. The Android SDK tools compile the source
code along with any data and resource files into an APK,
an Android package, which is an archive file with a ’.apk’
suffix[15].

http:// journals.uob.edu.bh

2

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 191

B. Tools for Learning Android Programming
During the initial stages of the Android smartphone’s

popularity, Hanafi et al. discussed the development of a
mobile application aimed at aiding the education of under-
graduate students in Malaysia [16]. Their work highlighted
essential elements of designing and implementing a learning
system based on the Android platform.

The development of learning platforms for Android
programming has been explored in various studies. Kang et
al.[15] investigated educational methods for Android pro-
gramming through the use of Multi Android Development
Tools, incorporating MIT App Inventor and Eclipse. For be-
ginners, MIT App Inventor’s puzzle model is user-friendly,
but creating fully functional applications necessitates us-
ing Eclipse. Additionally, Rekhawi et al.[17] designed a
web-based intelligent tutoring system to teach Android
application development. This system offers lessons on
the fundamentals of Android programming, the basic user
interface, and application design.

C. Test-Driven Development Method
Test-driven development (TDD) is a software develop-

ment approach that relies on iterative, short development
cycles[18]. This approach is a key component of the agile
software development methodology. Within TDD, develop-
ers produce new code only when a test case has failed.
The requirements outlined in the source code are converted
into specific test cases within the test code. As depicted in
Figure 1, the process begins with the programmer writing
test code, even for minor functionalities. Subsequently, the
necessary code is written solely to fulfill the test require-
ments, addressing any immediate test failures. The source
code is iteratively refined until all tests are successfully
passed [19]. In the context of programming education,
this TDD model is employed to create an automated self-
learning assistance system. This system provides learning
support through feedback or comments that are automat-
ically generated when a test fails, aiding in the learning
process.

As shown in Figure 1, the programmer writes a test code
first, even for implementing the smallest functionality. Then,
he/she writes the code only to meet the test requirements,
when he/she runs it and gets an obvious fail. The source
codes are improved until all the tests are passed [19].
For learning programming, this TDD model is adopted to
realize an automated assistance self-learning system. The
learning assistance feature is represented by feedback or
comments that can be generated automatically when a failed
test occurs.

Various studies have implemented the TDD approach
to offer automatic feedback, grading, and support within
programming education systems. Funabiki et al.[20] devel-
oped a web-based platform known as the Java Program-
ming Learning Assistant System (JPLAS), designed for self-
directed Java programming learning using the TDD method-
ology. JPLAS employs JUnit for unit testing of students’

Figure 1. Process in test-driven development method.

source codes, which enhances the learning experience in
Java programming courses by facilitating student self-study
and lightening the instructors’ workload. In another study,
Almeida et al.[21] shared their experiences in revamping
an introductory lab course to teach functional programming
concepts and sound software development practices through
hands-on training.

D. Automated Testing for Android Application
To implement the Test-Driven Development (TDD) ap-

proach for Android applications, creating an automated
testing process is crucial. This involves developing test
cases within the test code derived from the source code
or the design model, which act as pre-established bench-
marks. Following this, the application is automatically
tested using a specific tool or framework [22]. For Android,
testing frameworks are divided into three scale categories:
small (unit tests), medium (integration tests), and large (UI
tests)[23].

Researchers have carried out a few studies on automated
testing methods designed for Android applications. For
example, Sadeh et al.[24] analyzed the effectiveness of of
Robolectric which can enhance the speed of testing by
offering essential tools designed for testing user interface
code. Vásquez et al.[25] surveyed Android developers re-
garding their testing experiences. The purpose of this study
was to gather data regarding the testing tool techniques
used in the creation of Android applications. According
to the results, JUnit is the most popular automated testing
tool, followed by Roboelectic, Robotium, and Kochhar et
al.[26] and Lin et al.[27]. Robolectric offers the Java Virtual
Machine-based framework for unit testing by mimicking
the Android execution environment on real devices or
emulators, thus Robolectric operates much faster than other
testing instruments[28].

3. Self-learningAssistance System forAndroid Program-
ming

This section outlines the self-learning support system
designed for Android programming, building upon insights
gained from our earlier research on the Android Program-
ming Learning Assistance System (APLAS).

A. Overview of APLAS
APLAS serves as a platform that fosters a self-directed

learning environment for studying Android application de-
velopment more autonomously[4], as described in Figure 2.
It aids students in composing Java, XML, and Gradle DSL

http:// journals.uob.edu.bh

3

http://journals.uob.edu.bh


192 First Author, et al.: Paper Title.. (short in one line).

source codes within Android Studio by incorporating the
TDD method into the software development process. By
integrating guide documents and test codes for specific
assignments, students are directed toward the development
of Android applications. Additionally, test codes are used to
validate the written source codes by executing them, thereby
eliminating the need for teacher verification to confirm their
accuracy.

B. Automatic Source Code Validation
In the APLAS system, the validation of answers was

achieved through the implementation of test codes combin-
ing two automated testing tools: JUnit for unit testing[29],
a widely adopted Java testing framework, and Robolectric
for integration testing[30]. Robolectric, which emulates
the Android application environment on the Java Virtual
Machine (JVM), enables thorough testing by integrating
components and generating Java objects for simulation. This
approach allows JUnit to conduct rapid unit tests without
the need for emulators or physical devices, streamlining the
testing process and eliminating the time-consuming APK
file production step.

The efficacy of Robolectric in integration testing has
been corroborated in previous studies by Sadeh et al.[24]
and Hussain et al[31]. A test case is a method in a test
code that is noticed by the ’@Test’ annotation. Figure 3
shows a test code where an initiation method ’setup()’
containing the Robolectric building process is executed first
to instantiate the ’activity’ object. The assertion method is
used to compare two values and determine the Pass or Fail
result.

C. Online Web Platform
As an interactive learning system in Figure 2, APLAS

provides an online platform that facilitates the distribution
of learning materials and the collection and validation of
student submissions via a web-based application[8], [32].
It employs a server-side validator program, implemented
in Java using Gradle, which automatically compiles and
tests submitted source codes in the background, using the
Android SDK. The system proved effective in reducing
teachers’ workload and addressing primary challenges in
the APLAS learning process.

4. Structure of LearningMaterials
In APLAS, educational content (learning materials) is

structured into various learning topics to cater to the diverse
array of subjects within Android programming, where each
learning topic provides lesson plans and a package of
learning materials.

