International Journal of Computing and Digital Systems

RS
00, ISSN (2210-142X)
= Int. J. Com. Dig. Sys. , No. (Mon-20..)

http://dx.doi.org/10.12785/ijeds/ XXX XXX

RoArch: A Novel Approach for Handling Security Incidents in
ROS-Based Systems

Yash Patel' and Dr. Parag H. Rughani’

1School of Doctoral Studies & Research, National Forensic Sciences University, Gandhinagar, Gujarat
2School of Cyber Security & Digital Forensics, National Forensic Sciences University, Gandhinagar, Gujarat

Received Mon. 20, Revised Mon. 20, Accepted Mon. 20, Published Mon. 20

Abstract: [Abstract] In the face of escalating cybersecurity threats targeting robotic systems, the need for advanced forensic frameworks
has become critical. Robotic systems, now crucial in key sectors, lack specialized forensic tools, leading to vulnerabilities in security
and operational reliability. This article introduces RoArch, a novel forensic framework tailored for robotic systems, addressing the
urgent need for specialized forensic tools in this fast-evolving domain. As robotics become integral to sectors like healthcare, defense,
and industrial automation, the demand for tailored forensic methodologies has risen. RoArch features two main components: the
RoboShell tool for interactive command execution and anomaly detection, and the RuFo framework for capturing live and volatile data,
designed to work with both ROS and ROS2 platforms. This research delves into RoArch’s architecture, functionality, and practical
effectiveness, with a focus on its versatility in various robotic environments and forensic challenges. Through an in-depth analysis,
the article illustrates RoArch’s utility in scenarios such as cyber security breach investigations in TurtleBot3 robots, underlining its
real-world applicability. RoArch represents a significant leap in robotic forensics, promising to improve the reliability and security of
robotic systems in numerous industries. The paper concludes by discussing RoArch’s future potential in robotic forensics, advocating
for expanded compatibility and the integration of machine learning for enhanced predictive analysis.

Keywords: Robotic Forensics, Robotic Cybersecurity, ROS Cybersecurity, ROS Forensics, Robotic Incident Response, Robotic
Incident Management.

rospy init] UNFO] 2023-03-03 00:46:45, 944 registered with master
1. INTRODUCTION . M:g}ﬁiiﬁiﬁiﬂﬁﬁiii‘s’: '”“’a"”"g/’”SS;Z“Z?;‘“/ELZM o
355 e e OOCTO, e smis e
. . e nNFO] ,019: tof \EU[md vel] adding mnnetnnnm[/mrﬂebnﬁ tDrE] count 0

In recent years, robotics has seen rapid and transforma- enaliveo) sy, e s’ so
. . . . rospy . dient] [INFO] ZDZKﬂKﬂ] 00:49:51, 175: init_node, name[/turtiebot3_teleap_k kﬁvbnard] Dld[BQEl]
tive growth across several sectors, including industry [1], TR R L s e
healthcare [2], defense [3], and many more [4][S][6]. Inte- izermmasiinn 2 20
grating complex robotic systems into critical infrastructures ERl e

.. . . e, rmIroIrn 000 [lrespy.rosou !]DNFG]ZDBOMXDDNZSIEM nected to

and sensitive areas raises unique cyber security [7][8][9] e e
and forensic challenges [10][11]. Despite technological) S mﬂM S
advancements, there’s a notable lack in forensic method- i . L

. ’ . . Figure 1. Illustrates the data logging deficiencies in the robot
ologies and tools for robot systems [12]. This deficiency operating system

hinders issue resolution in robotic systems and threatens
the security and integrity of operations involving these
technologies. The primary issue addressed in this research is that the

Robotic f ics. thoush developing. i al £ robot operating system does not store operational logs, such
ODOUC T0rensics, though deve oping, Is crucial for over- as velocity, movement, and control, as shown in Figure

coming current challenges [!3]' Existing f orensic models, 1. This absence complicates the investigation of robotic
tailored f or standard 1T environments, fail to address the systems. The secondary issue is the lack of specific forensic
complex1.t 1es & nd Qynamlsm of r(.)bot.1c systems [14]. This investigation tools or frameworks dedicated to robotic sys-
shortfall 18 evident in cases involving Intricate hardware %nd tems, which would otherwise facilitate forensic investigators
software'lnterplgy, real-t'lr'ne processing, apd Al/machine "~ o olving crime cases involving robots.

learning integration. Additionally, the changing cyber threat

landscape demands a forensic framework that is robust, This study presents RoArch, a novel forensic framework
versatile, and adaptable to the fast evolving field of robotics designed for robotic systems. Addressing the pressing need
[15]. for specialized forensic tools, RoArch closes the existing

E-mail address: yash.phdcs20@nfsu.ac.in, parag.rughani@nfsu.ac.in http://journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/XXXXXX
http://journals.uob.edu.bh

\)
A
N

Lk

@05,

5

190

Baas
’*j Yash Patel and Dr. Parag H. Rughani: RoArch: Managing Security Incidents in ROS-Based Systems.

gap with a tailored solution for managing and analyzing
robotic systems in their specific operational environment.
Built on two key elements, the RoboShell tool and the RuFo
framework, it provides a synergistic method to boost the
efficiency and efficacy of forensic investigations in robotics.

This research aims to address the key question: How can
forensic investigations in robotic systems be optimized for
greater efficiency and reliability, given their unique chal-
lenges? It focuses on exploring RoArch’s design, structure,
and operational capabilities, and assesses its effectiveness
in practical situations. The study particularly examines
RoArch’s adaptability to various robotic environments and
its capability in managing diverse forensic challenges.

This research has multiple objectives: to conduct an
in-depth analysis of the RoArch framework, detailing its
components, functionalities, and integration processes; to
showcase RoArch’s practical applications across several
scenarios, emphasizing its versatility and robustness; and
to evaluate RoArch’s effectiveness in improving forensic
investigations in robotics, focusing on efficiency, accuracy,
and comprehensiveness.

This research is significant as it has the potential to
mutate robotic forensics. RoArch, a specialized framework
designed for robot systems, fills an essential gap in robot
forensics. Its implementation could significantly enhance
the reliability and security of robotic operations in several
sectors such as defense, healthcare, industrial automation,
and many more.

Additionally, this research provides valuable insights
that could cover the way for future developments in robotic
forensics, aiding in the creation of more advanced tools
and methods. Essentially, this study introduces a ground-
breaking framework and establishes a new standard in
the field of robot forensics. It lays a foundational basis
for subsequent research and innovations in managing and
forensically examining robotic systems.

This paper delves into advanced forensic tools and
methodologies in robotics. Section 2 presents related work
in robot forensics. Section 3 introduces the methodology of
RoArch, which includes RoboShell and the RuFo Frame-
work, aimed at enhancing forensic analysis in robotic sys-
tems. Section 4 discusses the implementation of RoArch, an
innovative strategy for addressing cybersecurity in robotics.
Section 5 showcases RoArch’s application in a cybersecu-
rity breach case involving TurtleBot3. Section 6 discusses
key findings, significance, limitations, and scenarios. Fi-
nally, Section 7 concludes with insights and recommenda-
tions for future research.

2. REeLATED WORK

This section delves into the emerging field of forensic
investigation in robotic systems, where the literature, rising,
reveals critical insights and developments.

