
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail: ramakanthkp@rvce.edu.in

 http://journals.uob.edu.bh

Continuous Integration And Continuous Deployment

Pipeline using GitOps, Jenkins and ArgoCD

Dr.Ramakanthkumar P1, Dr.Pavithra H2, Mr.Mirza Baig3, Mr.Sumanth Hegde4, Mr. Furqan Abdul

Khadar Ramadurg5, Mr.Virendra Naik6

1,2,4,5,6Computer Science & Engineering, RV College of Engineering, Bengaluru, India

3SAMSUNG R&D Institute, Bengaluru, India

E-mail address: ramakanthkp@rvce.edu.in, pavithrah@rvce.edu.in , mirza.daud@samsung.com, sumanthhegde.cs19@rvce.edu.in,

furqanabdulk.cs18@rvce.edu.in, virendranaik.cs18@rvce.edu.in,

Received ## Mon. 20##, Revised ## Mon. 20##, Accepted ## Mon. 20##, Published ## Mon. 20##

Abstract: With companies incorporating agile software practices and with the increase in the number of developers collaborating on

a given product, it becomes important to automate the development pipeline (build, test and deploy). Automation helps in reducing

manual effort involved in software development, thereby increasing efficiency and making the entire system more robust. The entire

development cycle can be viewed as a process of Continuous Integration (CI) and Continuous Deployment (CD), which can be achieved

through several open-source tools. In the pipeline discussed in this paper, CI is achieved by creating a Jenkins job. Jenkins provides a

wide range of plugins, which can be used to ease the processing required in the build tasks. A successful build results in an update of

the helm chart corresponding to the application. These configuration files, which are stored in a Git repository, are constantly monitored

by the ArgoCD controller, which automatically deploys the Kubernetes components of the application to the target cluster when a

difference is observed between the state of the application as desired in the configuration files and current deployment in the target

cluster. Thus with minimal manual intervention, developers can independently make changes to a given product and the corresponding

artifacts are built and automatically deployed to production using CI/CD automation.

Keywords: Automation, CI/CD, Jenkins, plugins, Helm Chart, Kubernetes, ArgoCD

1. INTRODUCTION (HEADING 1)

With traditional software development practices like the

waterfall model, the lifecycle of the product is spanned

over a larger period of time, which allows for manual

logging of the version of the software, which is built and

released. However, with agile practices taking over the

enterprise world, the entire process has become iterative

wherein there are frequent releases with each release

targeting specific issues or client interests. Hence, time is

of the essence and the process needs to be efficient with

minimal errors involved. Thus, the sequence of steps,

which are taken to build, test and deploy the application,

needs to have minimal human involvement. Any large-

scale product life cycle generally involves multiple

environments for different purposes like development, test

and production environments. Each release may also need

a separate delivery pipeline depending on the design and

dependencies of the software. Manually monitoring the

execution of each stage and promoting to the next pipeline

stage is inefficient and unreliable. Automation of the

pipeline helps to overcome all these difficulties. Creation

of a pipeline automation generally involves steps like

Planning, Coding, and Building of the source code,

Testing, Release and Deployment. These steps can be

categorized into three distinct stages: Continuous

Integration (CI), Continuous Delivery and Continuous

Deployment (CD).

IJCDS 1571035783

1

mailto:pavithrah@rvce.edu.in
mailto:mirza.daud@samsung.com
mailto:sumanthhegde.cs19@rvce.edu.in
mailto:furqanabdulk.cs18@rvce.edu.in

2 Author Name: Paper Title …

http://journals.uob.edu.bh

Figure 1. DevOps lifecycle

Continuous Integration is the practice of automatically
integrating the code changes made by any of the multiple
contributors involved in the development of the product,
building the merged codebase and performing tests to
assert correctness before release. A Version Control
System like git helps each developer work independently
and merge his contribution with the central repository. This
repository can then be built into a logical artefact. This can
be done by containerization of the application by creating
Docker images. These images can be stored in a private
registry, which also serves the purpose of logging of the
successful build process. Validation of the software can be
done using test suites created in an automated testing
framework. Build pipelines can be developed using tools
like Jenkins where jobs can be created which define actions
necessary for the integration of the software being
developed. Advantages include availability of plugins to
easily achieve complex workflows, and the ease of creation
as Jenkins provides a declarative approach for declaring
build action steps.

