
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  
11	  
12	  
13	  
14	  
15	  
16	  
17	  
18	  
19	  
20	  
21	  
22	  
23	  
24	  
25	  
26	  
27	  
28	  
29	  
30	  
31	  
32	  
33	  
34	  
35	  
36	  
37	  
38	  
39	  
40	  
41	  
42	  
43	  
44	  
45	  
46	  
47	  
48	  
49	  
50	  
51	  
52	  
53	  
54	  
55	  
56	  
57	  
60	  
61	  
62	  
63	  
64	  
65	  

International Journal of Computing and Digital Systems
2024, VOL. 17, NO. 1, 1–10

http://dx.doi.org/10.12785/ijcds/XXXXXX

Development of a Federated Platform for Accessible
AI-Assisted Photo Editing

Oromidayo Owolabi1 and Victoria Oguntosin1

1Department of Electrical and Information Engineering, Covenant University, Ota, Ogun State, Nigeria

Received XX XXXX 2024, Revised XX XXXX 2024, Accepted XX XXXX 2024

Abstract: The rapid advancements in generative artificial intelligence have led to growing demand for accessible and open-source tools
that enable users to create and edit images using AI models. However, the high computational requirements and limited variety of
models offered by existing applications pose significant barriers to entry. This paper presents a novel federated system of open-source
queue servers that connects user clients to GPU clients, allowing users to host, modify, and share AI models freely. The system
incorporates a generalisation layer for handling various tasks, a federation protocol for forwarding user requests to appropriate queue
servers, and a trust-based priority scheduling scheme for managing bad actors. Experimental results demonstrate the effectiveness of the
proposed system in enhancing accessibility and efficiency in generative art. The developed federated network and queue servers have
potential applications beyond photo editing, creating new possibilities for collaborative and decentralised AI-assisted content creation.
The methodology for this study involves several stages of development to create a fully functioning federated platform for photo editing
using AI models. The first stage focuses on the development of a queueing system, which is built using Python, Flask, and WebSockets
for communication. The second stage will involve the creation of a client GPU server, which is built using Python, Flask, and SocketIO.
In the third stage, a frontend photo editing application is developed using React.js. To ensure that the system can support multiple
generative AI models, a Generalization Layer for job execution is created in the fourth stage. The fifth stage involves the development
of a federated protocol for server-server communication. Strategies are implemented in the sixth stage to limit bad actors in the system.

Keywords: Federated Platform, AI democratization, Photo Editing

1. INTRODUCTION
In recent years, the rapid advancement of technology has

led to significant changes in the way we live and work. One
area that has seen particularly rapid development is artificial
intelligence (AI), which has become increasingly powerful
and capable in a wide range of tasks. The rise of AI systems
has led to the development of new technologies that have
surpassed traditional software engineering in some sectors,
such as computer vision and natural language processing.

One particularly interesting application of AI technology
is in the realm of generative art, in which AI algorithms
can be used to create original images and designs that are
not possible with traditional software. These AI-generated
artworks have become increasingly popular and effective,
and have even won art competitions. Generative AI systems
are able to create unique and original artworks by using
complex algorithms to generate variations in the output
based on a set of parameters either conditionally or uncon-
ditionally. These systems are able to produce a wide range
of artistic styles, from photo-realistic images to abstract

patterns and designs, by being trained on a vast range of
images, such as the LAION-5B dataset [1].

The use of AI in generative art applications often
requires a substantial amount of computing power, which
can be difficult for some users to access. This has been
resolved with the existence of paid web and mobile appli-
cations which perform these computations in their servers.
However, as these applications abstract away the compute,
they also restrict the available models the person can use
and their control over them. This has led to a potential
demand for a federated platform that will enable users to
host, edit, and broadcast these models for the benefit of
others while maintaining total transparency. Such a platform
would enable users to create and edit images using AI
algorithms, without centralized restrictions or the need for
powerful computers or specialized hardware.

In order to address this problem and create a federated
AI-powered photo editing application, it is necessary to
develop open-source queue servers. These queue servers
will exist to connect the user clients of the photo editing

E-mail address: author 1, author 2, author 3

IJCDS 1571071607

1

http://dx.doi.org/10.12785/ijcds/XXXXXX


2 Owolabi, et al.

application with task-executing GPU clients. By combining
the queue servers through a federated network and a photo
editing application, we will have a powerful and accessible
tool for creating and editing photos.

This study is focused on creating a federated platform
for photo editing using AI models. This has the potential to
provide a number of benefits, including increased freedom
on the part of the users and access to compute resources. By
making the platform open, users are able to host and make
changes to the AI models they are using without having
to pay anyone, which can help to reduce the barriers to
entry for using advanced AI technology in photo editing.
Additionally, by allowing users to share their models and
improvements with others, the platform has the potential to
grow and evolve at the pace of AI research, leading to a
wide range of new features and capabilities. This can help
to make the platform more useful, as well as making it
more resilient to changes in the broader AI landscape by
not being reliant on certain models or ways of doing things,
but instead creating a generalized platform that keeps being
useful even with the changes.

AI and generated imagery are on the rise for illustra-
tion and photo editing. Currently, the accessibility and the
tooling available for these models make them not as widely
used. This is due to computing requirements, lack of open-
source tooling, and programming experience required to
use less widely spread models, among other things. As
photography and digital art were great leaps in the evolution
of art, generative art could be next great leap but its tooling
is still in the early stages.

Currently, the use of advanced AI technology in photo
editing is limited by the computing requirements, lack of
tooling and lack of awareness of applications by the general
population. The companies that manage to bridge this gap
do not provide access to a wide range of models due to
economic reasons, such as the effort required to train, fine-
tune, and market these products to consistently produce
high-quality results [2], [3], [4]. This limits the ability of
individuals and organizations to take advantage of the latest

AI models and capabilities, and can prevent the wider
adoption of these technologies. This research aims to ad-
dress this problem by creating a federated platform for
photo editing using AI models, which will enable anyone
to host, use, and make changes to the models freely. This
will reduce the barriers to entry for using advanced AI
technology in photo editing, and will facilitate the growth
and evolution of the platform through the sharing of models
and improvements among users.