The necessity of a structured digital evidence collec-
tion framework for robotic systems was emphasized by
Giuseppe Vaciago and Francesca Bosco [16]. They pro-
posed establishing best practice guidelines conforming to
national or international standards, stressing the importance
of protocols for robotic system security.

Victor Mayoral Vilches, et al. [17] developed
ros_ volatility, a plugin for the Robot Operating System
(ROS) that proved effective in detecting unauthorized ROS
node registrations in their experimental setup, identifying
the intruder in test scenarios.

Mawj Mohammed Basheer and Asaf Varol [18] high-
lighted the lack of extensive research in robotic forensics
through their review of ROS security and digital forensics,
calling attention to the need for further exploration in this
domain.

Koscher, et al. [19] examined vulnerabilities in auto-
mobile systems, drawing parallels to the need for robust
security in complex robotic systems. Casey [20], in a
similar vein, addressed digital forensic complexity, sug-
gesting methods adaptable for investigating robotic system
anomalies and malfunctions.

The enhancement of forensic methodologies in robotics
was pursued by Khalastchi and Kalech [21] through a
survey on fault detection in multi-robot systems. Similarly,
Abeykoon and Feng [22] proposed a strategy for examining
ROS vulnerabilities to cyber threats.

Focusing on the TurtleBot3, Amsters and Slaets [23]
analyzed its architectural and functional complexities, illu-
minating the intricacies of its software framework. Hossen,
et al. [24] further contributed by exploring the diagnostic
aspects of TurtleBot3’s potential failure modes and system
performance.

In summary, this analysis underscores the significant
gaps and areas for growth in robotic system forensics.
There is a clear need for live and dead robot forensics,
more resources, advanced expertise, refined methodologies,
and innovative techniques, along with the development of
comprehensive, universally accepted standards for robotic
forensic investigations.

3. METHODOLOGY

This section of the paper explores the design and struc-
ture of RoArch, a powerful forensic framework specifically
adapted for robotic systems, as shown in Figure 2. RoArch
is designed to clearly improve the efficiency and effec-
tiveness of forensic investigations in the field of robotics.
Mainly RoArch has two key components: RoboShell and
the RuFo framework. These tools are integrated within
RoArch to enable a dependent approach, enhancing the
overall functionality and capabilities of the framework in
robotic forensics.

RoArch serves as a foundational element in this re-

http://journals.uob.edu.bh

http://journals.uob.edu.bh

¥

A0)

SO
Int. J. Com. Dig. Sys. , No. (Mon-20..)) ™ 191

e,
X

430 AL

i : i i
] 1 ! - i
i i ! { rean Time J { Volatile Data } i
' RoboShell ! i 9 i
i | i i
i] i i
i] i i

| i

| i

i i

__ Robot Session Active J [Log Analysis }

Connections

! Node Activation

Data Analysis
,,,,,,,,,,,, oo 2t fnalyEs

| Investigation

| PullData RuFo
! Framework
i
i
i

Live Forensics |

Figure 2. RoArch Overview: Innovative Robot Architecture Design

search, embodying a comprehensive strategy for the man-
agement and analysis of robotic systems. The framework
is built upon the notion of a Robotics Environment, which
constitutes the core of a robot’s entire operational range.
This environment is dynamic, covering all facets of a robot’s
functionality.

The RoArch (Robot Architecture) framework enhances
the robotic system’s operational efficiency and security.
It features a Robot Session to describe the active state
of robots, and a RoboShell Tool for interactive command
execution similar to traditional command-line interfaces.
A Node Activation Mechanism manages Robot Operating
System (ROS) nodes for specific functionalities, while an
advanced Data Analysis and Management sector addresses
real-time monitoring and data handling. The architecture
includes a Robot’s Investigation and Live Forensics com-
ponent, integrated with the RuFo Framework for real-time
forensic analysis, ensuring a comprehensive and secure
robotic system architecture.

The design of the architecture highlights the seamless in-
tegration of real-time operations with retrospective analysis.
It underlines the importance of ongoing system monitoring,
data extraction (Pull Data), and the capability to conduct
live forensic investigations. This dual emphasis on both
real-time and post-operational analysis renders RoArch es-
pecially appropriate for high-reliability and mission-critical
robotic applications.

Exploring RoArch (Robot Architecture) involves an in-
depth look at the core functionalities of its key components:
RoboShell and the RuFo Framework. The Table I below
provides a comparative overview, highlighting distinctive
capabilities such as data analysis, anomaly detection, event
handling, compatibility with ROS/ROS2 ,etc.

A. RoboShell Tool

RoboShell is developed as an advanced tool tailored to
meet the dynamic requirements of robotic system moni-
toring and analysis. The algorithm of the RoboShell Tool
is an automated logging and monitoring script designed
for robotic systems, as shown in Figure 3. It initializes a
log file, displays a banner, and redirects output to the log
with timestamps. The tool extracts and logs the source IP

Algorithm 1 RoboShell Tool
Require: Log file location, CPU threshold, Network timeout
Ensure: System and network log with CPU & IP metrics

1: function GETSOURCEIP

2 for all service in ServiceList do
3 if RetrievelP(service) is successful then
4: return IP address
5 end if
6:
7
8;

end for
return “N/A”
: end function
9: function MONITORCPU(threshold)
10: initial < GetCPUStats()
11: while True do

12: Sleep for 1 second

13: updated < GetCPUStats()

14: usage < CalculateCPU(updated)
15: if usage > threshold then

16: return usage

17: end if

18: end while

19: end function

20: sourcelP « GetSourceIP()

21: cpuUsage <— MonitorCPU(threshold)

22: Start new bash session

23: Capture session with script command
24: Exit bash session

25: return Terminal RoboShell log

Figure 3. RoboShell Tool - Algorithm

yash@ubuntu: ~$ sudo /roboshell.sh
[sudo] password for yash:

* RoboShell *
* A Robot Bash Session *
* By: Yash Patel and Dr. Parag Rughani

2024-06-03 08:01:01 [+] Process ID: 2710

2024-06-03 08:01:01 [+] Process Name: roboshell.sh
2024-06-03 08:01:01 [+] Process Path: */roboshell.sh
2024-06-03 08:01:01 [+] Username of The Process: root
2024-06-03 08:01:01 [+] Source IP Address: 192.168.195.132
2024-06-03 08:01:03 [+] Remote IP Address: 27.57.93.166
2024-06-03 08:01:04 [+] CPU Percentage: 2%

2024-06-03 08:01:04 [+] RoboShell is Running...

2024-06-03 08:01:04 - - - == === === - mmmm e e

Figure 4. RoboShell Interface: Advanced Tool Integration

address, retrieves the external IP address, and defaults to
‘N/A; on failure. It reads initial and updated CPU stats to
calculate and log CPU usage. By capturing and logging
all activities in a robot bash session, the tool provides
comprehensive terminal logs for analysis.

It excels in logging robot command interactions during
bash sessions, effectively documenting control directives
and corresponding robot actions. With its compatibility with
both ROS and ROS2 frameworks, RoboShell’s adaptability
is significantly enhanced, positioning it as an essential
instrument in the field of robotic software. Additionally,
its intuitive interface is designed to accommodate users of
varying expertise, from novices to experienced profession-
als, as shown in Figure 4.