A. Lesson Plan
A lesson plan is a document prepared to make sure that a

learning topic goal can be achieved. In APLAS, it consists
of guide documents, supplement files, and test codes. It
will make up the learning steps of students. As illustrated
in Figure 4, the lesson plan for a learning topic contains:

1) Learning objectives
These objectives outline the key concepts and skills

that students are expected to grasp or demonstrate by the
conclusion of the learning experience.

2) Application for assignment
This refers to an Android application utilized as a case

study for students during the development of their own
Android applications. It encompasses the content necessary
for understanding a specific learning topic.

3) Tasks
They are a set of step-by-step instructions for creating

an entire application for an assignment. Every work is a
basic assignment towards creating an Android application
from scratch. Usually, students are allowed to create the
UI layouts in order to complete the application devel-
opment. The test codes for every task are designed to
ensure that the mandatory functions are verified and that
the UI components that are going to be used are complete.
They do not examine other characteristics like font size,
background color, or widget location. Students can also
make the application better by including other features
without compromising the required features.

B. Package of Learning Materials
Students use learning resources related to the learning

topic to complete an Android application for assignment, as
shown in Figure 4. Every one of them has a task correlation
and helps students complete the project. They include the
following to create a setting for self-learning:

1) Guide Documents
The guide documents are used to assist students ac-

complishing their programming assignments in APLAS. A
document contains the description of the task, the learning
goal, the list of learning resources, the hardware and soft-
ware specifications, the explanation of the components of
the Android application, the instructions to write the source
codes, and the instructions to validate the source codes.
Figure 5 shows a part of guide document that directs writing
Java codes to define Android variables.

2) Test codes
Test codes are Java codes designed to help students write

source codes and validate their accuracy using instructions
found in guide papers. Once a task is completed, the student
can use Android Studio to run the test codes to verify
that the answer codes are valid. As seen in Figure 6, red
alerts indicating faulty codes that require adjustments will
be displayed if any tests fail. The test codes’ reply will
direct the student in making the necessary modifications.
The green check, which indicates that all of the written
answer codes are accurate, will appear if every test passes.

3) Supplement files
They are support files that must be added to the Android

project before starting to write source codes. They consist
of various file types, such as images, videos, drawable files,
libraries, and APIs.

http:// journals.uob.edu.bh

4

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 193

Figure 2. Learning model of student and teacher in APLAS.

Figure 3. A Robolectric-based test code.

Figure 4. Structure of learning materials.

5. Multiple Activities and Multimedia Resources in An-
droid Applications
This section reviews the components to build multiple

Activities with multimedia integration in Android applica-
tion.

A. Overview
The user interface (UI), in conjunction with multiple

activities and multimedia resources, plays a crucial role in
shaping both the user experience and the operational func-
tionality of an Android application. The UI functions as the
application’s visual representation, guiding user interactions
with its features and content. It is essential to design an
intuitive and visually appealing layout that enhances user
engagement and usability. Multiple activities facilitate the
organization of application functions into separate screens
or segments, thus improving navigation and task execution.
The integration of multimedia elements, including images,
videos, and audio files, allows developers to enrich the
application’s content and increase user interaction, creating
a more immersive experience. The effective combination
of a thoughtfully designed UI, well-implemented multiple
activities, and engaging multimedia resources contributes to
the development of an interactive application.

B. Multiple Activities
The user interface (UI) functions as the principal means

of user interaction in Android applications. Currently, An-
droid provides a range of components for crafting rich and
aesthetically pleasing UIs, encouraging developers to build
applications with progressively intricate features. Many
modern Android applications utilize multiple screens to
handle these complex functionalities, thus incorporating
multiple Activities. Chrome Mobile and Google Translate
are the two well-known Android applications which employ
multiple Activities.

To effectively develop Android applications with mul-
tiple Activities, programmers must be proficient in using
three key classes within the Android project:

1) Activity
In Android applications, the Activity class is fundamen-

tal for launching the application and displaying the UI[33].
It functions similarly to the ’main()’ method in Java, which
is executed first by the Java Virtual Machine to initiate

http:// journals.uob.edu.bh

5

http://journals.uob.edu.bh


194 First Author, et al.: Paper Title.. (short in one line).

Figure 5. Example of guidance to write Java code.

Figure 6. Test result on Android Studio.

a Java program. For Android applications, the Android
system begins by executing code within the Activity class
via specific callback methods. Moreover, the Android SDK
provides the Activity class to manage the logic of a user
interface screen. In Android Studio, this must be written
in either Java or Kotlin[34]. Typically, a single Activity
handles one UI screen. Figure 7 illustrates the Google
Translate application, which uses four activities.

In an Android application, every Activity has a unique
lifecycle. Developing an Android application with several
Activities requires careful consideration on how to handle
each Activity’s lifecycle. Activities in the Android system
are arranged in an Activity stack, with the top Activity being
shown on the device’s screen. When an Activity is launched,
the previous Activity remains underneath it and resurfaces
once the new Activity is deleted. The newly launched
Activity is positioned at the top of the stack and becomes
the foreground Activity. There are six callbacks or lifecycle
methods in the Activity class: onCreate, onDestroy, onStart,
onResume, onStop, and onPause.

2) Intent
The Intent class [35] is used to request actions from

components of other applications. It primarily serves three
functions for intercomponent communication: starting an
Activity, initiating a service, and sending a broadcast. The
most crucial function, particularly for applications with
multiple Activities, is the initiation of an Activity, which
allows users to navigate between different screens through
interactions such as clicking, swiping, and touching. Fur-
thermore, the Intent class also allows other applications or
services to initiate Activities.

To initiate an Activity, an Intent must be created by
specifying the target Activity and including relevant vari-
ables, known as Extras, as illustrated in Figure 8. Extras
are variables comprising a name and a value that are
transmitted as messages by the Intent to the target Activity.
The ’putExtra()’ or ’putExtras()’ methods can be used to
add the Extras. Then, by calling ’startActivity()’ method
that has been passed by the Intent object, the target Activity
will be started.

As illustrated in Figure 7, there are two types of Intent:

1) Explicit Intent facilitates communication with a spe-
cific component or Activity within the same applica-
tion by requiring the name of the target Activity or
component. For example, as shown in Figure 8, the
target Activity’s class name must be specified. It can

http:// journals.uob.edu.bh

6

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 195

Figure 7. Google Translate application with four Activities

Figure 8. Source code of using Intent to start an Activity

also be used to start a service, such as background
image downloading.