This study is aimed at creating a federated platform
for photo editing using AI models. This aims to increase
access to and the proliferation of AI models while enabling
privacy, freedom and trust. The objectives of this study are
to: Develop a generalizable interface that supports multiple
AI models for photo editing; Develop a queueing system

Figure 1. System Block Diagram

and connection model that allows for these models to be
seen and used by others; Develop a queue server that
implements the connection model, an authentication system
and a federated protocol for server-server communication;
Develop a frontend application for photo editing with these
models, to showcase the ability of the system to run on low-
powered devices, while also being flexible to allow any of
the models to be used within it; Deploy the queueing servers
and frontend application to the cloud.

The federated network and queue servers that is de-
veloped is usable in other context than photo editing. An
example would be a network of scientists who wish to allow
others use their computationally intensive models through
the queue servers to foster scientific research. The method-
ology for this study (Figure 1) involves several stages of
development to create a fully functioning federated platform
for photo editing using AI models. The first stage focuses
on the development of a queueing system, which is built
using Python, Flask, and WebSockets for communication.
The second stage involves the creation of a client GPU
server, which is built using Python, Flask, and SocketIO.
In the third stage, a frontend photo editing application is
developed using React.js. To ensure that the system can
support multiple generative AI models, a Generalization
Layer for job execution is created in the fourth stage.
The fifth stage involves the development of a federated
protocol for server-server communication. Strategies are
then implemented in the sixth stage to limit bad actors in
the system. After development and testing, the queueing
system is deployed on Linode while the frontend application
is deployed on Vercel.

2. LITERATURE REVIEW
Generative art, the algorithmic generation of novel im-

ages, audio, and other media, has rapidly advanced along-
side breakthroughs in artificial intelligence. Specifically,
generative adversarial networks (GANs) [5] and diffusion
models [6] have demonstrated impressive creative capabil-
ities in recent years, now matching or exceeding human
levels for various aesthetic dimensions. Systems like DALL-
E 2, Stable Diffusion, and Imagen can synthesise striking
high-resolution visuals from text prompts that approach
professional quality across manifold styles and subjects.

More recently, there has been an explosion in novel ways
for training new models with lower compute requirements,
using techniques such as textual inversion [7] and LoRA
(Low Rank Adaptation) [8] to further fine-tune these base
models. With increased interest in the field, more base

2



International Journal of Computing and Digital Systems 3

models have been made available, from Stable Diffusion XL
and Stable Diffusion Turbo to AnalogDiffusion and Pix2Pix.
There has also been an increase in modes of interaction
with these models, from textual prompting and negative
prompting, to ControlNet, outpainting, img2img diffusion,
and inpainting methods.

This explosion of creative AI has spawned promising
new applications in domains like marketing, game develop-
ment, and concept art that were previously costly or con-
strained for independent creators. However, most existing
services rely on proprietary platforms with limited control,
restrictive content policies, and costly pricing models as
they aim to recoup operational resources. Even with recent
bursts in the availability of open-source tooling and models
for generative art, there is still a gap in accessibility for
those who do not have the computing resources to run
these models, and also those who wish to experiment with
other models and workflows to keep up with this rapid pace
without wasting resources and effort.

Diffusion models [6] are a class of generative models
that are based on an iterative process of synthesising images
by gradually refining them through a series of steps. They
are probabilistic models that are designed to learn a data
distribution p(x) by iteratively denoising a normally dis-
tributed variable. They have achieved high performance in
tasks such as image synthesis, conditional image synthesis,
super resolution, inpainting and colorization. More recently,
latent diffusion models [9] have gained attention in the field
of deep learning. Latent diffusion models are a type of
diffusion model that incorporate latent variables, which are
hidden or unobserved variables that are thought to influence
the behaviour of the system being studied. These models
improve the efficiency of training and sampling in denoising
diffusion models without compromising the quality of the
generated samples.

Generative Adversarial Networks (GANs) [5] are a class
of generative models that use a two-part neural network
to generate synthetic images that are similar to a given
set of training data. The GAN architecture consists of the
generator and the discriminator, which learn simultaneously.
The generator attempts to replicate the underlying distri-
bution of real samples and generates new data samples.
The discriminator is typically trained as a binary classifier,
with its aim to accurately distinguish between real samples
and the generated samples [10]. The training process for a
GAN involves optimising the parameters of the generator
and discriminator through an adversarial process, with the
generator trying to generate realistic-looking images and
the discriminator trying to distinguish between real and
synthetic images using a minimax optimization process to
reach equilibrium. The training process continues until the
generator and discriminator reach an equilibrium, at which
point the GAN is able to generate synthetic images that are
indistinguishable from the real images.

GANs have been widely used for a variety of image
generation tasks, including image synthesis, image style
transfer, and image super-resolution. They have also been
applied to other fields such as speech synthesis [11], where
they have achieved promising results. Some examples of
applications for GANs in image generation include: Image
synthesis, Image style transfer [12], Image super-resolution
[13] and Face restoration [14].

Federated software systems consist of independent
servers that have a shared communication protocol, ef-
fectively creating a union. To achieve this, two layers of
communication are implemented. The first is the client-
server communication protocol which ensures basic client-
server interaction, and the second one, which allows these
servers to interface with each other is the server-server
protocol. This allows clients to communicate with clients on
other servers through message-passing by the server-server
protocol. Examples of such protocols are SMTP (Simple
Mail Transfer Protocol) and the ActivityPub protocol, which
powers decentralised alternatives of social editing apps such
as Facebook, YouTube and Twitter, with its alternatives
Friendica, Peertube and Mastodon.