RoboShell enhances the efficiency of robotic investiga-
tions by providing detailed insights into control commands
and robot actions. Its capability in detecting anomalies sig-
nificantly improves the system’s reliability and safety. This
tool serves as an instrument for analyzing current operations
and also acts as a catalyst for future research and training. It
enables particular scrutiny of robotic behaviors, facilitating
a deeper understanding of their operational dynamics.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

&

RIS

e,

e

Lk

430 AL,

&

192

Baas
’*j Yash Patel and Dr. Parag H. Rughani: RoArch: Managing Security Incidents in ROS-Based Systems.

TABLE I. Comparative Functions of RoboShell and RuFo Framework

Capability RoboShell Tool

RuFo Framework

Data Analysis

Anomaly Detection
erational issues.
Event Handling
Compeatibility
ROS/ROS2
Development Support

platforms.

back.
Security -
User Accessibility

technical users.

Command/action history with timestamps.
Identifies and facilitates corrections of op-

Event recreation for root cause analysis.
Compatible with ROS/ROS2 middleware

User-friendly interface for technical/non-

System, memory, network, logs, process,
file analysis.

Artifact collection, network monitoring,
malware detection.

Compatible with ROS/ROS2 middleware
platforms.

Real-time directive monitoring and feed- -

System integrity and security enhancements.
User-friendly interface for technical/non-
technical users.

Within the expansive field of robotics and automation,
the collective attributes of RoboShell contribute signifi-
cantly to enhanced efficiency and reliability. Its capacity
to enable process replication is essential for complex in-
vestigations. The tool’s architecture is forward thinking, as
demonstrated by its compatibility with both ROS and ROS2
frameworks. Additionally, its advanced monitoring features
are vital in an era where immediate feedback is key to the
successful execution of robotic operations.

B. RufFo Framework

The Robot Utility Forensics (RuFo) Framework repre-
sents an advancement in the field of robotic forensics, re-
sponding to the increasing incorporation of robotic systems
across diverse industries. Designed to tackle the distinct
challenges inherent in robotic systems, RuFo provides ex-
tensive tools for the acquisition of live and volatile data. Its
compatibility with both the ROS (Robot Operating System)
and ROS2 underscores its applicability and flexibility in
modern robotic research and practical applications.

The algorithm of the RuFo Framework is a comprehen-
sive logging and monitoring tool specifically designed for
robotic systems, as shown in Figure 5. It begins by defining
a log file and redirecting output to it. The framework
presents a script header and a main menu, enabling users to
select from various options, including system information,
network information, process and file system details, ROS-
specific data, log information, and network monitoring.
Each option leads to a submenu offering specific functions,
such as displaying CPU information, scanning for suspi-
cious files, or retrieving ROS topics. The menu repeats until
the user chooses to quit, ensuring detailed terminal logs for
thorough analysis.

The RuFo framework focuses on strengthening security
and forensic effectiveness, incorporating several critical
features, as shown in Figure 6. It firstly integrates Proactive
Threat Detection, which facilitates the identification and
pre-emption of potential security breaches and malware,
playing a pivotal role in preserving the integrity and safety

Algorithm 2 RuFo Framework
Require: LOG_FILE, Config Parameters
Ensure: Forensic Data

1: Init logging — LOG_FILE

2: Load config — defaults

3: Show metadata

4: Menu:

a. System Information
b. Network Information
c. Process/File System Information
d. ROS Information
e. Logs Information
f. Network Monitoring/Scanning
5: while User session do
6 Render menu — Capture input
7 if User input is "a" then
8: Collect metrics — Check thresholds
9: else if User input is "b" then
10: Assess network status
11: else if User input is "c" then
12: List processes, Check file system
13: else if User input is "d" then
14: Query Nodes/Topics
15: else if User input is "e" then
16: Search — Filter — Export
17: else if User input is "£" then
18: Scan ports — Analyze traffic
19: else if User input is “Quit” then
20: Exit loop — Finalize
21: else
22: Invalid selection — Prompt retry
23: end if
24: end while

25: Save logs — Close session

Figure 5. RuFo Framework - Algorithm

of the system. Secondly, it encompasses Detailed Incident
Analysis, offering in-depth data essential for comprehen-
sive incident investigations and the formulation of efficient
response strategies. This level of detail in data analysis
is key to comprehensively understanding and effectively
addressing security incidents.

Third, the framework facilitates Continuous Monitoring
and Troubleshooting, guaranteeing uninterrupted surveil-
lance and health assessment of robotic systems. This ca-
pability allows for the prompt detection and rectification
of problems, promoting sustained operational functionality.
Furthermore, the framework enhances Operational Effi-
ciency by offering a holistic view of the system. This
overarching perspective assists in optimizing the use of
resources and managing time effectively, thus boosting the

http://journals.uob.edu.bh

http://journals.uob.edu.bh

2
>

Int. J. Com. Dig. Sys. , No. (Mon-20..)) " 193

yash@ubuntu: ~§ sudo +/rufo.sh
[sudo] password for yash:

|RuFo Framework|
|De iption: Forensic Ir igation Fi for Robots|
|Authors: Yash Patel and Dr. Parag Rughani|

|Version: 2.0|

Main Menu:

1. System Information

2. Network Information

3. Process and File System Information
4. ROS Specific Information

5. Log Information

6. Network Monitoring and Scanning
Q. Quit

Enter a Choice:

Figure 6. RuFo Framework: Main Menu Interface Snapshot

efficiency of operations. Together, these attributes reinforce
the framework’s ability to protect against threats and ensure
proficient forensic analysis and operational management.

The RuFo framework focuses on strengthening security
and forensic effectiveness, incorporating several critical fea-
tures. It firstly integrates Proactive Threat Detection, which
facilitates the identification and pre-emption of potential
security breaches and malware, playing a pivotal role in
preserving the integrity and safety of the system. Secondly,
it encompasses Detailed Incident Analysis, offering in-depth
data essential for comprehensive incident investigations
and the formulation of efficient response strategies. This
level of detail in data analysis is key to comprehensively
understanding and effectively addressing security incidents.

Third, the framework facilitates Continuous Monitoring
and Troubleshooting, guaranteeing uninterrupted surveil-
lance and health assessment of robotic systems. This ca-
pability allows for the prompt detection and rectification
of problems, promoting sustained operational functionality.
Furthermore, the framework enhances Operational Effi-
ciency by offering a holistic view of the system. This
overarching perspective assists in optimizing the use of
resources and managing time effectively, thus boosting the
efficiency of operations. Together, these attributes reinforce
the framework’s ability to protect against threats and ensure
proficient forensic analysis and operational management.

4. ImpLEMENTING ROARCH: ENHANCING FORENSIC INVESTIGA-

TIONS IN RoBorics

A novel Robot Architecture (RoArch) has been devel-
oped to optimize forensic investigations within robotic sys-
tems. This architecture features the RoboShell tool, which
efficiently captures and archives log data from the robot
operating system. Moreover, the integration of the Robot
Utility Forensics (RuFo) framework into this architecture
significantly expedites the investigation process.

The combined utilization of RoboShell and RuFo estab-
lishes a comprehensive standardization protocol for forensic
procedures in robotics, particularly in environments where
the robot operating system is utilized. The deployment
of RoArch is expected to substantially improve both the
efficiency and effectiveness of forensic analyses in the field
of robotics.