2) Implicit Intent is used to start a component from
another application without specifying its name, but
by defining a general action. For example, to open
a camera screen, an Implicit Intent requests the
Camera application, which handles this function by
default. Android includes several default applications
for tasks like taking photos, exploring files, mapping,
and browsing the web.

3) Fragment
A section of an application’s user interface that can

be included into an activity is called a fragment[36]. It
simplifies reuse between activities by encapsulating the UI
layout and logic. By enabling Fragments to dynamically
populate UI parts, this technique improves UI modularity
and reusability. As demonstrated in Figure 7, the third
Activity, for instance, has a Fragment that has a camera in
it. Because a Fragment is modular, it may be used by more
than one Activity, which means that programmers don’t
have to write several Activities for similar tasks. Similar to
an Activity, a Fragment consists of an XML UI layout file, a
Java program acting as the Fragment controller, and its own
lifecycle. An Activity’s UI layout has to use ’FrameLayout’

to set aside space for a Fragment in order to construct a
dynamic UI screen.

C. Multimedia Resources
When creating Android applications, multimedia assets

are essential since they significantly improve user interac-
tion, interface design, and overall experience. The appli-
cation’s visual appeal and intuitiveness are enhanced with
high-quality graphics, animations, and videos. Additionally,
audio elements serve as crucial feedback and can sup-
port voice-activated functions. These components contribute
significantly to accessibility as well, which increases the
application’s usefulness. Incorporating multimedia elements
into an application guarantees that it not only performs
effectively but also draws and holds the attention of users
through interactive learning and efficient content delivery.
The following multimedia components are applicable:

1) VideoView
A higher-level View that offers a direct method of

displaying video material inside an application is called
VideoView. It makes it easier to integrate and manage video
playback in user interfaces that load videos from several
sources (like resources or content providers). To display the
movie, the VideoView class combines a SurfaceView with a
media player (MediaPlayer class). It incorporates many of
the fundamental needs needed to play a video in an Android
application.

2) YouTubePlayer API
Google provides a set of functions in the YouTubePlayer

API that allow YouTube videos to be played in Android
applications[37]. It offers library methods for playing,
loading, and adjusting the playback of YouTube videos.
Several classes of ’YouTubePlayer.Provider’, like YouTube-
PlayerFragment or YouTubePlayerView, must be used to

http:// journals.uob.edu.bh

7

http://journals.uob.edu.bh


196 First Author, et al.: Paper Title.. (short in one line).

obtain an instance for this playback in order to embed a
YouTube player video on the application’s user interface.
Programmatically managing YouTube videos—for example,
by using play, pause, or seek to a certain point in the loaded
video—is possible using this API.

3) Animations
The Android platform offers a variety of APIs for incor-

porating animations into applications. Animations serve as
visual indicators within the user interface during application
runtime [38]. They are commonly utilized for transitions
between screens, interactions with various widgets, and dis-
playing new content on the screen. Additionally, animations
enhance the overall aesthetic and user experience of the
application’s interface. Android includes several animation
types to increase interactivity, such as Drawable Animation,
Shared Element Transition, and Transition Animation.

6. Implementation ofMultiple Activities Topic
This section outlines the implementation of the Multiple

Activities topic, which includes the learning objectives,
application for assignments, and associated tasks complete
with test codes.

A. Learning Objectives
Developing Android applications with multiple Activ-

ities requires students to master several key components.
The focus of Multiple Activities topic is on exploring the
development of an Android application that features mul-
tiple Activities, utilizing Intent and Fragment for effective
management. Table I outlines six learning objectives that
guide students in mastering these components to create
Android applications with multiple Activities.

B. Application for Assignment
The SoccerMatch application has been created as the

assignment for the Multiple Activities topic. This applica-
tion not only emphasizes the use of multiple Activities but
also showcases a variety of widgets and Android features,
including ListView, CardView, Chronometer, Handler, Re-
cyclerView, and AlertDialog.

1) Mandatory Functions
The SoccerMatch is a real-time reporting application

tailored for SoccerMatches. Its primary purpose is to doc-
ument significant events occurring in a match involving
two teams (the home team and the away team). Data for
each team include details such as the team name, logo,
and player names. The essential match events that must be
captured include goals, yellow card infractions, and red card
penalties. Beyond these core functionalities, students have
the freedom to enhance the application by incorporating
additional features aligned with their unique ideas and
creativity.

2) Application Specifications
Every significant event that occurs during a soccer

match is captured by the SoccerMatch app, including player

TABLE I. Six learning objectives in Multiple Activities topic.

objective
(no.:name)

description

LO1: Application
Resources

Students have skills to define essential
resources in an Android project, encom-
passing colors, strings, styles, and various
other assets.

LO2: Application
Activity

Students have capability to handle mul-
tiple Activities by employing Activity,
Intent, and Fragment classes.

LO3: User Inter-
face

Students are able to create UI layouts
for Android applications using a variety
of widgets to build the application’s user
interface.

LO4: Java Class Students understand to handle and work
with principal Java classes such as Array,
Runnable, and Handler.

LO5: Android
Class

Students have adapted in using fun-
damental Android classes, including
ListView, and PopupMenu.

LO6: Event Lis-
tener

Students are able to apply event listeners
to enable user interactions with the appli-
cation.

names, team logos, goals, yellow and red cards, and player
counts. As seen in Figures 9 and 10, this application
uses three Activities with one Explicit Intent and one
Fragment for multiple activities learning. By completing
the eight objectives, this application introduces a number of
widgets and Android technologies, including Chronometer,
ListView, RecyclerView, CardView, Handler, and Runnable.
With Java programming, the students can construct the
Soccer Match Android application by completing the eight
tasks.

C. Implemented Android Components
The SoccerMatch application implements 13 main com-

ponents with some common components that are organized:

1) Application Resources
Table II presents the four implemented application re-

sources in SoccerMatch with their correlation with learning
objectives.

2) Main Classes for Multiple Activities
Table III presents the four main classes implemented

for multiple activities in SoccerMatch with their correlation
with learning objectives.

3) Widgets
Table IV presents the five implemented widgets in

SoccerMatch with their correlation to learning objectives.
They are newly introduced widgets on this topic.

http:// journals.uob.edu.bh

8

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 197

Figure 9. First Activity of SoccerMatch application.

Figure 10. Second and third Activities of SoccerMatch application.

D. Tasks
In the context of the Multiple Activities topic, eight

tasks have been designed to assist students in the step-by-
step development of the SoccerMatch application. Table V
outlines these eight tasks and their relationships to the
learning objectives.