A distributed system [15] is a group of independent
computing elements that work together as a single, unified
system. These systems can include a variety of nodes with
different computational capabilities. The key principle is
that the nodes can function independently of one another.
However, if the nodes do not interact with each other, then
there is no point in having them in the same distributed
system. Typically, nodes are programmed to work towards
a common goal, which is achieved through the exchange of
messages between them. A node will respond to incoming
messages, process them, and then initiate further commu-
nication through message passing. Decentralised systems
[16] are distributed systems that do not rely on a central
authority or a single point of failure, enabling them to be
more resilient and scalable than centralised systems. They
are often characterised by their distributed nature, their use
of peer-to-peer (P2P) communication, and their reliance on
consensus mechanisms to ensure the integrity and security
of the system. In this case, each of the computers is a user
agent and there are hardly any centralised servers maintain-
ing connections between users. BitTorrent [17], Ethereum
[18], and Mastodon [19] are examples of decentralised
services that have gained widespread adoption and have
had a significant impact. Federated systems have found
applications in various domains, including cloud computing
environments where load balancing algorithms have been
developed to optimize resource allocation [20] [21].

As the number of users of decentralised and federated
platforms increase, there are many positive effects, such as
more nodes to interact with, and in the case of federated
systems, a larger and less centralised network due to the
number of active servers. But there are also some negative
effects. Due to the lack of centralised control of these sys-

3



4 Owolabi, et al.

tems, they become harder to self-moderate. An increase in
the number of users of the platform will lead to an increase
in the number of bad actors in the system, making the
network less welcoming to users. In this section, methods of
moderating these systems so they are beneficial for everyone
and perform as expected are introduced.

In decentralised systems, it is important to manage the
risk of bad actors, who may attempt to undermine the
integrity or security of the system through malicious or
selfish behaviour. There are several approaches to managing
bad actors in decentralised systems, including:

1) Use of consensus algorithms: Consensus algorithms,
such as proof-of-work (PoW) or proof-of-stake
(PoS), can be used to secure the network and deter
bad actors by requiring them to expend resources
or prove their identity in order to participate in the
network.

2) Use of reputation or trust systems: Reputation or
trust systems can be used to evaluate the trustwor-
thiness or reputation of users or nodes, and to allow
or disallow their participation in the network based
on their reputation.

3) Use of incentives or rewards: Incentives or rewards
can be used to encourage good behaviour and dis-
courage bad behaviour, by providing rewards for
positive contributions and penalties for negative con-
tributions.

In federated systems like Mastodon [19], managing
bad actors is easier than in the case of fully-decentralised
systems. Here are some approaches that can be taken to
manage bad actors in a federalized system like Mastodon:

1) Use of moderation teams: Federated systems like
Mastodon often have teams of moderators who are
responsible for enforcing community guidelines and
ensuring that users are behaving in a way that is
consistent with the values of the network. These
moderators can use tools like account suspension or
permanent banishment to manage bad actors.

2) Use of community guidelines: Establishing clear
community guidelines can help to deter bad actors
by making it clear what types of behaviour are not
tolerated on the network. This can include guidelines
around hate speech, harassment, and other forms
of malicious behaviour. The operation of Mastodon
instances follows the principle of content moderation
subsidiarity, in which content moderation standards
are established and vary between individual instances
[22].

3) Use of reporting tools: Federated systems like
Mastodon include tools that allow users to report
bad actors or inappropriate behaviour. This can help
to identify and address problems on the network in
a timely manner.

4) Use of incentives or rewards: Incentives or rewards

can be used to encourage good behaviour and dis-
courage bad behaviour. For example, Mastodon has a
feature called ”boosting” that allows users to amplify
the reach of other users’ posts, which can be used as
a reward for positive contributions to the network.

When the hosts of a federated system themselves behave
as bad actors, it can be more challenging to address. This
can be combated by the use of community pressure. This
can involve encouraging users to take action, such as by
switching to a different host server. When a user chooses
to move their account to a different instance, their account
data including their blocked, muted, and follower lists and
their post history will be migrated, and their followers
will automatically follow them to their new account. This
eliminates the need to start from scratch when migrating
from one federated instance to another. Thus, while fed-
erated networks exhibit some degree of clustering, as is
characteristic of the Internet, no single instance controls the
entire network.

This work directly tackles these issues by creating a
federated platform for artificial-intelligence based photo
editing with a generalisation layer for models and work-
flows, alongside a photo-editing application that taps into
these capabilities

3. SYSTEM DESIGN
This section is aimed at giving an in-depth analysis of

the system and the methodology that was used in the design
of a federated platform for AI photo editing. It includes
an overview of the high-level architecture of the system,
and the design of each of its components which are the
queuing server, federated protocol, frontend application and
generalization layer. It also introduces the technologies used
in the design of the platform.

Lightbox operates on a system of queue servers that
interact with each other. The frontend application, used
by users, communicates with the queue servers via the
HTTP protocol. The GPU clients establish WebSocket
connections with their chosen queue server to maintain an
open channel. The frontend application serves as a photo
editing application, providing users with basic features such
as image effects, drawing support, and the ability to load and
manipulate images within a canvas. The GPU clients specify
the tasks they can perform by utilizing a JSON map, which
is then broadcasted to the queue server for user clients
to access. The system functions by allowing authenticated
users on queue servers to send task execution requests to
GPU clients on any queue server. This is made possible
through the implementation of a federation protocol and a
generalization layer. The System Architecture is shown in
Figure 2.

A. Hardware, Software and Functional Requirements
The two main sections of the system for which perfor-

mance requirements are considered are the queue server and
the GPU client, which have separate hardware requirements

4



International Journal of Computing and Digital Systems 5

Figure 2. System Design Diagram

as listed in Table I. The frontend client was not considered
as it did not have any special operational requirements. It is
seen in Table I that the GPU client requires more hardware
across the board to effectively run the AI models set up on
it. The queue server, GPU client and frontend application
have separate software requirements which are outlined in
Table II.