207 2023-03-03 02:49:44 Control Your TurtleBot3!

208 2023-03-03 ©2:49:44 ~----ssnssenssoessooseeans

209 2023-03-03 ©2:49:44 Moving around:
49:44 W

214 2023-03-03 : : ~ 0.22, Waffle and Waffle PL : ~ 0.26)
215 2623-03-03 02:49:44 a/d : increase/decrease angular velocity (Burger : ~ 2.84, Waffle and Waffle PL : ~ 1.82)
216 2023-03-03 02:49:44

217 2023-63-63 02:49:44 space key, s : force stop

218 2023-03-03 02:49:44

219 2023-03-03 02:49:44 CTRL-C to quit
220 2023-03-03 02:49:44

221 2023-03-03 ©2:49:50 currently: Llinear vel 0.01 angular vel 0.0
linear vel 6.0 angular vel 6.0

Llinear vel -0.61 angular vel 0.6
Llinear vel -0.01 angular vel 0.1
linear vel -0.61 angular vel 0.6
linear vel -0.61 angular vel -0.1

222 2023-03-03 ©2:49:54 currently:

223 2023-03-03 ©2:49:55 currently:
224 2023-03-03 02:49:59 currently:
225 2023-03-03 ©2:50:02 currently:
226 2023-03-03 02:50:04 currently:

Figure 7. RoboShell Analysis: Detailed ROS Log File Visualization

Table II and Table III describes the rigorous compatibil-
ity testing of RoArch across a spectrum of ROS and ROS2
platforms, encompassing installation, operational function-
ality, interoperability, performance, and security aspects. It
affirms RoArch’s comprehensive validation, showcasing its
adaptability and robustness within diverse robotic environ-
ments.

A. Evaluating RoboShell: A Key Interface for ROS Inter-
action

This section presents the results from assessing the
RoboShell Tool, a key element for interfacing with robotic
systems, especially when working with the TurtleBot3.

After initiating RoboShell, the initial step was to start
the ROS core (roscore), a fundamental component for
activating the ROS system and facilitating communication
through multiple background processes. These processes
encompassed the ROS Master, responsible for name reg-
istration and lookup services, the Parameter Server, which
manages the dynamic storage and retrieval of parameters,
and the rosout logging node, essential for gathering debug
messages.

In the environment of the ROS framework, a calibration
node was utilized, specifically for hardware components like
sensors or actuators. An instance of this was the integration
of a camera with the TurtleBot3, which necessitated cali-
bration for precise image processing. This process included
compensating for lens deformation. The calibration data
were preserved either as parameters on the Parameter Server
or within configuration files.

Teleoperation (Teleop) was executed through a dedicated
node, such as turtlebot3 teleop keyboard, which enabled
remote control of the TurtleBot3. This node functioned by
interpreting keyboard keypresses and translating them into
ROS messages, which in turn directed the movements of
the robot.

The logging proficiency of RoboShell was showcased
via its detailed log files, which particularly recorded opera-
tional parameters and system statuses of the TurtleBot3, as
shown in Figure 7. These logs proved vital for troubleshoot-
ing purposes, monitoring robot functionalities, and auditing
the commands executed during specific timeframes.

The log files comprehensively captured sessions where

http://journals.uob.edu.bh

http://journals.uob.edu.bh

\)
A
N

Lk

30 Alisy;
%,

&

194

Baas
"'”'wj Yash Patel and Dr. Parag H. Rughani: RoArch: Managing Security Incidents in ROS-Based Systems.

TABLE II. Compatibility Testing of RoArch with ROS Platforms

Test Criteria/Platform ROS Jade ROS Kinetic ROS Lunar ROS Melodic ROS Noetic
Turtle Kame Loggerhead Morenia Ninjemys

Installation & Configuration X v X v v

Operational Functionality X v X v v

Interoperability X v X v v

Performance & Stability X v X v v

Security & Compliance X v X v v

TABLE III. Compatibility Testing of RoArch with ROS2 Platforms

Test Criteria/Platform ROS2 ROS2 Foxy ROS2 ROS2 Hum- ROS2 Iron Ir-
Eloquent Fitzroy Galactic ble Hawksbill ~ wini
Elusor Geochelone
Installation & Configuration X v X v v
Operational Functionality X v X v v
Interoperability X v X v v
Performance & Stability X v X v v
Security & Compliance X v X v v

the TurtleBot3 was manipulated using a keyboard teleop-
eration node. These logs explained the initiated processes,
configurations of operational parameters, and specific com-
mands for controlling the robot’s movement, including the
modulation of linear and angular velocities. Additionally,
it documented the process ID, process name, username
associated with the process, source and destination IP
addresses, CPU usage percentage, and a timeline of events.

The detailed entries in the log files served as a significant
resource for comprehending the interaction dynamics of the
TurtleBot3 during manual navigation. This information not
only aided in achieving precise control over the robot but
also provided a basis for assessing its responsiveness during
interactive tasks.

The assessment of RoboShell highlighted its effec-
tiveness in facilitating interactions with robotic systems,
especially in intricate operational environments such as
those involving the TurtleBot3. The combination of its
intuitive interface and sophisticated logging and debugging
capabilities was found to be crucial for continuous real-time
monitoring as well as thorough post-event analysis.

B. Understanding the RuFo Framework: Unveiling Forensic

Potential in Robotics

The Robot Utility Forensics (RuFo) Framework in-
tegrates more than 40 specialized techniques for foren-
sic investigation. This subsection outlines the operational
methodologies and functionalities of the RuFo Framework,
specifically designed for implementation within a robot
operating system. The mathematical equation for the RuFo
Framework is depicted in Figure 8. The equation models
to initialize log files, redirect outputs, and display headers.
This is followed by a main menu loop where user choices
activate specific submenus, including system, network, pro-

Notations: Equation:

&
RuFo(G) = L+ R+ H + (Jl I Z}) w1

Figure 8. RuFo Framework Mathematical Equation

cess, ROS, logs, and network monitoring. Each submenu
executes designated tasks or returns to the main menu,
continuing this process until the user terminates the session.

This interface acts as a gateway to a range of foren-
sic investigative features, methodically organized into six
principal categories: System Information, Network Informa-
tion, Process and File System Information, ROS Specific
Information, Log Information, and Network Monitoring
and Scanning. Choosing any of these options leads to a
dedicated submenu, equipped with a variety of investigative
tools and functions, as depicted in Figures 9.

This subsection highlights the importance of both the
submenus and the main menu, which includes a feature
to exit the program. It also provides the functionality to
navigate back to the main menu from any submenu. The
subsection emphasizes the necessity of safety measures
and precautionary protocols, advising users to thoroughly
inspect scripts prior to execution, maintain system security
through regular updates, and consistently conduct data
backups to avert potential data loss.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

TN
2
: 5} b

Int. J. Com. Dig. Sys. , No. (Mon-20..)) " 195

RuFo Framework

System Information

Process and File ROS Specific
System Information Information

i SSID and
sssword
6.ROSIROS2 IP Seting

10. ROS Logs
1. ROS2 Logs

Figure 9. RuFo Framework: Detailed Sub-Menu

1) System Information of Robot

The RuFo Framework introduces a comprehensive Sys-
tem Information feature, particularly designed for system
administrators and forensic analysts. Accessible via a user-
friendly submenu, it delivers extensive insights across mul-
tiple dimensions: from General System, Linux Distribution,
and Hostname Information to detailed CPU, Memory, and
Kernel specifics, alongside security-centric Account Infor-
mation.