Continuous Deployment is the practice wherein a change,

which successfully passes all the stages of the pipeline, is

released to the customer environment without any manual

intervention. The artifacts generated as part of the build

process are deployed as infrastructure in the client cluster

using a container orchestration system like Kubernetes.

This helps in automating tasks like rolling out new versions

of software, container management and monitoring, scaling

of infrastructure as per changing needs etc. Through this

process, developers can initiate a faster feedback loop from

the customers, as there is no waiting period for a release to

happen.

Advantages of Using Jenkins, GitOps, and ArgoCD:

Consistency: GitOps ensures that the infrastructure and
application deployments are consistent and reliable.

Auditability: All changes are tracked in Git, providing a
clear audit trail.

Scalability: Jenkins can be used to manage complex CI
pipelines, while ArgoCD scales to manage multiple
clusters and environments.

Reduced Manual Intervention: Automation reduces the

need for manual intervention, minimizing the risk of

human errors.

Implementing a CI/CD pipeline using GitOps, Jenkins, and

ArgoCD provides a robust, scalable, and automated

approach to managing software delivery. This approach

ensures that your applications are continuously tested,

built, and deployed with minimal manual effort, resulting

in faster, safer, and more reliable software releases.

2. LITERATURE SURVEY

Jenkins is an open source Continuous Integration tool

widely used for automating build and test processes.

Additionally Jenkins also provides a wide range of

plugins, which makes it possible to use Jenkins in any

given environment to execute any given, build step in the

shortest time. Plugins also increase interpretability of the

pipeline as simple calls provided in a plugin can be made

to process even complicated steps. With the rise in test

driven development (TDD)[1]automation of the testing

process would become highly beneficial to companies. A.

Deshpande et.al [2] have discussed the benefits of using

CI for testing and the advantages of automated testing over

manual testing. The paper which makes use of Jenkins

discusses the automation pipeline that is possible because

of the master slave architecture of Jenkins and how testing

can be efficiently done with the numerous plugins

available with Jenkins.

With software being utilized for different purposes in

multiple fields, its development needs to be done for

multiple sites and tested on multiple platforms. N. Seth et.

al.[3] discuss the use case of Jenkins in a real-life scenario

and how CI has been a crucial development for software

development. The paper implements CI for an embedded

system environment through which successive patches of

software are efficiently integrated and released to the

client.

Zebula Sampedro et. al., [4] illustrates how Jenkins has

been adapted to ease software maintenance of High

Performance computing (HPC) tools through high-level

procedures. The paper provides the viewpoints of both the

software architect who is creating the pipeline and a

researcher who is maintaining and utilizing the codebase

developed by the former.

Sriniketan Mysari et. al., [5] discusses an automation

system with Jenkins used for CI and Ansible used for CD.

The build process results in the creation of packaged

artifacts. Ansible is an open source platform for

configuration management. Ansible helps in provisioning

2

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 3

http://journals.uob.edu.bh

of resources for the built artifacts and can be run on the

Jenkins node itself and remote access is also provided.

Valentina Armenise et. al., [6] put forward how Jenkins,

which is conventionally used for CI, has been extended to

perform continuous delivery. The paper highlights how

automation of product release and distribution could be

achieved thereby unifying all the automation tasks in a

single platform. The issues, which need to be addressed to

efficiently monitor and achieve maximal output, are also

discussed.

The main step in CI is building the source code. With the

rise of microservice architecture, developers have started

packaging applications as containers. Docker [7] is a

platform, which enables the creation, storage and shipping

of these containers. Containerization of the source

application can be achieved using the Docker plugin

available in Jenkins.

With the widespread adoption of containers, there comes

a need to manage the containers in a sophisticated manner.

Different products have different dynamic requirements

and the number of containers can itself be a huge number.

Hence, manual monitoring and maintaining of the

containers becomes a highly inefficient process.

Kubernetes is an open source platform, which helps in the

orchestration of these containers and helps in automating

the processes of monitoring and resource provisioning [8],

deployment and scaling of applications as per the

requirements.