The functional requirements of the system are listed:

• The frontend application should be able to perform
basic image editing operations on a canvas.

• The frontend application should communicate with
the queue servers and GPU clients for task execution
using a generalized layer.

• The user should be able to run tasks on the GPU
clients through the frontend application.

• The user should be able to make requests from GPU
clients connected to different queue servers than the
user is registered on.

B. The Queue Server
As shown in Figure 3, the queue server uses the Web-

Socket and HTTP protocols to communicate with GPU and
user clients, respectively. It is responsible for scheduling
jobs generated by users across GPU clients. Between two
queue servers, the only operation supported is federated
request passing, which allows job requests to be sent by
user clients to GPU clients outside their immediate queue
server, allowing the network to be truly federated without
centralization of power.

In Table III, the interactions between the user clients,
GPU clients and the queue server are laid out. The queue
server maintains a mapping of priority queues for each
connected GPU client. The priority queue contains all the
tasks scheduled for execution for that specific GPU client.

The urgency of tasks is sorted by the trust score of the
requesting user. Request endpoints wait for a response
object to be populated before returning the results to the
frontend server.

C. The GPU Client
The GPU Client is responsible for executing tasks sched-

uled by the user clients through the queue server. These
task requests and responses are specified in the broadcast
information of the client which is a JSON object that
specifies all tasks supported by the GPU client alongside
their input and output conditions. This allows the system
to have multiple GPU clients capable of running differ-
ent tasks without strict limitations. This specification also
makes it easy for the generalisation layer in the frontend
to understand what is required as the input of a task and
generate the relevant form for that task. The GPU client
is a WebSocket client connected to the queue server that
receives job requests and channels it to a predefined method
in its code. The methods available in our implementation
are Text2Img and Img2Img diffusion models with support
for inpainting and outpainting, a background removal U-
Net, and an image upscaling SRGAN (Super-Resolution
Generative Adversarial Network).

D. The Federation Protocol
Implementing a federated protocol is crucial for achiev-

ing the primary objectives of creating a decentralised AI
image editing platform that supports a wide array of models.
This protocol enables queue servers to seamlessly share
tasks, preventing dependence on a single centralised service
or organisation. Multiple GPU clients across servers can
be accessed from any server, expanding the pool of avail-
able models. The federated protocol involves authenticated
message passing between queue servers, ensuring security
through an agreed-upon private key. This authentication
prevents malicious exploitation of the federated request.
To maintain network security, server owners must regularly
update their private keys through communication at inter-
vals. Failure to uphold private key homogeneity could lead
to network fragmentation. A detailed sequence diagram of
federated protocol requests is provided in Figure 4.

E. The Frontend Application
The photo editing application created to validate the

federated queueing platform was built using React.js and
Fabric.js. React.js was used for state management and
structuring of the application, while Fabric.js was utilized
to control the HTML canvas. The application is divided into
the toolbar, canvas, and sidebar sections, as demonstrated
in Figure 5.

The toolbar encompasses traditional photo editing ap-
plication tools such as a brush and color picker, eraser,
select tool, effects, and a textbox, which provide basic
functionality to the application. The canvas is the primary
focus of the program, where users can upload and download
images, paint, erase, transform images, delete objects, apply

5



6 Owolabi, et al.

TABLE I. Hardware Requirements

Components Queue Server GPU Client

RAM 2GB 16GB.
Processor Speed 1.8 GHz 2.4GHz

Hard Disk Storage 4GB 40GB of hard disk storage
GPU Requirements None Nvidia GeForce RTX 2060 with 6GB of VRAM

TABLE II. Software Requirements

Frontend Application Queue Server GPU Client

Language Environment Node.js v18 Python 3.10 Python 3.10
Major Library/Framework React.js Flask Pytorch

Supporting Libraries Fabric.js Flask SQLAlchemy Huggingface, Diffusers
Networking Library Axios Flask socketio socketio

Figure 3. Queue Server Endpoints

TABLE III. Client-Server Interactions

User Client GPU Client

Registration and Authentication User registration and GPU client registration
authentication and authentication.

Task information Gets the task information Broadcasts its task
of all the GPU clients information to the queue

connected to a queue server server.
Job request and execution Can send job requests Notifies the queue server of

to GPU clients in the queue server its availability to perform jobs
Connection with the queue server Interacts with the queue Maintains a WebSocket

server using HTTP requests. connection with the queue server.
Interaction with external servers Can send job requests Does not interact

to GPU clients in with external queue
another queue server. servers.

6



International Journal of Computing and Digital Systems 7

Figure 4. Federation Protocol Sequence Diagram

Figure 5. Use Case Diagram for Frontend Application

effects, utilize sections as input for AI models, and place
images generated by the federated GPU clients.

The sidebar serves as the interface for the generalization
layer and the queue server. Users can specify the queue
server they wish to connect to, authenticate themselves with
their token, enable federated mode, and specify a secondary
queue server. They can also refresh worker information of
the selected queue server, specify the GPU client and task
to run, input information required for the tasks to run, and
view and use the returned images from the GPU client and
queue server.

The frontend photo editing application serves as the
sole interface for users to interact with the entire system.
Therefore, it is responsible for creating all the affordances
to enable full utilization of the system’s capabilities. The
frontend application is accountable for several tasks, in-
cluding basic photo editing operations such as text, effects,
manipulating images, and drawing. It is also responsible
for authenticating a user with their queue server, viewing

GPU broadcast information from a queue server, and task
information from a selected task.

Additionally, the frontend photo editing application gen-
erates the input form for the chosen task and loads the task’s
results upon completion. Finally, the application allows
users to upload and save images when done with editing.
In summary, the photo editing application plays a critical
role in enabling users to leverage the full capabilities of
the federated queueing platform, allowing them to edit and
process images while leveraging the power of distributed
computing.