Furthermore, it encompasses ROS and ROS2 config-
urations, presenting an indispensable tool for diagnosing
and managing robotic systems. This feature not only un-
derscores the framework’s adaptability in addressing diverse
forensic needs but also its alignment with advanced security
practices and system diagnostics, enhancing operational
transparency and efficiency in robotic ecosystems.

In a critical military robotics deployment, a sophisticated
malware attack was detected in a surveillance unit. Forensic
investigators used the RuFo Framework’s System Infor-
mation feature to quickly access detailed CPU, Memory,
Kernel specifics, and ROS configurations. The in-depth
analysis revealed unauthorized access patterns, identifying
the malware’s origin, and preventing a potential security
breach, thereby ensuring mission-critical integrity.

2) Network Information of Robot

The RuFo Framework’s Network Information function-
ality emerges as an essential tool for forensic analysis within
interconnected robotic ecosystems. Through a detailed sub-
menu, it enables the examination and configuration of
network parameters, including IP and MAC addresses,
network cards, and wireless settings, tailored for technical
professionals. Its command-line interface facilitates precise
network diagnostics and adjustments, crucial for network
administrators, robotics specialists, and forensic analysts.

This subsection particularly documents the framework’s
capability to navigate complex network infrastructures, of-
fering indispensable insights for configuring, troubleshoot-
ing, and securing network communications in robotic sys-
tems, thereby underscoring its pivotal role in advancing

forensic investigations in networked environments.

In industrial robotics, a network anomaly disrupted
production workflows. Forensic investigators used the RuFo
Framework’s Network Information functionality to access
detailed network parameters, such as IP and MAC ad-
dresses, and network card configurations. Utilizing the
command line interface, they identified and isolated a com-
promised network node, restoring secure network communi-
cations. This precise troubleshooting ensured uninterrupted
robotic operations and protected industrial processes.

3) Processes and File System Information of Robot

Within the RuFo Framework, the Processes and File
System Information functionality stands out as a pivotal
tool for forensic and security analysis in robotic systems.
Accessed through a detailed submenu, it offers a deep dive
into system processes, file system data, and the detection
of suspicious or malicious files. Tailored for system ad-
ministrators and security professionals, its command-line
interface allows for an intricate examination of running
processes and disk usage, alongside evaluating file integrity
through hash value analysis.

This section underscores the framework’s capacity for
particular system evaluations, essential in identifying se-
curity vulnerabilities and ensuring the integrity of robotic
environments, showcasing its indispensable role in forensic
investigations.

In a healthcare robotic system, unauthorized access to
patient data was detected. Forensic investigators used the
RuFo Framework’s Processes and File System Information
functionality to examine system processes and file integrity
through hash value analysis. The command line interface
identified a rogue process and altered files, revealing the
data breach’s entry point. Instantaneous remediation en-
sured data security and maintained patient confidentiality.

4) ROS Specific Information of Robot

The RuFo Framework’s ROS Specific Information func-
tionality is a critical asset for professionals managing
robotic systems utilizing the Robot Operating System
(ROS) and ROS2. Offering deep insights into computational
entities (nodes) and communication channels (topics), this
feature facilitates the precise monitoring and forensic anal-
ysis of robotic communications.

It adeptly handles both ROS and ROS2 architec-
tures, illustrating its versatility in tracing communication
networks and understanding dynamic interactions within
robots. Through detailed examination of nodes like /turtle-
bot3 teleop keyboard and topics such as /cmd vel, the
framework demonstrates its exceptional capability in diag-
nosing and enhancing the performance of robotic systems,
reinforcing its value in robotics research and development.

In a domestic robotics application, unexpected behav-
ioral anomalies in a home assistant robot were reported.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

\)
A
N

Lk

@05,

5

196

Baas
’*j Yash Patel and Dr. Parag H. Rughani: RoArch: Managing Security Incidents in ROS-Based Systems.

Forensic investigators used the RuFo Framework’s ROS
Specific Information functionality to examine computa-
tional nodes and communication topics. Detailed forensic
investigation identified misconfigured communication chan-
nels causing uncertain movements. Correcting these config-
urations restored normal functionality, ensuring reliable and
safe robotic operations within the household environment.

5) Logs Information of Robot

The Log Information feature within the RuFo Frame-
work is a cornerstone for forensic analysis, offering ex-
haustive access to various logs critical for robotic system
investigations. This functionality categorizes logs into Last
Login, System, Authentication, Kernel, Security, Audit,
Network, and specifically, RoboShell, ROS, and ROS2 logs,
facilitating a comprehensive review of system activities.
These logs play a pivotal role in constructing event time-
lines, identifying system irregularities, and troubleshooting
within ROS environments.

The RuFo Framework’s adept integration with ROS
and ROS2 underlines its utility in forensic investigations,
system diagnostics, and ensuring robotic system integrity,
making it an invaluable tool for professionals navigating the
complexities of robotic system analysis.

In a military robotic surveillance system, an unexpected
shutdown compromised mission critical operations. Foren-
sic investigators used the RuFo Framework’s Log Informa-
tion feature to access Authentication, Kernel, RoboShell,
ROS, and ROS2 logs. Detailed forensic investigation re-
vealed unauthorized access attempts and kernel panics cor-
relating with the shutdown. Constructing an event timeline
tracker, they identified a cyber attack vector, implemented
security patches, and restored system integrity, ensuring
operational continuity and mission success.

6) Network Monitoring and Scanning of Robot

The RuFo Framework’s Network Monitoring and Scan-
ning feature stands as a testament to its expertise in cyberse-
curity within robotic systems. Offering a tailored submenu
for intricate network analyses, including comprehensive
port scanning and real-time traffic monitoring, it addresses
various facets of network security.

From unveiling active ports and vulnerabilities to en-
abling focused examination of network behavior, the frame-
work’s capabilities are crucial for cybersecurity profession-
als. Its detailed command-line interface serves specifically
to technical users, facilitating precise network diagnostics
and forensic investigations. This versatility underscores
the framework’s essential role in protecting robot systems
against cyber threats, ensuring operational security and
integrity.

In a healthcare robotics network, a data breach was sus-
pected, jeopardizing patient confidentiality. Forensic investi-
gators utilized the RuFo Framework’s Network Monitoring
and Scanning feature for comprehensive port scanning and

real-time traffic monitoring. The command line interface
identified an open, vulnerable port and unusual network
behavior, pinpointing a malware infiltration. Instantaneous
isolation and remediation restored network security and
protected sensitive patient data.