Figure 11 depicts the source code used to launch Play-
Activity via Intent, as well as to pass data by adding
an Extra when the ’Next’ button is clicked. The testing
code is designed to confirm that the Activity that opens
is PlayActivity and that the string value associated with

’HOME TEAM NAME’ from the Extra data serves as
the title for PlayActivity.

7. Implementation ofMultimedia Resources Topic
This section outlines the development of the educational

materials pertaining to the Multimedia Resources topic.

A. Learning Objectives
This topic provides six learning objectives in Table VI

for developing an Android application that applies multi-
media resources.

http:// journals.uob.edu.bh

9

http://journals.uob.edu.bh


198 First Author, et al.: Paper Title.. (short in one line).

Figure 11. Source code to use Intent and test code to confirm its correctness.

TABLE II. Four application resources in Multiple Activities topic.

no. component(s) & description LO
1 String resource: a collection of strings used for

application.
LO1

2 Color resource: a collection of used colors for
application where each of them can be defined as
a hexadecimal value.

LO1

3 Style resource: a definition of UI style using
XML that can be applied to Activities or widgets.

LO1

4 Drawable resource: a general definition of
graphics that can be shown on screen. This com-
ponent uses several bitmap graphics and shape
drawables to make rounded buttons.

LO1

TABLE III. Four main classes in Multiple Activities topic.

no. component(s) & description LO
1 Activity: three Activities are applied in this appli-

cation, including MainActivity, PlayActivity, and
LogActivity

LO2

2 Intent: explicit Intents are used to open the three
Activities.

LO2

3 Fragment: one Fragment is applied namely
FooterFragment that is used by PlayActivity.

LO2

4 UI Layout: six UI layouts are applied to define
the layout for three Activities, a Fragment, a
ListView, and an AlertDialog.

LO3

B. Application for Assignment
The AnimalTour application is designed for the assign-

ments in this topic.

1) Mandatory Functions
The AnimalTour application serves as an informative

platform that explores the classifications of animals across

TABLE IV. Five new widgets in Multiple Activities topic.

no. component(s) & description LO
1 CardView: a card-shaped UI container with a

drop shadow called elevation and corner radius.
LO3

2 RecyclerView: a UI container to display large
sets of dynamic data. The display of data items
can be dynamically defined as UI layout.

LO3

3 ListView: a widget to display a vertical list of
several items. The list items are managed by
Adapters as an array of data sources.

LO3

4 Chronometer: a subclass of TextView that can
be used for showing clock or simple timer.

LO3

5 ImageButton: a button with an image foreground
(instead of text) that can be pressed or clicked by
the user.

LO3

the globe. It encompasses six main categories: mammals,
birds, reptiles, amphibians, fish, and invertebrates. For each
category, users can access a variety of related images, video
files, YouTube links, and informative text. The application
offers an interactive user interface, enriched with multime-
dia elements, animations, dynamic transitions, and gesture
controls, achieved through a combination of different Activ-
ity classes, event listeners, and popups. In addition to these
foundational features, students are encouraged to innovate
by integrating extra functionalities that reflect their personal
ideas and creative visions.

2) Application Specification
To integrate multimedia features, the application utilizes

four key Activities, as depicted in Figure 12. Upon selecting
the invertebrates category within MainActivity, users are
directed to InvertActivity, which showcases a GridView.
When a user taps on an image of an invertebrate in
InvertActivity, the SubInvertActivity emerges, utilizing a

http:// journals.uob.edu.bh

10

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 199

TABLE V. Eight tasks in Multiple Activities topic.

no. description LO
1 starting an SoccerMatch project

and configuring necessary re-
sources (XML and Gradle)

LO1

2 designing UI (XML) for first
Activity (MainActivity)

LO3

3 designing UI (XML) for second
Activity (PlayActivity)

LO3

5 designing UI (XML) for addi-
tional layouts (LogActivity and
Fragments)

LO3

6 developing logic (Java/Kotlin)
for first Activity (MainActivity)

LO2,LO5,LO6

7 developing logic (Java/Kotlin)
for second Activity (PlayActiv-
ity)

LO2,LO4,
LO5,LO6

8 developing logic (Java/Kotlin)
for last Activity (LogActivity)

LO4,LO5, LO6

TABLE VI. Five learning objectives in Multimedia Resources topic.

objective
(no.:name)

description

LO1: Application
Resources

Students are able to utilize application
resources within an Android project.

LO2: UI Compo-
nents

Students comprehend the process of
defining layouts for multimedia user
interfaces by incorporating diverse UI
components.

LO3: Multimedia
Components

Students have skills in employing mul-
timedia components to present images,
videos, and YouTube content.

LO4: Animations Students understand the techniques to
implement animations in Android appli-
cations.

LO5: User Events Students become adept at managing var-
ious user events such as touch and swipe
interactions.

shared element transition to create a zoom effect during
the transition between screens.

C. Implemented Android Components
The SoccerMatch application implements 13 main com-

ponents with some common components that are organized:

1) Application Resources
Table VII presents the six implemented application

resources in SoccerMatch with their correlation to learning
objectives.

TABLE VII. Six application resources in Multimedia Resources
topic.

no. component(s) & description LO
1 String resource: a collection of strings used for

application.
LO1

2 Color resource: a collection of used colors for
application where each of them can be defined as
a hexadecimal value.

LO1

3 Style resource:a definition for the UI style using
XML that can be applied to Activities or widgets.

LO1

4 Drawable resource: a general definition of
graphics that can be shown on screen.

LO1

5 Mipmap resource: a type of drawable resource
that is specifically intended for different versions
of an application’s launcher icon.

LO1

6 Anim resource: animation files that define a
series of changes or transformations that can be
applied to UI components over time.

LO1

2) Main Classes for Multimedia Resources
Table VIII presents the seven main classes implemented

for multimedia resources in AnimalTour with their correla-
tion with learning objectives.

TABLE VIII. Seven main classes in Multimedia Resources topic.

no. component(s) & description LO
1 Activity: four Activities are applied in this ap-

plication, including MainActivity, MediaActivity,
InvertActivity, and SubInvertActivity.

LO2

2 DataAdapter: a type of adapter used to bind data
animals to views, specifically in RecyclerView.

LO2

3 ItemMoveCallback: a class typically used in
conjunction with RecyclerView in Android de-
velopment.

LO2

4 GridLayout: a layout manager that allows de-
velopers to arrange UI components in a two-
dimensional grid.

LO2

5 Drawable Animation: a type of animation that
relies on a series of drawable resources (animal
images) displayed in sequence, similar to a tra-
ditional flipbook animation.