Tesliuk et. al.,[9] present an efficient system making use

of kubernetes infrastructure for data analysis. They

efficiently deploy the application for each independent

data payload and illustrate the advantages of Kubernetes.

L. Abdollahi Vayghan et. al.,[10] have experimented with

deploying microservice based applications with

Kubernetes. The paper highlights the results of how

availability of the application varies with the configuration

of the infrastructure.

Helm is a package manager of Kubernetes, which is highly

useful as the complexity of Kubernetes [12] components

increases. This tool is most useful when there is a high

level of pattern and redundancy in configuration

requirements of Kubernetes components. Helm charts

streamline the process of deployment and managing

Kubernetes apps. S. Gokhale et al., [11] make use of an

experimental setup to compare how effective helm charts

are for the deployment of enterprise level applications.

They note that there is a considerable improvement in time

taken for deployment and the maintenance process is

simplified.

Fowler, M. [14] . In his seminal work on Continuous

Integration, Martin Fowler describes CI as a practice

where developers frequently integrate their code into a

shared repository, which is then automatically tested. This

practice aims to identify integration issues early,

improving software quality and reducing time to market.

Shahin, M., Babar, M. A., & Zhu, L. [15]. The authors

analyze various CI/CD practices and their impacts on

software quality. They highlight the challenges in

implementing CI/CD, such as tool integration, and

emphasize the need for automated pipelines to reduce

human errors and accelerate delivery.

Weaveworks [16]. GitOps, a term coined by Weaveworks,

is a set of practices that uses Git as the source of truth for

the entire system's desired state. The article introduces the

concept of GitOps, emphasizing its role in simplifying

operations and improving the reliability of CI/CD

pipelines. It discusses how GitOps leverages existing

CI/CD tools to automate infrastructure management and

application deployment.

Pena, M. [17]. The paper provides an in-depth analysis of

how GitOps can be integrated into traditional CI/CD

pipelines. It compares GitOps with Infrastructure as Code

(IaC) approaches and highlights the benefits of using

GitOps for managing Kubernetes environments, including

version control, auditability, and improved collaboration

between development and operations teams.

Hilton, M., Tunnell, T., Huang, K., Marinov, D., & Dig,

D. [18]. This study investigates the adoption of

Continuous Integration practices, focusing on Jenkins as a

widely used tool. It discusses the challenges organizations

face in adopting Jenkins, including plugin management

and pipeline complexity. The paper concludes that while

Jenkins is a powerful tool, its effectiveness depends on

proper configuration and management.

Fitzgerald, B. [19]. This article highlights Jenkins' role in

automating CI/CD pipelines. It examines Jenkins'

flexibility in integrating with various tools and platforms,

making it an ideal choice for diverse development

environments. The paper also explores the concept of

Pipeline as Code and how Jenkins facilitates versioning

and managing CI/CD pipelines as code.

Argo Project [20]. The ArgoCD documentation provides

an overview of ArgoCD as a GitOps-based continuous

delivery tool for Kubernetes. It explains how ArgoCD

automates the deployment of applications by

synchronizing the live state of applications with the

desired state defined in Git repositories. The

3

4 Author Name: Paper Title …

http://journals.uob.edu.bh

documentation also discusses ArgoCD's features, such as

automated rollbacks, multi-cluster management, and

integration with existing CI/CD tools like Jenkins.

Brikman, Y. [21]. The author explores the practical

implementation of ArgoCD in a Kubernetes-based

environment. The paper discusses how ArgoCD

complements CI/CD pipelines by providing continuous

monitoring and automated synchronization of application

states. It also highlights the benefits of using ArgoCD for

managing microservices architectures and multi-cloud

deployments.

Netflix Technology Blog [22]. This blog post discusses

how Netflix adopted GitOps and ArgoCD to manage its

large-scale, multi-cloud infrastructure. The post outlines

the challenges Netflix faced with traditional CI/CD

practices and how GitOps and ArgoCD helped streamline

their deployment processes, improve scalability, and

enhance system reliability.

Intuit Engineering [23]. Intuit's engineering team provides

a case study on implementing GitOps using Jenkins and

ArgoCD. The paper discusses how Intuit integrated these

tools to create a fully automated CI/CD pipeline for their

Kubernetes-based applications. The case study highlights

the benefits of using GitOps principles, such as reducing

deployment times and increasing deployment frequency.