5. RoARrcH IN ActioN: INVESTIGATING TURTLEBOT3’s CYBER

SecuriTY BREACH

This section evaluates the effectiveness of the RoArch
Framework through a real world experiment involving the
TurtleBot3, subjected to a cyber attack named pico-ducky.
This attack, crafted via a Raspberry Pi Pico in a USB
Rubber Ducky configuration, led to various malfunctions
in the TurtleBot3. The experiment provided a practical
condition to assess RoArch’s ability to identify and analyze
robotic cybercrimes. The attack’s impact on the TurtleBot3
exemplified potential vulnerabilities in robotic systems.
Using the RoboShell tool and the RuFo Framework, the
experiment demonstrated the efficacy of RoArch in a real
world scenario. Key architectural elements and their roles
were as follows:

e RoboShell: Facilitated direct interaction with Turtle-
Bot3, allowing control and communication, which
were crucial for understanding the attack’s mechanics.

e Raspberry Pi Pico: Served as the attack vector,
demonstrating how external devices could manipulate
robotic operations.

o TurtleBot3: Highlighted as both an operational unit
and a vulnerability point, susceptible to external ma-
nipulations.

e Command and Control (C2) Station: Illustrated the
remote orchestration of the TurtleBot3 post-attack, a
typical cyber attack model.

e RuFo Framework: Played a pivotal role in real-time
monitoring and analysis. Its capabilities in volatile
data monitoring, active connections oversight, log,
and data analysis were instrumental in flagging and
investigating the cyber incident.

The architectural analysis underscored the comprehen-
sive nature of RoArch, focusing on robotic cyber vul-
nerabilities and forensic solutions. The experiment, illus-
trated in Figure 10, utilized both RoboShell and the RuFo
Framework effectively, showcasing their synergy in detect-
ing and analyzing security breaches within the robotics
environment. This integrated approach affirmed RoArch’s
robustness in addressing the complexities of robotic cyber
security and forensic investigation.

A. Exploitation of TurtleBot3 using Raspberry Pi Pico

The section discusses an innovative exploitation algo-
rithm using the Raspberry Pi Pico for automating control
of a TurtleBot3 robot. This algorithm leverages the Pico
microcontroller board’s ability to act as a Human Interface

http://journals.uob.edu.bh

http://journals.uob.edu.bh

¥

v

s
2
G
C)
3,

< e

Int. J. Com. Dig. Sys. , No. (Mon-20..))

i i i
i i

i i ! [e J [Volatile Data J |
[RoboShell | i 9 i
i ! i i
i o ! Active . !
i

,,

H
i
i
1 e i i
S U A
! ; Risp, i - i
i " b1, i i
i Raspberry Pi Pico leo i :
i & {....Punoata RuFo
N > ! Framework
w U 4 i
& i
i

o
o oo

Figure 10. Analyzing the Pico-Ducky Cyber Incident: An Architec-
tural Perspective

Device (HID), specifically emulating keyboard functions.
It’s important to note that the ethical deployment of this
script is permissible exclusively within authorized robotic
systems, as its unauthorized use could be construed as
malicious.

The algorithm begins with an Initialization and Key-
board Setup phase. Here, the Raspberry Pi Pico is config-
ured to mimic a keyboard by importing necessary modules
like time, board, usb hid, and various adafruit hid com-
ponents. This setup is crucial for the Pico to interact with
the host device as a virtual keyboard.

In the next phase, Login Attempts, the script utilizes the
keyboard object to input a series of common administrative
usernames and passwords. This involves methodical entry
with pauses between attempts, mimicking human typing
rhythms and avoiding rapid login attempt detection that
could trigger security protocols.

The third phase, Interrupt the Teleop Keyword Node,
involves more complex operations. The Pico simulates
pressing CTRL+ALT+T to open a terminal window on
the host Linux system. After opening the terminal, the
script executes commands to establish an SSH connection
to a specified IP address and launches a teleoperation
node for the TurtleBot3, setting up the environment vari-
able TURTLEBOT3 MODEL and initiating the roslaunch
turtlebot3 _teleop turtlebot3 teleop key.launch command.

In the final phase, Control the Teleop Keyword Node,
the script opens a new terminal and repeats the SSH
connection and teleoperation node launching process. This
redundancy ensures continued control of the TurtleBot3
in case of any disruptions. The script inputs single-letter
keystrokes corresponding to different movement directions
for the robot, such as forward, backward, stop, right, and
left. Each command is spaced with a 7-second pause for
the robot to respond appropriately.

After executing the movement commands, the script
pauses for 60 seconds. This extended pause allows time
to observe the robot’s actions, confirming the execution of
the final command or serving as a buffer before the script
concludes.

Logs Stored in
txt file
[sudo] password for yash:
RoboShelllogs Stored at /home/yash/RoboShelllogs.txt

(a): RoboShell Logs

(b): RoboShell Logs.txt

Figure 11. RoboShell Logs Acquiring from RuFo Framework

The algorithm demonstrates a sophisticated interplay
between the Raspberry Pi Pico and the TurtleBot3, enabling
tasks like testing, remote operation, and educational demon-
strations. The final outcome is the automated control of the
robot’s movements, highlighting the script’s effectiveness in
executing complex login and command sequences through
the Raspberry Pi Pico, which adeptly simulates human
keyboard interactions.

B. Investigating Incident using RuFo Framework

This section presents a detailed forensic analysis of an
incident involving a TurtleBot3 robot, conducted using the
RuFo Framework. The primary objective was to ascertain
whether the issues with the TurtleBot3 were due to technical
malfunctions or a result of a cyber attack.

Utilizing the Log Information menu of the RuFo
framework, the investigation began with the analysis of
RoboShell Logs, option 9 in the main menu. Access
to these logs required administrative privileges, as indi-
cated by the terminal’s request for a sudo password, as
shown in Figure 11. The RoboShellLogs.txt file, located at
/home/yash/RoboShellLogs.txt, contained a comprehensive
record of logged activities, including command line opera-
tions and the initiation of processes identifiable by Process
IDs. The commands logged, such as ‘w’, ‘a’, ‘s’, ‘d’,
and ‘x’, corresponded to the robot’s movements. The logs
also detailed adjustments to the robot’s linear and angular
velocity and provided status updates on these velocities at
specific times. This analysis revealed remote operation of
the TurtleBot3 but did not confirm a connection from a
specific IP address or machine.

The next step was examining Hardware Logs, selected
as option 8 from the Log Information menu, as shown in
Figure 12. The hardware logs, stored at a specified file path,
offered timestamped records of hardware-related events and
states. These logs included entries for network packets
blocked by a firewall, connections of USB devices, and hard
disk activities. Notably, the logs identified the connection
of a Raspberry Pi Pico, detailing its classification as a

http://journals.uob.edu.bh

http://journals.uob.edu.bh

\)
A
N

Lk

30 Alisy;
%,

&

198

Baas
’*j Yash Patel and Dr. Parag H. Rughani: RoArch: Managing Security Incidents in ROS-Based Systems.

Logs Stored in
txt file

Hardwarelogs Stored at /home/yash/hardwarelogs. txt

(a): Hardware Logs

: Product: Pico
: Manufacturer: Raspberry Pi
: SerialNumber: E660C06213771531
: ttyACMO: USB ACM device
c : USB Mass Storage device detected
©: usb-storage 3-13:1.2
: Raspberry Pi Pico Keyboard as /devices/pci0000:00/0000:00:
14.0/usb3/3-13/3-13:1.3/6003:239A: 80F4.0007 /input/inputd6
: Raspberry Pi Pico Mouse as /devices/pci0000:00/0000:00:14.
©/usb3/3-13/3-13:1.3/0003:239A:80F4.0007/input/inputd7?
: input,hidrawi: USB HID v1.11 Key
board [Raspberry Pi Pico] on usb-0000:00:14.0-13/input3
: Direct-Access Raspberr Pico 1.0 PQ

: @ ANSI: 2

©: Attached scsi generic sg@ type @
0: [sda] 2649 512-byte logical blocks: (1.65 MB/1.60 MiB

(b): Hardware Logs.txt

Figure 12. Hardware Logs Acquiring from RuFo Framework

USB ACM and Mass Storage device and its detection as
a keyboard and mouse input device.