LO4

6 Transition Animation: a visual effect applied
when the user navigates from one screen to
another within an Android application (MainAc-
tivity to Media Activity).

LO4

7 Shared Element Transition: a feature to provide
a smooth visual transition between two activities
or fragments by animating a common UI element.

LO4

3) Widgets
Table IX presents the six widgets implemented in Soc-

cerMatch with their correlation with the learning objectives.

http:// journals.uob.edu.bh

11

http://journals.uob.edu.bh


200 First Author, et al.: Paper Title.. (short in one line).

Figure 12. Four Activities of AnimalTour application.

They are newly introduced widgets on this topic.

TABLE IX. Six new widgets in Multiple Activities topic.

no. component(s) & description LO
1 VideoView: one ViewView is used to display

and play related video file with mp4 format on
MediaActivity as raw resources.

LO2

2 YouTubePlayerFragment: a part of the YouTube
Android Player API, which allows develop-
ers to embed and control YouTube videos di-
rectly within their Android applications using a
fragment-based approach.

LO2

3 CardView: a card-shaped UI container with a
drop shadow called elevation and corner radius.

LO2

4 RecyclerView: a UI container to display large
sets of dynamic data. The display of data items
can be dynamically defined as UI layout.

LO2

5 VideoFlipper: a handy UI component that allows
application to switch between different views
with animation.

LO3

6 ImageView: a view that is used to display images
or drawables.

LO2

D. Tasks
Under the topic of Multimedia Resources, it is essential

to complete all eight tasks to develop the application in
alignment with the five learning objectives outlined in
Table X.

Figure 13 shows the source code to verify that the
defined transition animaton working well when moving to
another Activity. Also, the last function defines verfication
code to check the defined transition animation working well
when entering an Activity.

8. Evaluation
Evaluation of the implementation of both the Multiple

Activities topic and the Multimedia Resources topic is
discussed in this section.

TABLE X. Eight tasks in Multimedia Resources topic.

no. description LO
1 starting an AnimalTour project and

configuring necessary resources (XML
and Gradle)

LO1

2 designing UI for first Activity (Main-
Activity)

LO2

3 designing UI for second Activity (Me-
diaActivity)

LO2,LO3

4 designing UI for third Activity (Inver-
tActivity)

LO2

5 designing UI for last Activity (SubIn-
vertActivity)

LO2,LO3

6 developing logic for first Activity
(MainActivity)

LO4,LO5

7 developing logic for second Activity
(MediaActivity)

LO3,LO4,LO5

8 developing logic for third Activ-
ity (MediaActivity) and last Activity
(SubInvertActivity)

LO3,LO4

A. Evaluation Scenario
In a comprehensive evaluation strategy aimed at gaug-

ing proficiency in the Multiple Activities and Multimedia
Resources topics, a cohort of 50 students from the Informa-
tion Technology Department at an esteemed university in
Indonesia embarked on a challenging academic endeavor.
Equipped with foundational knowledge of the Android
Studio platform, these students were primed to showcase
their understanding and application of key concepts in
Android programming. The class conducted lab featuring
computers with Windows 10 OS, Intel Core i5-3470 3.2GHz
CPUs, and 8GB of RAM. Over a structured timeline of
three days, students solve the two topics sequentially, then
they comprehensively solved all tasks in sequence. Once
the students successfully tackled the assignments, the next

http:// journals.uob.edu.bh

12

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 201

Figure 13. Source code to verify the transition animation works.

step involved submitting their source codes for evaluation
on a specialized server. In the event of a student receiving
a ”FAILED” result from the server, they were granted an
opportunity to address any errors and resubmit their code
for a second chance at assessment.

B. Results on Multiple Activities Topic
The evaluation of Multiple Activities topic resulted in

the following aspects:

1) Students’ Solving Assignments
Out of the initial group of 50 students, a notable

achievement was observed as 90% of the cohort, num-
bered 45 students, successfully navigated and completed
the Multiple Activities topic within the three allocated days,
demonstrating a high level of proficiency in this area. The
ability of these students to effectively tackle the challenges
posed by this topic in their first attempt indicates a strong
grasp of the concepts and skills involved in the development
of Android applications.

The remaining five students who required a second op-
portunity to tackle the Multiple Activities topic, showcased
commendable growth and determination by successfully
resolving the tasks within an additional three-day period.
This not only indicates their resilience and dedication, but
also highlights the effectiveness of the learning process in
enabling students to enhance their proficiency in developing
more intricate Android applications.

2) Solving Time Results
Table XI provides the minimum, average, and maximum

times students took to complete each task in the Multiple
Activities topic. The time required to solve a single task
varies widely, from 6 to 150 minutes. The total time to
complete all tasks ranges from 89 to 660 minutes, with an
average time of 174 minutes.

3) Failed Task Results
Table XII outlines the difficulties experienced by five

students during their attempts. Specifically, two of them had

TABLE XI. Solving time of each task in Multiple Activities topic.

task no. fastest average longest
1 7.5 minutes 15.86 minutes 32 minutes

2 9 minutes 19.72 minutes 55 minutes

3 9 minutes 19.48 minutes 60 minutes

4 6 minutes 13.76 minutes 62 minutes

5 7 minutes 17.85 minutes 58 minutes

6 16 minutes 31.75 minutes 130 minutes

7 15 minutes 26.84 minutes 115 minutes

8 14 minutes 24.55 minutes 100 minutes

trouble with task 1, which focused on setting up the string
resource. Meanwhile, three students encountered issues with
tasks 2 and 5, both of which pertain to layout design.
Additionally, one student faced challenges in writing Java
code, especially in utilizing Intent to launch LogActivity.
Although there were errors in resource configuration and
layout design, these issues are relatively minor, as the
application remains functional despite them.