F. The Generalisation Layer
The generalisation layer as shown in Figure 6 is re-

sponsible for allowing interfacing and execution of various
types of ML tasks. It provides support for a wide variety of
models and allows us to interact with various GPU clients
and their tasks through their broadcast specifications. The
generalisation layer works by generating form inputs based
on the task input specifications in the broadcast of the GPU
client. When the form is completed, the relevant data is
propagated to the respective GPU client through the queue
server. When the task is completed, the results are displayed
depending on the task’s output specification.

G. User Moderation
Given the federated nature of the system and the fact

that the system was designed to execute intensive tasks, it
is important to enforce measures which prevent abuse of
the system and maintain the quality of the service for all
users. These measures will be taken to punish those who
take advantage of the system and overuse it and reward
those who do not exploit the system. The measures taken
are:

1) Priority-based task scheduling: Based on a client’s
usage of the system, a trust score will be assigned
to them. The system can prioritise tasks submitted by
trusted entities and assign them a higher priority in
the task queue. This ensures that high-priority tasks
are completed first and trusted users are rewarded.
This helps to prevent bad actors from interfering with
important tasks. For entities that are not trustworthy
(external queue server requests), a task score below
the average value is assigned to them.

2) Account suspension and creation measures: Based on
users computed trust scores, if they are low enough,
the account can be suspended for a period of time.
In order for this measure to have an impact on
malicious acts, account creation should be a harder
process than simply signing up. Email verification
and CAPTCHAs were used to enforce this.

H. Database Design
A relational model was chosen to serve as the database

of the queue server. It consists of two tables which are the
user and worker table and is used to persist information

7



8 Owolabi, et al.

Figure 6. Activity Diagram for Generalisation Layer

Figure 7. GPU Client execution loop

related to authentication, priority and transactions. Transac-
tion information itself is not stored to prevent censorship in
the system. The two table layouts are in Table IV.

Table IV contains all the user data that is stored by
the queue server. This includes the username, email, pass-

word hash and admin field for authentication and the dis-
abled, trust score and last update time fields for schedul-
ing management. No other user information is stored.

The workers table in Table V contains all the GPU
client data that is stored by the queue server. This includes
the username, email, password hash and admin field for
authentication and the disabled, and last broadcast fields
for interested user clients to know the last status of the
worker. No other worker information is stored.

I. Software Tools
Python: It is a high-level dynamic programming lan-

guage that is widely used in various fields of software
development. Its extensive standard library and third-party
libraries make it possible to perform a wide range of
tasks such as web development, data analysis, scientific
computing, and artificial intelligence.

React.js: It is an open-source JavaScript library that is
used to build user interfaces. React.js uses a declarative
approach to build UI components, which makes it easy to
create complex user interfaces. One of the key features
of React.js is its virtual DOM, which is a lightweight
representation of the actual DOM. The virtual DOM helps
to improve performance by reducing the number of DOM
updates, which can be expensive. React.js also has a
component-based architecture that allows developers to
create reusable UI components that can be easily plugged
into other parts of the application.

Flask: It is a lightweight and flexible web framework
written in Python that is used to develop web applications.
It is ideal for small to medium-sized web applications
that require a minimalistic approach. It is built on top
of the Werkzeug toolkit and the Jinja2 template engine.

8



International Journal of Computing and Digital Systems 9

TABLE IV. User Database Table

S/N Field Data Type Description

1 id Int Unique identification field of the user
2 username String Display name chosen by the user
3 email String Unique email of the user.
4 password hash String Hash of the user’s password. Used for authentication
5 created DateTime Timestamp of account creation.
6 admin Boolean Is true if account has administrator privileges
7 disabled Boolean Is true if account is disabled
8 trust score Int The trust level of the user client
9 last update time DateTime The last time the trust score was updated when the user scheduled a task.

TABLE V. Worker Database Table

S/N Field Data Type Description

1 id Int Unique identification field of the client
2 username String Display name chosen by the client
3 email String Unique email of the client.
4 password hash String Hash of the client’s password. Used for authentication
5 created DateTime Timestamp of account creation.
6 admin Boolean Is true if account has administrator privileges
7 disabled Boolean Is true if account is disabled
8 last broadcast String The last JSON task broadcast sent out by the GPU client

Werkzeug provides low-level utilities for handling HTTP
requests and responses, while Jinja2 is a templating engine
that makes it easy to create dynamic HTML pages. Flask
also supports various extensions that provide additional
functionality, such as Flask-SQLAlchemy for working with
databases.

SQLAlchemy: It is a popular SQL toolkit and
ORM (Object-Relational Mapping) library for Python.
SQLAlchemy makes it easy to work with relational
databases by providing a high-level API that abstracts
away the complexity of working with databases. It supports
various databases such as MySQL, PostgreSQL, SQLite,
and Oracle. It provides a powerful ORM that makes it easy
to work with databases using Python objects. Its ORM
supports various relationships such as one-to-one, one-to-
many, and many-to-many.

HuggingFace: It is a leading open-source repository for
machine learning models and datasets primarily built using
Python. It provides models uploaded by other people over a
range of tasks from image Generation, Image Segmentation,
Natural Language Processing, Reinforcement Learning, and
Object Detection among many others. HuggingFace pro-
vides libraries and pipelines ease usage of these hosted mod-
els across devices. It also takes advantage of the PyTorch
machine learning library for model building and inference.

Fabric.js: It is an open-source JavaScript library that
provides a powerful and flexible way of building interactive
HTML5 canvas applications. It provides a comprehensive

set of APIs for creating and manipulating canvas elements,
such as shapes, text, and images. Its modular architecture
allows for the creation of reusable components and provides
support for event handling and animations.

4. RESULTS AND DISCUSSION
This section presents the work done during the de-

velopment of the Federated Photo Editing Platform. It
covers the implementation of the GPU Client, queue server
and frontend application. The WebSocket model, and AI
models in use are all analyzed. The frontend application is
tested on all the models and simulations are performed to
confirm that the system performs under different setups.
It also covers the hosting of the final application. The
software implementation covers the implementation of the
GPU Client, its WebSocket client, its model broadcast and
supported models. It also covers the implementation of the
queue servers, the federated protocol and the photo editing
application. The code is available on GitHub at [23], [24],
[25], [26].