Furthermore, the logs registered SCSI commands related
to storage device communications, indicating successful
interaction between the system and attached hardware com-
ponents. The investigation revealed the connection of a
Raspberry Pi Pico to the TurtleBot3 robot at the incident’s
time, functioning as a keyboard and mouse peripheral. The
matching timestamps in the hardware and RoboShell logs
provided conclusive evidence that the Raspberry Pi Pico
was involved in controlling the TurtleBot3.

This forensic investigation showcased the capability of
the RuFo Framework in providing detailed and organized
logs, crucial for diagnosing technical issues, conducting
forensic examinations, auditing device connections, and
verifying peripheral device’s operations. The precise times-
tamps and device identifiers in the logs facilitated efficient
analysis, crucial for understanding the intricacies of the
incident involving the TurtleBot3 robot.

6. DiscussioN

The exploration of RoArch, a novel forensic framework
for robotic systems, reveals a significant advancement in
the field of robotics forensic. This comprehensive research
delineates the intricacies of RoArch, highlighting its two
primary components: RoboShell and the RuFo framework.
Integrated within RoArch, these tools offer a synergistic
approach to enhancing the overall functionality and ca-
pabilities of robotic forensics, addressing the urgent need
for efficient and effective solutions in this rapidly evolving
field. Both tools protect original computer programming
tools from unauthorized uses through the Indian Copyright
(Amendment) Act of 2012 [25][26].

RoArch serves as a foundation in this research, em-
bodying a strategy that encompasses the management and
analysis of robotic systems. The architecture’s foundation
on the Robotics Environment concept, covering the entire
operational spectrum of a robot, marks a significant leap in

understanding and managing these complex systems. This
environment’s dynamic nature emphasizes the multifaceted
functionalities inherent in robotics, necessitating a frame-
work like RoArch for comprehensive oversight.

Delving into the specifics, RoboShell tool emerges as
a standout component. Its design as an interactive com-
mand interface aligns with conventional systems, yet it
exhibits advanced capabilities in logging robot command
interactions and identifying operational anomalies. This
adaptability to both ROS and ROS2 frameworks enhances
its utility, making it a valuable tool for a wide range of users,
from beginners to experts in the domain. Its proficiency
in recording operations and diagnostics, coupled with its
anomaly detection and event recreation capabilities, under-
lines its critical role in advancing robotic investigations and
ensuring system reliability.

The RuFo Framework, as another integral component of
RoArch, brings to the cutting edge its specialized tools for
real-time robotic forensics. With functionalities that range
from data analysis, security, and a user-friendly interface,
the RuFo Framework stands out in its ability to conduct
thorough investigations within robot’s systems. It addresses
the unique challenges in the robotic domain, providing a
holistic perspective of robotic operations that is vital for
forensic investigation and security enhancement.

The practical applications of RoArch extend to several
critical sectors, demonstrating its versatility and importance.
In healthcare robotics, it ensures the integrity and security
of sensitive data, a necessity for patient safety. In industrial
automation, RoArch plays a pivotal role in maintaining the
reliability and safety of automated systems. Furthermore,
in defense and security, its application in incident inves-
tigations involving robotic systems is invaluable, ensuring
the security and effectiveness of these crucial technologies.

A practical case scenario could involve deploying
RoArch in an automotive manufacturing environment. Here,
it could monitor the operational integrity of assembly line
robots, detecting anomalies and conducting forensic anal-
yses in case of malfunctions or security breaches. This
application not only ensures the safety of the manufacturing
process but also guarantees the quality of the vehicles
produced, showcasing RoArch’s potential in enhancing op-
erational efficiency and product quality.

RoArch marks a notable progression in robotic foren-
sics, combining real-time and retrospective analysis while
being adaptable to diverse robotic systems. This positions
it as a valuable asset in future robotic system management
and security. Future research and development should aim
at broadening its compatibility and improving the user in-
terface, thereby making it accessible to a broader spectrum
of users and applicable in various scenarios.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

¥

A0)

Ll faas

Int. J. Com. Dig. Sys. , No. (Mon-20..)) " 199

Uy

10 Allgy

7. CONCLUSION

This research has methodically examined the archi-
tecture and operational aspects of RoArch, an innovative
forensic framework designed specifically for robotic sys-
tems. This framework responds to the urgent requirement
for streamlined and impactful forensic investigations in
the field of robotics. The central aim was to present and
evaluate the functionalities of RoArch, concentrating on its
two key constituents: the RoboShell tool and the RuFo
framework. The integration of these components creates
a comprehensive methodology, significantly improving the
efficiency and efficacy of forensic examinations in robotics.

This study’s principal outcomes include the effective
deployment of RoArch across diverse scenarios, under-
scoring its versatility and dependability. The RoboShell
tool exhibited its adaptability, excelling in recording robot
command interactions, identifying operational anomalies,
and aiding in the reconstruction of events. Conversely, the
RuFo framework demonstrated its effectiveness in real-
time robotic forensic analysis, equipped with an extensive
array of data analysis tools and advanced security features.
Collectively, these elements constitute a formidable system,
adept at navigating the intricate challenges of robotic foren-
sic investigations.

Despite its successes, the study acknowledges certain
limitations. The application of RoArch in real-world sce-
narios highlighted challenges in user interface design and
system compatibility, suggesting areas for future improve-
ment. Additionally, while effective in the scenarios tested,
further research is needed to evaluate RoArch’s performance
across a broader range of robotic systems and environments.

The practical involvement of RoArch is substantial,
especially in areas where robotics play a crucial role, such
as defense/military, healthcare, industrial automation, and
many more. Its ability to ensure the robot’s system reliabil-
ity and security is important in these critical applications.
For instance, in automotive manufacturing, RoArch could
significantly enhance the safety and quality of production
processes by monitoring and analyzing the operations of
assembly line robots.

Future research directions involve broadening the frame-
work’s compatibility to encompass a more diverse array of
robotic systems and refining the user interface for greater
accessibility to individuals with different levels of technical
proficiency. Additionally, incorporating advanced machine
learning algorithms into the framework could enhance its
predictive capabilities, thereby facilitating more proactive
approaches to forensic investigations.

Overall, RoArch marks a notable progression in robotic
forensics. The development and effective implementation of
this framework highlight the critical role of specialized tools
and approaches in handling the intricacies and safeguarding
the security of modern robotic systems. RoArch establishes
a new benchmark in the domain and lays the groundwork

for future advancements in the management and forensic
examination of robotic systems.

REFERENCES

[1] M. Higele, K. Nilsson, J. N. Pires, and R. Bischoff, “Industrial
robotics,” Springer handbook of robotics, pp. 1385-1422, 2016.