Rahman, M. A., & Williams, L. [24]. The paper identifies

the challenges of adopting GitOps, Jenkins, and ArgoCD

in CI/CD pipelines, including the complexity of tool

integration, the learning curve for development teams, and

the need for robust security practices. It also suggests

future research directions, such as improving the

scalability of GitOps-based pipelines and enhancing the

integration between CI/CD tools.

Xu, Y., & Bass, J. M. [25]. This paper explores the future

of CI/CD pipelines, focusing on the evolution of GitOps

and its potential to simplify operations and improve

collaboration between development and operations teams.

The authors suggest that future CI/CD pipelines will likely

integrate AI and machine learning to further automate

decision-making processes and enhance pipeline

efficiency.

Figure 2. Systems Architecture

4

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail: ramakanthkp@rvce.edu.in

 http://journals.uob.edu.bh

The literature surveyed demonstrates that GitOps, Jenkins,

and ArgoCD are powerful tools that significantly enhance

CI/CD pipelines. GitOps provides a robust framework for

managing infrastructure and application deployments

through version control, while Jenkins offers a flexible

automation server that integrates well with various tools.

ArgoCD complements these by providing continuous

delivery capabilities tailored for Kubernetes

environments. Together, these tools enable organizations

to implement highly automated, reliable, and scalable

CI/CD pipelines, leading to faster and more frequent

software releases.

3. METHODOLOGY

Creating a Continuous Integration (CI) and Continuous

Deployment (CD) pipeline using GitOps, Jenkins, and

ArgoCD involves several steps. Below is a high-level

guide to building such a pipeline.

The automation proposed here is based on the Gitops[13]

principle where git acts as the single source of truth. The

infrastructure required for the application is represented

using configuration files, which are stored on a version

control system like github. This helps in logging the

infrastructure details in a structured manner, which can be

used to roll back to a stable version of the software in case

of any failures. Additionally it eases the process of

automation of infrastructure provisioning.

A Jenkins server is set up and a job is created for all the

projects to be built. Since a custom declarative pipeline is

being used, automatic polling to recognize any changes in

the source repository is achieved by associating the job

with a web hook created on the repository. Thus, when a

developer pushes code, a request is sent to the Jenkins

server, which then is routed to the required job where the

pipeline is triggered.

Additionally, a builder repository and helm chart

repositories are also maintained on git as shown in Figure.

3. The builder repo is essentially a YAML file which

contains all the necessary information for the entire CI/CD

pipeline like paths of source codes, name of the repository

on the cloud registry where the built image has to be

stored, tags for the desired image, namespace in which the

application needs to be deployed, helm chart repository

paths and any other infrastructure configuration

information. The helm chart repo consists of template

configuration files for Kubernetes components and a

value.yaml file, which injects the actual values into the

placeholders in the template files.

Developer pushes code, a request is sent to the Jenkins

server, which then is routed to the required job where the

pipeline is triggered.

Additionally, a builder repository and helm chart

repositories are also maintained on git as shown in Figure.

3. The builder repo is essentially a YAML file which

contains all the necessary information for the entire CI/CD

pipeline like paths of source codes, name of the repository

on the cloud registry where the built image has to be

stored, tags for the desired image, namespace in which the

application needs to be deployed, helm chart repository

paths and any other infrastructure configuration

information. The helm chart repo consists of template

configuration files for Kubernetes components and a

values.yaml file, which injects the actual values into the

placeholders in the template files.

A Jenkins server is set up and a job is created for all the

projects to be built. Since a custom declarative pipeline is

being used, automatic polling to recognize any changes in

the source repository is achieved by associating the job

with a web hook created on the repository. Thus when a

The Jenkins pipeline is divided into stages: cloning of the

source code repository whose path is obtained from the

builder repository, building the Docker image for the

source code based on a predefined Docker file (which is

decided based on the tech stack used in the project),

pushing the built image to the desired cloud registry and

updating the image information in the values. yaml file in

the helm chart repository. Private git repositories cannot

be read or updated without authorization. Public

repositories on the other hand, can be cloned but cannot be

updated. Thus for authorization purposes, auth tokens are

created and are stored in Jenkins credentials. Jenkins

provides a plugin which authenticates with github and

within whose call scope, clone and commit operations can

be made to the corresponding repository.