A. GPU Client
The GPU client was implemented using Python, Flask,

and open-source AI models obtained from HuggingFace
and GitHub. The methods available in our implementation
are Text2Img and Img2Img diffusion models with support
for inpainting and outpainting, a background removal U-
Net, and an image upscaling SRGAN. Figure 7 details
the operation model of the GPU client. The supported
text-image generation models were AnalogDiffusion and
StableDiffusion v1.4.

9



10 Owolabi, et al.

1) Text2Img, Img2Img and Inpainting: The supported
text-to-image generation models were AnalogDiffu-
sion and StableDiffusion v1.4. The supported image-
image models are InstructPix2Pix and StableD-
iffusion v1.4 img2img. The supported inpainting
model was RunwayML/stable-diffusion-inpainting.
The general implementation for these in the broad-
cast is available at modelbroadcast.py in the GPU
client code [25].

2) Outpainting: Outpainting is an extension of inpaint-
ing which serves to extend an image’s boundaries
and size. As such, the underlying model was still
RunwayML/stable-diffusion-inpainting.

3) Image Upscaling and Background Removal: The
image upscaling and background removal models
were obtained from GitHub repositories rembg [27]
and Real-ESRGAN [28], and were already packaged
to require a shell command for execution.

B. Queue Server
The queue server was implemented using Python, Flask

and WebSockets. It contains code for the federated protocol,
task scheduling, and signup and authentication for GPU
and user clients. The registration process has two phases to
prevent bots and bad actors on the system. A CAPTCHA
must be completed to register. On registration, an email is
sent containing the token required for authentication by the
queue server. This is also the case for successive logins to
confirm the ownership of the email account. As a result,
fake email addresses cannot be used and the effort required
to create multiple accounts on the queue server is greatly
increased. JSON Web Tokens are used for authentication.
They are generated on sign-in and have an expiry period.
This increases their security as they cease being risks after a
while and the user must log in again to get their token. This
will prevent mass token stealing and impersonation attacks
on the queue server.

We describe the algorithm of how the queue server
maintains its internal state, job scheduling and message
passing between the user and GPU clients. When a Web-
Socket connection is created between the GPU client and
queue server, the server creates a separate priority queue for
all jobs addressed to it. The server also stores the broadcast
information of that GPU client in the database and in a
worker broadcast map to be sent to user clients when
needed. User clients can request both local and federated
task execution. When this happens, the relevant information
for that task is placed in the PriorityQueue of the relevant
GPU client being addressed. The GPU client constantly
polls for jobs when not busy and will eventually get that task
to execute. The user client will await this task completion
and get the returned data from the GPU client when the
task is complete.

C. The Federated Protocol
The federated protocol essentially functions as a form

of request passing between two queue servers. It is imple-
mented in 2 routes on the queue server:

Figure 8. Text-to-Image generation on the Frontend

1) The route to make a federated request takes the task
information from the user alongside the requested
GPU client and URL of the secondary queue server
and forwards the request to that server alongside an
agreed token to ensure that the request is from a
queue server.

2) The route that receives a federated request verifies
the token and executes the task on the requested GPU
client. The priority of a federated task is set to be
much lower than the baseline to place priority on
local members whose activities can be moderated
and to prevent exploitation of the protocol by bad
actors.

D. The Frontend Application
The photo editing application created to validate the

federated queueing platform was made using React.js and
Fabric.js. React.js handled all state management and struc-
ture of the application while Fabric.js was used to control
the HTML canvas. As seen in the Figure 7, the application
can be divided into the toolbar, canvas and sidebar sections.
The frontend application, through the generalisation layer
and the federated network, supports Txt2Img, Img2Img,
inpainting and outpainting diffusion models alongside back-
ground removal and image upscaling as AI features. For
traditional photo editing features, the application supports
drawing, erasing, textboxes, dragging images around the
canvas space and resizing them, and applying effects such as
saturation, brightness, contrast, hue rotation and pixelation
changes.

In Figure 8, multiple requests were made to the queue
server through the sidebar by using the form generated
through the generalisation layer. The results were then
displayed in the image grid on the sidebar and placed
and scaled on the canvas. In Figure 9, a request was
made through the queue server to generate a white house
with greenery. Then a request was made to remove the
background from the generated image. This result was
placed in the image grid and displays just the house with
the background removed. This was accomplished with the
rembg model [27]. In Figure 10, a generated white house
with greenery was first made using Stable Diffusion. Then
a request was made to outpaint this image and placed

10



International Journal of Computing and Digital Systems 11

Figure 9. Background Removal on the Frontend

Figure 10. Outpainting on the Frontend

on the canvas. This increased the size of the image by
generating more images around it using sections of the
original image as input. In Figure 11, Analog Diffusion was
used to generate images. Then an Img2Img model was used
to generate the images shown in the bottom right panel.
One of the generated images had its background removed
and was edited using a green brush and an eraser. Figure
12 is the result of the effects configuration panel. Noise
was added to the image, the hue was rotated, the image
was pixelated, and the image contrast and saturation were
increased.

E. Publishing and Deployment
In keeping with the aims of this work, the code for

the GPU client [25], frontend application [23] and queue
server [24] was released on GitHub under the General
Public License v3 (GPL v3). This will allow anyone to

Figure 11. Image-to-Image generation and editing on the Frontend

Figure 12. Image Effects editing on the Frontend

Figure 13. Deployment on Vercel

modify and use the code provided their application is also
open. The frontend application was deployed on Vercel
(Figure 13). Vercel is a cloud-based platform that supports
seamless deployment of Node.js based web applications.
Vercel provides features such as automatic SSL certification,
asset optimization, and real-time analytics.