[2] M. Kyrarini, F. Lygerakis, A. Rajavenkatanarayanan, C. Sevastopou-
los, H. R. Nambiappan, K. K. Chaitanya, A. R. Babu, J. Mathew,
and F. Makedon, “A survey of robots in healthcare,” Technologies,
vol. 9, no. 1, p. 8, 2021.

[3] G. E. Marchant, B. Allenby, R. Arkin, E. T. Barrett, J. Borenstein,
L. M. Gaudet, O. Kittrie, P. Lin, G. R. Lucas, R. O’Meara et al.,
“International governance of autonomous military robots,” Colum.
Sci. & Tech. L. Rev., vol. 12, p. 272, 2011.

[4] C. Breazeal, K. Dautenhahn, and T. Kanda, “Social robotics,”
Springer handbook of robotics, pp. 1935-1972, 2016.

[5] J. T. Licardo, M. Domjan, and T. Orehovacki, “Intelligent
robotics—a systematic review of emerging technologies and trends,”
Electronics, vol. 13, no. 3, p. 542, 2024.

[6] G. C. Maffettone, L. Liguori, E. Palermo, M. di Bernardo, and
M. Porfiri, “Mixed reality environment and high-dimensional con-
tinuification control for swarm robotics,” IEEE Transactions on
Control Systems Technology, 2024.

[7]1 Y. Patel and P. H. Rughani, “Unmasking the vulnerabilities: A deep
dive into the security threat landscape of humanoid robots,” in

The International Conference on Recent Innovations in Computing.
Springer, 2023, pp. 273-289.

[8] Y. Patel, P. H Rughani, and T. Kumar Maiti, “An examination of the
security architecture and vulnerability exploitation of the turtlebot3
robotic system,” International Journal of Computing and Digital
Systems, vol. 16, no. 1, pp. 1593-1602, 2024.

[9] Y. Patel and P. H. Rughani, “qcros2: An architecture to secure
network communication of ros2-based environment,” in 2023 8th
International Conference on Robotics and Automation Engineering
(ICRAE). 1EEE, 2023, pp. 253-258.

[10] I. Abeykoon and X. Feng, “Challenges in ros forensics,” in 2019
IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced
& Trusted Computing, Scalable Computing & Communications,
Cloud & Big Data Computing, Internet of People and Smart City
Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).
IEEE, 2019, pp. 1677-1682.

[11] Y. Patel, P. H. Rughani, and D. Desai, “Network forensic investiga-
tion of collaborative robots: A case study,” in 2022 7th International
Conference on Mechanical Engineering and Robotics Research
(ICMERR). 1EEE, 2022, pp. 51-54.

[12] Y. Patel and P. H. Rughani, “Are we ready to investigate robots?
issues and challenges involved in robotic forensics,” in The Interna-
tional Conference on Recent Innovations in Computing. Springer,
2023, pp. 259-271.

[13] V. Fernando, “Cyber forensics tools: A review on mechanism and
emerging challenges,” in 2021 1ith IFIP International Conference
on New Technologies, Mobility and Security (NTMS). 1EEE, 2021,
pp. 1-7.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

200

\
N

W

Lk

210 u:%b
%,
%

&

WCH
"’”W-j Yash Patel and Dr. Parag H. Rughani: RoArch: Managing Security Incidents in ROS-Based Systems.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A. Asquith and G. Horsman, “Let the robots do it!—taking a
look at robotic process automation and its potential application in
digital forensics,” Forensic Science International: Reports, vol. 1,
p. 100007, 2019.

N. Nelufule, T. Singano, K. Masemola, D. Shadung, B. Nkwe,
and J. Mokoena, “An adaptive digital forensic framework for the
evolving digital landscape in industry 4.0 and 5.0,” in 2024 2nd
International Conference on Intelligent Data Communication Tech-
nologies and Internet of Things (IDCIoT). 1EEE, 2024, pp. 1686—
1693.

G. Vaciago and F. Bosco, “New challenges in robotics. cyber
security and digital forensics,” Informatica e diritto, vol. 23, no. 2,
pp. 9-20, 2014.

V. M. Vilches, L. A. Kirschgens, E. Gil-Uriarte, A. Herndndez,
and B. Dieber, “Volatile memory forensics for the robot operating
system,” arXiv preprint arXiv:1812.09492, 2018.

M. M. Basheer and A. Varol, “An overview of robot operating sys-
tem forensics,” in 2019 Ist International Informatics and Software
Engineering Conference (UBMYK). 1EEE, 2019, pp. 1-4.

K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Check-
oway, D. McCoy, B. Kantor, D. Anderson, H. Shacham er al.,
“Experimental security analysis of a modern automobile,” in 2010
IEEE symposium on security and privacy. 1EEE, 2010, pp. 447—-
462.

E. Casey, Digital evidence and computer crime: Forensic science,
computers, and the internet. Academic press, 2011.

E. Khalastchi and M. Kalech, “Fault detection and diagnosis in
multi-robot systems: A survey,” Sensors, vol. 19, no. 18, p. 4019,
2019.

I. Abeykoon and X. Feng, “A forensic investigation of the robot
operating system,” in 2017 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData). 1EEE,
2017, pp. 851-857.

R. Amsters and P. Slaets, “Turtlebot 3 as a robotics education plat-

[24]

[25]

[26]

form,” in Robotics in Education: Current Research and Innovations
10. Springer, 2020, pp. 170-181.

M. A. Hossen, S. Kharade, B. Schmerl, J. Camara, J. M. O’Kane,
E. C. Czaplinski, K. A. Dzurilla, D. Garlan, and P. Jamshidi, “Care:
Finding root causes of configuration issues in highly-configurable
robots,” IEEE Robotics and Automation Letters, 2023.

Y. Patel and P. Rughani, “Roboshell tool: A robot bash session,”
The Copyright Office Journal, no. 27, 16368/2023-CO/SW, 2023.

——, “Rufo (robot utility forensics) framework,” The Copyright
Office Journal, no. 27, 16374/2023-CO/SW, 2023.

Yash Patel is pursuing a Ph.D. in Com-
puter Science and Technology at the Na-
tional Forensic Sciences University, Gand-
hinagar, Gujarat, India. His research thrust
areas include cybersecurity, digital forensics,
robotics security, and robotics forensic in-
vestigation.

Parag Rughani, Ph.D. is currently work-
ing as an professor in digital forensics at
the National Forensic Sciences University,
India. He is IEEE Senior Member and has
published more than 25 articles in reputed
journals and conferences. His research thrust
areas include machine learning, computer
forensics, memory forensics and malware
analysis.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

	INTRODUCTION
	Related Work
	Methodology
	RoboShell Tool
	RuFo Framework

	Implementing RoArch: Enhancing Forensic Investigations in Robotics
	Evaluating RoboShell: A Key Interface for ROS Interaction
	Understanding the RuFo Framework: Unveiling Forensic Potential in Robotics
	System Information of Robot
	Network Information of Robot
	Processes and File System Information of Robot
	ROS Specific Information of Robot
	Logs Information of Robot
	Network Monitoring and Scanning of Robot

	RoArch in Action: Investigating TurtleBot3’s Cyber Security Breach
	Exploitation of TurtleBot3 using Raspberry Pi Pico
	Investigating Incident using RuFo Framework

	Discussion
	Conclusion
	References
	Biographies
	Yash Patel
	Parag Rughani, Ph.D.