If the image is pushed to a private repository, then ArgoCD

will not be able to pull images from the container registry

and deploy the application to the target cluster. As part of

the update stage in the Jenkins pipeline, a token is

5

6 Author Name: Paper Title …

http://journals.uob.edu.bh

generated using the AWS plugin, which enables the image

to be pulled. This token is stored in the helm repository as

a Kubernetes Secret. This secret is referenced in other

Kubernetes components, which have to pull the desired

image. As the token is valid only for a period of 12 hours,

a cronjob can be set up to update the secret every 12 hours.

Figure 3. Proposed System

6

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail: ramakanthkp@rvce.edu.in

 http://journals.uob.edu.bh

Continuous deployment is achieved using ArgoCD, which

follows the GitOps pattern. Each helm repository, which

is to be monitored, is associated with an argo application.

As a pre-configuration step, the local Kubernetes cluster

in which the ArgoCD server exists is connected to all the

external cloud clusters in which a deployment might be

necessary. Thus, each argo application is connected to its

respective target cluster. With the successful completion

of the Jenkins job, a new commit is made to the helm

repository. The ArgoCD controller which continuously

polls all the argo applications (those which have been

configured with automatic sync policy) recognizes the

new commit and compares the state of the target cluster

and that of the state which is defined in the helm

repository. A deployment is triggered in the case where the

states are different.

Summary Workflow

Developer Workflow:

 The developer pushes code to a feature branch.

 Jenkins pipeline is triggered to run tests and build

the application.

 Upon successful build, the application is

containerized, and the Docker image is pushed to

a registry.

CI/CD Pipeline:

 Jenkins updates the Git repository with new

manifests.

 ArgoCD detects changes in the Git repository.

 ArgoCD synchronizes the Kubernetes cluster to

match the desired state defined in Git.

Deployment:

 The application is deployed to the Kubernetes

cluster.

 Monitoring and logging tools keep track of the

application's health and performance.

Tools Summary:

 Jenkins: Automates the CI process.

 ArgoCD: Manages the CD process via GitOps.

 Git: Acts as the single source of truth for the

application's desired state.

This pipeline provides an efficient, automated, and robust

CI/CD process, leveraging the strengths of GitOps for

infrastructure management and the flexibility of Jenkins

for CI.

7

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail: ramakanthkp@rvce.edu.in

 http://journals.uob.edu.bh

Figure 4. ArgoCD application, which polls the helm repository and automatically synchronizes the target cluster with the desired changes

3. RESULTS

Jenkins requires a manual triggering of a job for the very

first time. Apart from that, the entire development to

deployment process has been achieved with minimal

manual effort.

Figure 5. Source code commit, the repository has a webhook, which is triggered whenever any commit is made.

Figure 6. Jenkins pipeline with 6 stages executed successfully.

8

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail: ramakanthkp@rvce.edu.in

 http://journals.uob.edu.bh

Figure 7. Deployed application

As shown in Figure. 7, the application being deployed is a

react application with the data being fetched from

Mongodb in the backend application, which is a

dependency. A list of dockerfile templates is maintained

for all the applications, which are currently being provided

to the client. Thus, map each application to one of these

predefined templates. Both the main application and the

dependency trigger independent pipelines, which result in

separate builds. The artifacts are linked at the time of

deploying of the infrastructure.

Once a new commit is made as in Figure. 5, a jenkins job

is triggered. The source code is cloned using the git plugin.

The image is built using the docker plugin according to the

blueprint of the dockerfile. The aws plugin is used to push

the image to the ECR registry. Finally, update the helm

repository by cloning and making the required changes in

the values. yaml file using the utility plugin. This triggers

deployment to the target cluster. The target cluster is

identified via information like the cluster region, GCP

project ID etc obtained through the builder repository. The

context of the cluster is available by authenticating with

gcloud cli and fetching the credentials for the target

cluster. This results in the context information being

added to the local kube.config file which can be made

accessible to the ArgoCD controller using argo-cli add

context command.The built application is accessible

through the service created as part of the configuration.

The application is shown in Figure 7. The health of the

various components of the application is also

automatically monitored in ArgoCD, which is visible in

the dashboard as shown in Figure. 4.