4) Task Difficulties
The average amount of time students take to complete

each task is used to determine how tough it is. The tasks are
divided into three categories: simple, medium, and difficult,
as indicated in Table XI. With an average completion
time of less than 15 minutes, assignment 4 falls into the
easy category. Its basic needs center around building the
layout for LogActivity. Tasks 1, 2, 3, and 5 fall into the
medium group; their typical completion times range from
15 to 20 minutes. The assignment begins with Task 1, with
increasingly complex layout designs found in the remaining
tasks. The difficult category includes tasks 6, 7, and 8, all of
which require over 20 minutes to complete as they involve
developing three Activities using Java.

http:// journals.uob.edu.bh

13

http://journals.uob.edu.bh


202 First Author, et al.: Paper Title.. (short in one line).

TABLE XII. Most occurred failed messages.

task #std descriptions
1 2 message: Not valid value of app name.

params: expectation <SoccerMatch >, but has
<MY SOCCER GAME>

2 2 message: The scaleType (id=addHomePlayer) in
AppCompatImageButton must be FIT END.
params: expectation <FIT END>, but has
<FIT CENTER>

2 1 message: Item text in AppCompatTextView
(id=mainTitleTxt) is incorrect.
params: expectation <APLAS SOCCER
[BOARD]>but has <APLAS SOCCER
[MANAGER]>

5 1 message: The layout of ’fragment footer.xml’
needs to be LinearLayout
params: expectation <[Linear]Layout>but
has:<[Grid]Layout>

8 1 message: an Intent can’t reach Activity
params: { cmp=.LogActivity (must have extras) }

TABLE XIII. Task difficulty levels in Multiple Activites topic.

task no. level time to solve
4 easy 10-14 minutes

1, 2, 3, 5 medium 15-20 minutes

6, 7, 8 difficult 21-35 minutes

5) Students’ Feedback
Upon submission of the answers, the students collected

comments on the Multiple Activities topic, and no negative
comments were reported.

Upon submission of the answers, the students collected
comments on the Multiple Activities topic and no negative
comments were reported.

1) Positive feedback:
• useful platform to study Android programming
• excellent e-learning tool
• praising can pass assignments
• success to pass all tasks

2) Suggestive feedback:
• must be attentive in tasks 2-5 designing UI,
• getting hard when reaching tasks 6-8
• configuring Gradle makes error
• guidance didn’t explain RestartBtn creation.
• constructing RecyclerView with Adapter is

problem
• guidance didn’t notice few styling require-

ments.

The notable comments serve as essential feedback from
the students. They indicated that most failures were due to

errors in designing the user interface, which requires careful
attention to the guide documents. Furthermore, the students
confirmed that tasks 6, 7, and 8 are particularly challenging
to solve.

6) Developed Applications
A student-developed SoccerMatch application is shown

in Figure 14; it has a different user interface than Figures 9
and 10. Although it wasn’t stated in the guide docs, this
student developed a method for entering each player’s
jersey number using an AlertDialog. Some students have
added functions including a penalty event function, a venue
information function, personalized icons and graphics, and
a welcome screen.

C. Results on Multimedia Resources
The evaluation of Multimedia Resources topic resulted

in the following aspects:

1) Students’ Solving Assignment
The evaluation revealed that all 50 students success-

fully solved the Multimedia Resources topic on their first
attempt, achieving a 100% success rate within one week.
This universal proficiency underscores the students’ ability
to comprehend and apply the principles of multimedia
resource integration in Android applications, showcasing
their mastery of more sophisticated and challenging aspects
of the curriculum. The result is particularly noteworthy
given the complexity of the subject matter, which often
poses significant challenges even for seasoned developers.

2) Solving Time Results
Students’ needed times to finish each activity are broken

down into minimum, average, and maximum values in
Table XIV. The time required to finish each job ranged
from 82 to 510 minutes, with an average of 163 minutes.
job lengths varied from 5 to 120 minutes. After completing
these four topics, students improved their knowledge of the
guide papers and their ability to program Android using
Android Studio.

TABLE XIV. Solving time of each task in Multimedia Resources
topic.

task no. fastest average longest
1 7.5 minutes 17.46 minutes 32 minutes

2 9 minutes 18.17 minutes 45 minutes

3 9 minutes 17.88 minutes 42 minutes

4 6.5 minutes 16.86 minutes 42 minutes

5 5.5 minutes 15.92 minutes 33 minutes

6 16 minutes 28.16 minutes 110 minutes

7 14 minutes 26.16 minutes 100 minutes

8 13 minutes 21.24 minutes 85 minutes

http:// journals.uob.edu.bh

14

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 203

Figure 14. SoccerMatch application interfaces by a student.

3) Task Difficulties
The average amount of time students take to finish an

assignment can be used to determine how tough it is. Tasks
are divided into easy and tough categories, as indicated in
Table XV, as explained in Table XIV. The first five tasks at
the easy level, which concentrated on starting the Android
project and creating the user interface, were finished in an
average of less than 20 minutes. On the other hand, tasks 6
through 8 in the challenging level took an average of more
than 20 minutes and focused on creating four Java activities.

TABLE XV. Task difficulty levels in Multimedia Resources topic.

task no. level time to solve
1,2,3,4,5 easy 15-20 minutes

6, 7, 8 difficult 21-30 minutes

4) Students’ Feedback
Students were asked to provide feedback on the topic

after submitting their answers. No negative comments were
received. Nonetheless, we will revise the guide documents
to enhance the learning experience for students, taking their
feedback into account.

1) Positive feedback:
• useful platform to study Android programming,
• success to pass all tasks,
• delighted making Android app,
• the application has excellent animations.

2) Suggestive feedback:
• creating layout provides minimum guidance.
• loading YouTube video takes a long time,
• configuring Gradle makes error

5) Developed Applications
Figure 15 displays an AnimalTour application developed

by a student. In contrast to Figure 12, it features different

user interfaces. Additionally, some students incorporated a
welcome screen, used custom icons and images, introduced
a new animal type, and implemented a drag-and-drop func-
tion in InvertActivity.

9. Analysis on Evaluation Results
This section discusses related findings based on eval-

uation results consisting of learning performance, learning
effectiveness, students’ opinion, and their skills in Android
application development.

A. Students’ Learning Performance
In solving the assignments on Multiple Activities topic,

45 of 50 students successfully completed the assignment on
their first submission attempt, indicating a 90% success rate
within the initial three-day period. The remaining five stu-
dents managed to solve the topic within the next three days
on their second attempt. These results highlight a signifi-
cant improvement in the student’s ability to develop more
complex Android applications compared to previous topics.
The average solving time for the Multiple Activities topic
was 174 minutes, notably better than the times recorded
for Basic UI, Basic Activity, and Advanced Widgets, which
took 216 minutes, 216 minutes, and 225 minutes on average,
respectively. This improvement suggests that students have
become more adept at understanding guide documents and
navigating the Android Studio environment.