The backend application was deployed on Linode (Fig-
ure 14). Linode is a cloud computing platform that offers
Virtual Private Servers (VPS) to users, allowing them to
deploy and manage scalable cloud infrastructure. In order
to setup the queue servers on Linode, Linux service scripts
had to be setup and linked to bash scripts to start the flask
server. This was done to ensure the application restarts if
the VPS restarts.

F. Simulations
Simulations were run to evaluate the performance of the

queue server over multiple servers using trust scores. These
simulations were carried out by multi-threading server, user
and GPU instances and randomising trust scores, ids, and

Figure 14. Deployment on Linode

11



12 Owolabi, et al.

wait time between tasks, all within reasonable bounds, to
get a model of the systems performance under assumed
normal operations. The number of servers, users and GPU
clients were varied to see how the system scales. The other
purpose of the simulations is to prove that the queue system
functions with multiple users and external queue servers
interacting with it.

In the multiple server setup, 4 servers were used, each
with an equivalent number of users and GPU clients as in
the single server setup i.e. (10 users in the single server
setup becomes 10 users for each of the 4 servers). The
GPU client count scaled with the total user count by 0.1
i.e. (1 GPU client for every 10 users). For the multiple
server setup, user clients choose randomly between making
federated requests to other GPU clients or making task
requests to their own GPU clients, thus more correctly
modelling the final nature of the system. For both setups,
users were initialised with a random trust score and all their
activities were logged by the server. Table VI shows the
simulation parameters.

The time variables for the simulations were scaled on a
basis of time scaling roughly 10 times to get more logs.
This means 7 minutes of simulation time was made to
simulate 1 hour of real time usage. The other variables such
as the GPU TASK TIME and USER SLEEP TIME can
also be multiplied by 10 to get the real time value. As the
simulations were performed by creating hundreds of virtual
threads in Python (reaching a maximum of 444 concurrent
threads), a language which does not have support for true
parallelism, as the servers were just normal threads equally
competing for processing time, the performance results of
the queue servers in both single and multiple setups are
expected to be better than that of the simulations.

From figures 15a and 15b, it can be seen that the
task response time drops drastically as the trust score is
increased. It is important to note that the values of the bars
are added upon each other and each colour region does
not contain hidden parts. As the trust score is reduced per
count, with a reset interval, it acts as a rate limiter and
ensures that those who have not been overusing the system
get significantly better quality of service. This also ensures
that malicious actors who may have spawned their own
queue servers do not worsen the system for other users.
The graphs also show that the response time increases with
the number of users in the system.

G. Discussion
The implementation of our federated platform for AI-

assisted photo editing reveals both promising results and
areas for improvement. By distributing computational tasks
across a network of GPU clients, we’ve successfully low-
ered the barrier to entry for AI-powered image manipula-
tion. Users without high-end hardware can now access a
variety of AI models for tasks like image generation, in-
painting, and style transfer. The generalisation layer proved
effective in integrating diverse AI models, showcasing the

system’s flexibility. Additionally, our trust-based priority
scheduling showed potential in balancing task execution
times and managing system load, though further refinement
is needed for larger-scale deployments. However, challenges
remain in ensuring consistent availability of GPU clients
and maintaining performance across a growing network.
The system’s reliance on volunteer GPU clients may lead to
inconsistent access to certain models, potentially impacting
user experience. Future work should focus on implement-
ing more robust load balancing algorithms and expanding
the range of supported AI models. Exploring applications
beyond photo editing could also reveal new opportunities
for this federated approach. As we continue to develop
this platform, addressing these challenges is important in
realising the full potential of democratised access to AI-
powered creative tools.

5. CONCLUSION
In conclusion, this paper introduces a federated plat-

form that makes AI-assisted photo editing accessible to a
wider audience by distributing tasks across a network of
queue servers and GPU clients. The system allows users
to register on queue servers, which broadcast available
tasks and their input requirements to a generalisation layer
in the application. This enables users to submit jobs that
are efficiently scheduled and executed on GPU clients,
empowering devices without powerful graphics processing
capabilities to leverage advanced AI models for creative
applications. Simulations were also performed to affirm
that the trust-score based scheduling system is effective
in single and multiple-server setups. Future improvements
could focus on enhancing fault tolerance, expanding input
type support, and integrating with existing creative software.
This work contributes to the democratisation of generative
AI technologies and fosters a collaborative ecosystem for
creative experimentation and innovation. The modular de-
sign of the platform makes it adaptable to various domains,
presenting exciting possibilities for future research and
development, such as scientific computing [29].

6. Acknowledgment
The authors acknowledge Covenant University Cen-

tre for Research, Innovation and Discovery (CUCRID) in
Covenant University for the actualization of this research
work for publication.

References
[1] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman,

M. Cherti, T. Coombes, A. Katta, C. Mullis, M. Wortsman et al.,
“Laion-5b: An open large-scale dataset for training next generation
image-text models,” Advances in Neural Information Processing
Systems, vol. 35, pp. 25 278–25 294, 2022.

[2] “Dreamstudio,” https://beta.dreamstudio.ai/dream, 2023, accessed:
September 4, 2024.

[3] “Alpaca - humans: Ai models for image generation,” https://www.
getalpaca.io/, 2023, accessed: September 4, 2024.

[4] Runway, “Runway - everything you need to make anything you
want,” https://runwayml.com/, 2023, accessed: September 4, 2024.

12

https://beta.dreamstudio.ai/dream
https://www.getalpaca.io/
https://www.getalpaca.io/
https://runwayml.com/


International Journal of Computing and Digital Systems 13

TABLE VI. Simulation Parameters

PARAMETER VALUE DESCRIPTION

USER COUNT — Number of users in simulation.
GPU SCALING RATIO 0.1USER COUNT Number of GPU clients

FEDERATED TRUST SCORE 400 Trust score for a federated request
GPU TASK TIME 5 seconds Time taken to complete a task

USER SLEEP TIME 10-16 seconds Sleep time between requests
SIM TIME 7 minutes Time taken for a simulation

(a) (b)

Figure 15. Simulation results for (a) Single Server Setup; (b) Multiple Server Setup;

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–
144, 2020.