By maintaining a global configuration file, the manual task

of providing all the information at various stages of the

build process has been eliminated. The manual process of

configuring Kubernetes components also has been reduced

significantly by using helm charts with placeholders,

especially for single deployment applications with no

networking between components. As the Gitops

methodology is being used, the entire infrastructure is

systematically logged in the git repository, hence we can

easily shift between different versions of infrastructure,

and hence the system becomes more reliable.

ArgoCD applications have the property of multi-tenancy.

This can be used to introduce a checkpoint in the

automation pipeline where a manual checking can be done

before the product is released to the customer. The build

from jenkins can be updated in a secondary branch. By

having ArgoCD deploy to a test cluster, the infrastructure,

which would be provided to the customer, can be verified

from an authorized personnel. The branch can then be

merged to the master branch, which would automatically

trigger the deployment to the desired client cluster.

4. CONCLUSION AND FUTURE WORK

In this paper, an automation pipeline has been proposed

making use of open-source tools like Jenkins and ArgoCD.

9

10 Author Name: Paper Title …

http://journals.uob.edu.bh

The manual efforts, which are conventionally required for

building and deploying applications, have been reduced by

making use of a builder repository and the features of the

CI/CD tools. The blueprint for the Docker images are also

coupled with the application code, which enables easy

building of the application. By following the GitOps

pattern, the entire infrastructure is maintained as code in

the form of Helm charts, which can easily be mapped to

logical artifacts.

In future enhancements, the entry point for the automation

could be extended to include Jira tickets from which the

required information can be extracted to trigger the

pipeline. The pipeline could also be modified to download

compressed source packages in addition to cloning code

from repositories.

ACKNOWLEDGMENT

This work is carried out as part of SAMSUNG Prism
project. Thanks to SAMSUNG Research India.

REFERENCES

[1] A. S. Dookhun and L. Nagowah, "Assessing The Effectiveness Of

Test-Driven Development and Behavior-Driven Development in an
Industry Setting," 2019 International Conference on Computational
Intelligence and Knowledge Economy (ICCIKE), 2019, pp. 365-
370, doi: 10.1109/ICCIKE47802.2019.9004328.

[2] A. Deshpande, S. V. Veenadevi and S. Aleti, "Test Automation and
Continuous Integration using Jenkins for Smart Card OS," 2021
12th International Conference on Computing Communication and
Networking Technologies (ICCCNT), 2021, pp. 01-05, doi:
10.1109/ICCCNT51525.2021.9580021.

[3] N. Seth and R. Khare, "ACI (automated Continuous Integration)
using Jenkins: Key for successful embedded Software
development," 2015 2nd International Conference on Recent
Advances in Engineering & Computational Sciences (RAECS),
2015, pp. 1-6, doi: 10.1109/RAECS.2015.7453279.

[4] Zebula Sampedro, Aaron Holt and Thomas Hauser, “Continuous
Integration and Delivery for HPC,” Practice and Experience in
Advanced Research Computing, pp. 22-26, 2018

[5] S. Mysari and V. Bejgam, "Continuous Integration and Continuous
Deployment Pipeline Automation Using Jenkins Ansible," 2020
International Conference on Emerging Trends in Information
Technology and Engineering (ic-ETITE), 2020, pp. 1-4, doi:
10.1109/ic-ETITE47903.2020.239.

[6] Valentina Armenise, “Continuous Delivery with Jenkins,”
IEEE/ACM 3rd International Workshop on Release Engineering,
pp. 24-27, 2015.

[7] V. Sharma, H. K. Saxena and A. K. Singh, "Docker for Multi-
containers Web Application," 2020 2nd International Conference
on Innovative Mechanisms for Industry Applications (ICIMIA),
2020, pp. 589-592, doi: 10.1109/ICIMIA48430.2020.9074925.

[8] E. Kim, K. Lee and C. Yoo, "On the Resource Management of
Kubernetes," 2021 International Conference on Information
Networking (ICOIN), 2021, pp. 154-158, doi:
10.1109/ICOIN50884.2021.9333977.