Following the success in the Multiple Activities topic,
all 50 students successfully completed the assignments
in Multimedia Resources topic on their first submission
attempt, achieving a 100% success rate within one week.
This outcome underscores the improvements in students’
ability to handle increasingly complex Android applications.
The average solving time for the Multimedia Resources
topic was 163 minutes, the best performance compared to
the four previous topics. After mastering the earlier topics,

http:// journals.uob.edu.bh

15

http://journals.uob.edu.bh


204 First Author, et al.: Paper Title.. (short in one line).

Figure 15. AnimalTour application interfaces by a student.

students found it easier to comprehend the guide documents
and navigate the Android Studio environment, contributing
to their improved performance in the Multimedia Resources
topic.

B. Learning Effectiveness
Overall, the five implemented learning topics in APLAS

provide a comprehensive learning journey that enables
students to learn Android programming independently from
basic to advanced levels. The consistent reduction in solving
time from 216 minutes for Basic UI and Basic Activity, 225
minutes for Advanced Widgets, 174 minutes for Multiple
Activities, and 163 minutes for Multimedia Resources re-
flects the students’ enhanced efficiency and familiarity with
the Android programming environment. This structured
approach not only sparks their curiosity but also motivates
them to progressively build their skills in Android applica-
tion development. The students’ success across these topics
demonstrates their growing expertise and the effectiveness
of the APLAS framework in fostering a robust understand-
ing of Android programming. The structured approach of
the APLAS framework has effectively supported students’
progressive learning from basic to advanced levels, ensuring
their readiness for more sophisticated development tasks.

C. Skills In Application Development
Both Multiple Activities and Multimedia Resources

topics provide students with opportunities to showcase
their creativity and technical skills by allowing them to
design user interfaces and modify applications with fewer
restrictions compared to previous assignments. In the Mul-
tiple Activities topic, students demonstrated their ability
to innovate beyond the provided guidelines. For instance,
one student enhanced the SoccerMatch application by in-
corporating an AlertDialog feature to input player jersey
numbers—an addition not specified in the guide documents.

These personalized touches not only reflect the students’
growing familiarity with Android development tools but
also their willingness to explore and extend beyond basic
requirements. Similarly, the Multimedia Resources topic
further illustrates students’ ability to apply their creativity
within a flexible framework. The freedom to modify user
interfaces and incorporate personal design elements appears
to foster a deeper engagement with the material and a
stronger grasp of Android programming concepts.

10. Conclusion
This paper presented novel implementations for two

learning topics within the APLAS framework: Multiple
Activities and Multimedia Resources, both of which are
essential to the Interactive Application stage of foundational
Android programming education. These topics are designed
to facilitate self-directed learning by allowing students to
independently acquire and apply key concepts in mobile
programming. The Multiple Activities topic involves de-
veloping a SoccerMatch application, while the Multimedia
Resources topic focuses on creating an AnimalTour appli-
cation. The evaluation demonstrated substantial progress
in student proficiency. For the Multiple Activities topic,
90% of students successfully completed the assignments.
In contrast, the Multimedia Resources topic saw a 100%
success rate on the first attempt by all students, reflecting
high competence in integrating multimedia elements. The
feedback from the students was predominantly positive,
although there were suggestions for additional guidance on
technical issues and UI design.

In future research efforts, the implementation of next
topics will be continued, thereby broadening the educational
scope of APLAS. The analytical capabilities functions to
systematically assess and interpret students’ feedback will
be improved. The integration of intelligent assistance and

http:// journals.uob.edu.bh

16

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 205

auto-grading features will further augment the learning
experience.

References
[1] J. Degenhard, “Number of smartphone users worldwide from 2014

to 2029,” 2 2024. [Online]. Available: https://www.statista.com/
forecasts/1143723/smartphone-users-in-the-world

[2] K. Hsiao, “Android smartphone adoption and intention to pay for
mobile internet,” Library Hi Tech, vol. 31, 2013.

[3] K. McCullen, “An android application development class,” Journal
of Computing Sciences in Colleges, vol. 31, 2016.

[4] Y. W. Syaifudin, N. Funabiki, M. Kuribayashi, and W. C. Kao,
“A proposal of android programming learning assistant system with
implementation of basic application learning,” International Journal
of Web Information Systems, vol. 16, 2020.

[5] D. Staegemann, M. Volk, M. Perera, C. Haertel, M. Pohl, C. Daase,
and K. Turowski, “A literature review on the challenges of applying
test-driven development in software engineering,” Complex Systems
Informatics and Modeling Quarterly, vol. 2022, 2022.

[6] T. J. Team, “The 5th major version of the programmer-friendly
testing framework for java and the jvm,” 2024. [Online]. Available:
https://junit.org/junit5/

[7] “Robolectric — robolectric.org,” https://robolectric.org/, [Accessed
29-07-2024].

[8] Y. W. Syaifudin, N. Funabiki, M. Mentari, H. E. Dien,
I. Mu’Aasyiqiin, M. Kuribayashi, and W. C. Kao, “A web-based
online platform of distribution, collection, and validation for as-
signments in android programming learning assistance system,”
Engineering Letters, vol. 29, 2021.

[9] Y. W. Syaifudin, N. Funabiki, M. Kuribayashi, and W. chung Kao,
“A proposal of advanced widgets learning topic for interactive
application in android programming learning assistance system,” SN
Computer Science, vol. 2, 2021.

[10] J. Yan, H. Liu, L. Pan, J. Yan, J. Zhang, and B. Liang, “Multiple-
entry testing of android applications by constructing activity launch-
ing contexts,” in Proceedings - International Conference on Soft-
ware Engineering, 2020.

[11] M. Schnieder and S. Williams, “Educational mobile apps for pro-
gramming in python: Review and analysis,” Education Sciences,
vol. 13, 2023.

[12] P. Khanna and A. Singh, “Google android operating system: A
review,” International Journal of Computer Applications, vol. 147,
2016.

[13] C. Easttom, Android Operating System, 2021.

[14] R. Payne, Beginning App Development with Flutter: Create Cross-
Platform Mobile Apps, 2019.

[15] H. Kang and J. Cho, “Case study on efficient android programming
education using multi android development tools,” Indian Journal
of Science and Technology, vol. 8, 2015.

[16] H. F. Hanafi and K. Samsudin, “Mobile learning environment
system (mles): The case of android-based learning application

on undergraduates’ learning,” International Journal of Advanced
Computer Science and Applications, vol. 3, no. 3, 2012. [Online].
Available: http://dx.doi.org/10.14569/IJACSA.2012.030311

[17] H. A. A. Rekhawi and S. S. Abu-Naser, “Android applications ui
development intelligent tutoring system,” International Journal of
Engineering and Information Systems (IJEAIS), vol. 2, 2018.