[6] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep unsupervised learning using nonequilibrium thermodynam-
ics,” in International conference on machine learning. PMLR,
2015, pp. 2256–2265.

[7] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano,
G. Chechik, and D. Cohen-Or, “An image is worth one word: Per-
sonalizing text-to-image generation using textual inversion,” arXiv
preprint arXiv:2208.01618, 2022.

[8] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language mod-
els,” arXiv preprint arXiv:2106.09685, 2021.

[9] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022, pp. 10 684–10 695.

[10] K. Wang, C. Gou, Y. Duan, Y. Lin, X. Zheng, and F.-Y. Wang, “Gen-
erative adversarial networks: introduction and outlook,” IEEE/CAA
Journal of Automatica Sinica, vol. 4, no. 4, pp. 588–598, 2017.

[11] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial

networks for efficient and high fidelity speech synthesis,” Advances
in neural information processing systems, vol. 33, pp. 17 022–
17 033, 2020.

[12] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-
to-image translation using cycle-consistent adversarial networks,”
in Proceedings of the IEEE international conference on computer
vision, 2017, pp. 2223–2232.

[13] X. Wang, L. Xie, C. Dong, and Y. Shan, “Realesrgan: Training real-
world blind super-resolution with pure synthetic data supplementary
material,” Computer Vision Foundation open access, vol. 1, no. 2,
p. 2, 2022.

[14] X. Wang, Y. Li, H. Zhang, and Y. Shan, “Towards real-world blind
face restoration with generative facial prior,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2021, pp. 9168–9178.

[15] M. Van Steen and A. S. Tanenbaum, “A brief introduction to
distributed systems,” Computing, vol. 98, pp. 967–1009, 2016.

[16] C. V. B. Murthy, M. L. Shri, S. Kadry, and S. Lim, “Blockchain
based cloud computing: Architecture and research challenges,” IEEE
Access, vol. 8, pp. 205 190–205 205, 2020.

[17] J. Gong and N. J. Navimipour, “An in-depth and systematic literature
review on the blockchain-based approaches for cloud computing,”
Cluster Computing, pp. 1–18, 2021.

13



14 Owolabi, et al.

[18] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum project yellow paper, vol. 151, no.
2014, pp. 1–32, 2014.

[19] C. R. Shaw, “Decentralized social networks: Pros and cons of the
mastodon platform,” 2020.

[20] N. V. Patrick, S. Misra, E. Adetiba, and A. Agrawal, “An incremental
load balancing algorithm in federated cloud environment,” in Data,
Engineering and Applications: Select Proceedings of IDEA 2021.
Springer, 2022, pp. 395–408.

[21] V. P. Nzanzu, E. Adetiba, J. A. Badejo, M. J. Molo, M. B. Akanle,
K. D. Mughole, V. Akande, O. Oshin, V. Oguntosin, C. Takenga
et al., “Fedargos-v1: A monitoring architecture for federated cloud
computing infrastructures,” IEEE Access, vol. 10, pp. 133 557–
133 573, 2022.

[22] A. Z. Rozenshtein, “Moderating the fediverse: Content moderation
on distributed social media,” J. Free Speech L., vol. 3, p. 217, 2023.

[23] O. Owolabi, “Lightbox frontend code,” https://github.com/
owolabioromidayo/lightbox fe, 2023, accessed: September 4,
2024.

[24] O. O, “Lightbox queue server,” https://github.com/

owolabioromidayo/lightbox queue server, 2023, accessed:
September 4, 2024.

[25] ——, “Lightbox gpu client,” https://github.com/owolabioromidayo/
lightbox gpu client, 2023, accessed: September 4, 2024.

[26] O. Owolabi, “Lightbox simulation code,” https://github.com/
owolabioromidayo/lightbox simulations, 2023, accessed: Septem-
ber 4, 2024.

[27] X. Wang, L. Xie, C. Dong, and Y. Shan, “Real-esrgan: Training
real-world blind super-resolution with pure synthetic data,” in Pro-
ceedings of the IEEE/CVF international conference on computer
vision, 2021, pp. 1905–1914.

[28] K. Higuchi, T. Mizuhashi, F. Matulic, and T. Igarashi, “Interactive
generation of image variations for copy-paste data augmentation,” in
Extended Abstracts of the 2023 CHI Conference on Human Factors
in Computing Systems, 2023, pp. 1–7.

[29] E. Adetiba, M. Akanle, V. Akande, J. Badejo, V. P. Nzanzu, M. J.
Molo, V. Oguntosin, O. Oshin, and E. Adebiyi, “Fedgen testbed:
A federated genomics private cloud infrastructure for precision
medicine and artificial intelligence research,” in International Con-
ference on Informatics and Intelligent Applications. Springer, 2021,
pp. 78–91.

14

https://github.com/owolabioromidayo/lightbox_fe
https://github.com/owolabioromidayo/lightbox_fe
https://github.com/owolabioromidayo/lightbox_queue_server
https://github.com/owolabioromidayo/lightbox_queue_server
https://github.com/owolabioromidayo/lightbox_gpu_client
https://github.com/owolabioromidayo/lightbox_gpu_client
https://github.com/owolabioromidayo/lightbox_simulations
https://github.com/owolabioromidayo/lightbox_simulations

	INTRODUCTION
	LITERATURE REVIEW
	SYSTEM DESIGN
	Hardware, Software and Functional Requirements
	The Queue Server
	The GPU Client
	The Federation Protocol
	The Frontend Application
	The Generalisation Layer
	User Moderation
	Database Design
	Software Tools

	 RESULTS AND DISCUSSION
	GPU Client
	Queue Server
	The Federated Protocol
	The Frontend Application
	Publishing and Deployment
	Simulations
	Discussion

	CONCLUSION
	Acknowledgment
	References