[9] A. Tesliuk, S. Bobkov, V. Ilyin, A. Novikov, A. Poyda and V.
Velikhov, "Kubernetes Container Orchestration as a Framework for
Flexible and Effective Scientific Data Analysis," 2019 Ivannikov

Ispras Open Conference (ISPRAS), 2019, pp. 67-71, doi:
10.1109/ISPRAS47671.2019.00016.

[10] L. Abdollahi Vayghan, M. A. Saied, M. Toeroe and F. Khendek,
"Deploying Microservice Based Applications with Kubernetes:
Experiments and Lessons Learned," 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), 2018, pp. 970-973,
doi: 10.1109/CLOUD.2018.00148.

[11] S. Gokhale et al., "Creating Helm Charts to ease deployment of
Enterprise Application and its related Services in Kubernetes,"
2021 International Conference on Computing, Communication and
Green Engineering (CCGE), 2021, pp. 1-5, doi:
10.1109/CCGE50943.2021.9776450.

[12] S. Telenyk, O. Sopov, E. Zharikov and G. Nowakowski, "A
Comparison of Kubernetes and Kubernetes-Compatible
Platforms," 2021 11th IEEE International Conference on Intelligent
Data Acquisition and Advanced Computing Systems: Technology
and Applications (IDAACS), 2021, pp. 313-317, doi:
10.1109/IDAACS53288.2021.9660392.

[13] S. Gupta, M. Bhatia, M. Memoria and P. Manani, "Prevalence of
GitOps, DevOps in Fast CI/CD Cycles," 2022 International
Conference on Machine Learning, Big Data, Cloud and Parallel
Computing (COM-IT-CON), 2022, pp. 589-596, doi:
10.1109/COM-IT-CON54601.2022.9850786.

[14] Fowler, M. (2006). Continuous Integration. ThoughtWorks.

[15] Shahin, M., Babar, M. A., & Zhu, L. (2017). Continuous
Integration, Delivery, and Deployment: A Systematic Review on
Approaches, Tools, Challenges, and Practices. IEEE.

[16] Weaveworks (2017). GitOps - What you need to know.

[17] Pena, M. (2020). Integrating GitOps into Continuous
Integration/Continuous Deployment Pipelines.

[18] Hilton, M., Tunnell, T., Huang, K., Marinov, D., & Dig, D. (2016).
Continuous Integration Needs Continuous Testing: A Study of CI
Usage in Open-Source Projects. ACM.

[19] Fitzgerald, B. (2015). Jenkins: The Definitive Guide. O'Reilly
Media.

[20] Argo Project (2018). ArgoCD Documentation.

[21] Brikman, Y. (2020). ArgoCD: Implementing Continuous Delivery
with GitOps.

[22] Netflix Technology Blog (2019). How Netflix Leverages GitOps
for Multi-Cloud Deployment.

[23] Intuit Engineering (2020). CI/CD at Scale with Jenkins and
ArgoCD.

[24] Rahman, M. A., & Williams, L. (2019). Challenges and Best
Practices in Adopting Continuous Delivery. IEEE.

[25] Xu, Y., & Bass, J. M. (2021). The Future of Continuous Delivery:
Beyond Pipelines. IEEE.

Dr Ramakanth Kumar P is a

Professor and HOD in the Computer

Science and Engineering

department at RVCE. His research

interests are Digital Image

Processing, Pattern Recognition and

Natural Language processing. He

has published over 100 research

papers. He has executed several

funded research and consultancy

projects sponsored by DRDO,

ISRO, AICTE, GE India Pvt.Ltd,

CABS, HP, Nihon Communication

 Solutions Pvt.Ltd etc.

10

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 11

http://journals.uob.edu.bh

Dr.Pavithra H Assistant Professor

in the Computer Science and

Engineering department at

RVCE.Her research interests are

Software Defined Networks,

Machine Learning, Deep Learning,

Software Engineering. She has

executed projects sponsored by

Samsung, ToyotO etc.

Mirza Abu Daud Baig is an

Architect at Samsung R&D Institute

India, Bengaluru

Sumanth Hegde is a student at

CSE, RV College of Engineering,

Bengaluru.

Furqan Abdul Khadar Ramadurg

is a student at CSE, RV College of

Engineering, Bengaluru.

Virendra Naik is a student at CSE,

RV College of Engineering,

Bengaluru.

11