[18] A. Roman and M. Mnich, “Test-driven development with mutation
testing – an experimental study,” Software Quality Journal, vol. 29,
2021.

[19] P. Blundell and D. Milano, Learning Android Application Testing,
ser. Community experience distilled. Packt Publishing, 2015.

[20] N. Funabiki, Y. Matsushima, T. Nakanishi, K. Watanabe, and
N. Amano, “A java programming learning assistant system using
test-driven development method,” IAENG International Journal of
Computer Science, vol. 40, 2013.

[21] J. B. Almeida, N. MacEdo, and J. Proenca, “Teaching how to
program using automated assessment and functional glossy games
(experience report),” Proceedings of the ACM on Programming
Languages, vol. 2, 2018.

[22] N. G. Berihun, C. Dongmo, and J. A. V. der Poll, “The applicability
of automated testing frameworks for mobile application testing: A
systematic literature review,” Computers, vol. 12, 2023.

[23] M. Hirzel and H. Klaeren, “Code coverage for any kind of test in any
kind of transcompiled cross-platform applications,” in INTUITEST
2016 - Proceedings of the 2nd International Workshop on User
Interface Test Automation, Co-located with ISSTA 2016, 2016.

[24] B. Sadeh and S. Gopalakrishnan, “A study on the evaluation of unit
testing for android systems,” International Journal of New Computer
Architectures and their Applications (IJNCAA), vol. 4, 2011.

[25] M. Linares-Vásquez, C. Bernal-Cárdenas, K. Moran, and D. Poshy-
vanyk, “How do developers test android applications?” in Proceed-
ings - 2017 IEEE International Conference on Software Mainte-
nance and Evolution, ICSME 2017, 2017.

[26] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo,
“Understanding the test automation culture of app developers,”
in 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation, ICST 2015 - Proceedings, 2015.

[27] J. W. Lin, N. Salehnamadi, and S. Malek, “Test automation in open-
source android apps: A large-scale empirical study,” in Proceedings
- 2020 35th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2020, 2020.

[28] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein,
“Automated testing of android apps: A systematic literature review,”
IEEE Transactions on Reliability, vol. 68, 2019.

[29] J. Wu and J. Clause, “Automated identification of uniqueness
in junit tests,” ACM Transactions on Software Engineering and
Methodology, vol. 32, 2023.

[30] G. K. Mostefaoui and F. Tariq, Mobile apps engineering : design,
development, security, and testing. Boca Raton, FL: CRC Press,
2019.

[31] A. Hussain, H. A. Razak, and E. O. Mkpojiogu, “The perceived

http:// journals.uob.edu.bh

17

https://www.statista.com/forecasts/1143723/smartphone-users-in-the-world
https://www.statista.com/forecasts/1143723/smartphone-users-in-the-world
https://junit.org/junit5/
https://robolectric.org/
http://dx.doi.org/10.14569/IJACSA.2012.030311
http://journals.uob.edu.bh


206 First Author, et al.: Paper Title.. (short in one line).

usability of automated testing tools for mobile applications,” Journal
of Engineering Science and Technology, vol. 12, 2017.

[32] Y. W. Syaifudin, I. Siradjuddin, N. Funabiki, D. Y. Liliana, A. B.
Kaswar, and M. Mentari, “An interactive learning system with
automated assistance for self-learning user interface design on an-
droid applications,” International Journal of Computing and Digital
Systems, vol. 13, pp. 1397–1407, 5 2023.

[33] Google for Developers — Activity, “Activity,” 6. [Online]. Avail-
able: https://developer.android.com/reference/android/app/Activity

[34] L. Ardito, R. Coppola, G. Malnati, and M. Torchiano, “Effectiveness
of kotlin vs. java in android app development tasks,” Information
and Software Technology, vol. 127, 2020.

[35] Google for Developers — Intent, “Intent,” 6. [Online]. Available:
https://developer.android.com/reference/android/content/Intent

[36] Google for Developers — Fragment, “Fragment,” 6. [Online]. Avail-
able: https://developer.android.com/reference/android/app/Fragment

[37] Google for Developers — YouTubePlayer API, “Youtube player
api reference for iframe embeds,” 6. [Online]. Available:
https://developers.google.com/youtube/iframe api reference

[38] Google for Developers — Animations, “Introduction to animations,”
6. [Online]. Available: https://developer.android.com/develop/ui/
views/animations/overview

http:// journals.uob.edu.bh

18

https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/app/Fragment
https://developers.google.com/youtube/iframe_api_reference
https://developer.android.com/develop/ui/views/animations/overview
https://developer.android.com/develop/ui/views/animations/overview
http://journals.uob.edu.bh

	Introduction
	Literature Review
	Android Application Development
	Tools for Learning Android Programming
	Test-Driven Development Method
	Automated Testing for Android Application

	Self-learning Assistance System for Android Programming
	Overview of APLAS
	Automatic Source Code Validation
	Online Web Platform

	Structure of Learning Materials
	Lesson Plan
	Learning objectives
	Application for assignment
	Tasks

	Package of Learning Materials
	Guide Documents
	Test codes
	Supplement files


	Multiple Activities and Multimedia Resources in Android Applications
	Overview
	Multiple Activities
	Activity
	Intent
	Fragment

	Multimedia Resources
	VideoView
	YouTubePlayer API
	Animations


	Implementation of Multiple Activities Topic
	Learning Objectives
	Application for Assignment
	Mandatory Functions
	Application Specifications

	Implemented Android Components
	Application Resources
	Main Classes for Multiple Activities
	Widgets

	Tasks

	Implementation of Multimedia Resources Topic
	Learning Objectives
	Application for Assignment
	Mandatory Functions
	Application Specification

	Implemented Android Components
	Application Resources
	Main Classes for Multimedia Resources
	Widgets

	Tasks

	Evaluation
	Evaluation Scenario
	Results on Multiple Activities Topic
	Students' Solving Assignments
	Solving Time Results
	Failed Task Results
	Task Difficulties
	Students' Feedback
	Developed Applications

	Results on Multimedia Resources
	Students’ Solving Assignment
	Solving Time Results
	Task Difficulties
	Students' Feedback
	Developed Applications


	Analysis on Evaluation Results
	Students' Learning Performance
	Learning Effectiveness
	Skills In Application Development

	Conclusion
	References

