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Abstract: Autism Spectrum Disorder is essentially a condition that disrupts a child’s development, affecting communication skills,
understanding, learning, and interaction difficulties. This study aims to combine LBP (Local Binary Patterns) and HOG (Histogram of
Oriented Gradients) as feature extraction methods in a CNN classifier to improve its accuracy for Autism detection based on digital
facial image. The process followed in this research involves sequentially applying LBP, preprocessing, applying HOG, hyperparameter
tuning, training, testing, and evaluation. The results show that combining LBP and HOG feature extraction methods yields an accuracy
of 80%, which is better compared to using only one of the feature extraction methods: LBP (78%) or HOG (75%), and also better than
not using feature extraction at all, which results in an accuracy of 76%. The combination of feature extraction methods, as done in other
research, is less appropriate in this case, as it only achieved a maximum accuracy of 66%. Therefore, feature extraction combinations
must be selected carefully to avoid making it difficult for the CNN to recognize patterns in facial images. This study concludes that
applying LBP as preprocessing and HOG as feature fusion on a digital image dataset can help improve CNN accuracy for early autism
detection.

Keywords: Autism Spectrum Disorder, Convolutional Neural Network (CNN), Local Binary Pattern (LBP), Histogram of Oriented
Gradients (HOG)

1. INTRODUCTION
Autism (Autism Spectrum Disorder) is a developmental

disorder that affects children’s growth, diagnosed through
visual symptoms and developmental deviations such as
impaired communication abilities, lack of understanding,
learning difficulties, and challenges in interaction [1]. The
earlier autism can be diagnosed and inferred, the greater
the chance for improvement, especially if the diagnosis is
followed up with therapy or enrollment in special groups
[2]. Therefore, it is crucial to recognize the signs and
symptoms of autism as early as possible to provide special
interventions, minimizing the risk of symptoms worsening.

Recent research has begun to explore autism detection
using various datasets. The datasets used include fMRI, eye
gaze direction, genetic data, screening data, retinal photos,
and EEG signals. However, these types of data often require
significant time and financial resources. Another easily
accessible dataset is digital images. Digital images can be
used for autism detection because, the faces of individuals
with autism exhibit certain biomarkers that differentiate

them from typical faces, such as increased distance between
the corners of the eyes and decreased midface length [3][4].

Deep Learning is the most commonly used classifier
when attempting to classify datasets consisting of digital
images, with one of the most popular models being CNN
(Convolutional Neural Network). However, facial images
alone may not sufficiently highlight the biomarkers present
in individuals with autism, which can impact the model’s
performance, particularly in terms of accuracy. Poorly cap-
tured features may prevent the model from fully learning
these features.

Feature extraction is one solution to emphasize impor-
tant features. The goal of feature extraction is to identify
informative features that can improve efficiency in the
classification process [5]. Additionally, feature extraction
can help reduce the resource requirements of the data
without compromising important features [6].

Research on the topic of autism detection utilizing dig-
ital images has shown promise. Digital images can be used
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as data for autism detection because the faces of individuals
with autism exhibit certain biomarkers that differentiate
them from typical faces, such as increased distance be-
tween the eyes and decreased midline facial length [3][4].
Deep learning, particularly Convolutional Neural Networks
(CNNs), is the most commonly used classifier when at-
tempting to classify datasets composed of digital images.
However, digital images of faces alone may not sufficiently
highlight the biomarkers present in individuals with autism.
This can affect the model’s performance, especially in terms
of accuracy. Poorly captured features can prevent the model
from fully learning these features.

Feature extraction is one solution to enhance important
features. The goal of feature extraction is to find informative
features that can improve efficiency in the classification
process [5]. Feature extraction using Local Binary Pattern
(LBP) will produce features that are easier for the model
to learn. However, using only LBP for feature extraction
is insufficient to capture all important features in images,
and it is recommended to combine it with Histogram of
Oriented Gradient (HOG) [7]. Several studies have utilized
facial photo datasets to detect autism. Some classifiers
that provide good accuracy include CNN [8][9], Xception
[10], VGG16 [11], and MobileNet [12][13]. Classifiers
such as Xception, VGG16, and MobileNet are based on
CNNs, which have been further developed to have specific
parameters.

Feature extraction is crucial as it can identify informa-
tive features, thereby enhancing efficiency in the classifica-
tion process [5]. It can help reduce resource usage in data
without compromising important features [6]. One example
of feature extraction is Local Binary Pattern (LBP). In a
study, LBP was used to extract features from skin cancer
images in a proposed model (2SGP-W), achieving over 85%
accuracy on two different datasets [14]. [15] utilized LBP
as a preprocessing step before feeding it into the classifier
in their proposed model, which was able to achieve an
accuracy of 95.7%. This indicates that LBP can be used as
a feature extraction method during the preprocessing stage
before being input into the classifier. Another feature extrac-
tion method is the Histogram of Oriented Gradient (HOG).
A study [6] combined HOG in the autism detection process,
resulting in 92.66% accuracy, which was better than CNN
without HOG or SVM combined with HOG. [16] performed
HOG feature extraction, which was used in combination
with the results from previous feature extraction methods
before being fed into the classifier. This indicates that HOG
can serve as an additional feature that is combined with
previously extracted features, potentially helping to improve
the model’s accuracy.

This research will combine HOG and LBP feature
extraction and apply the extracted data to a CNN classifier.
From the outset, CNN already has a feature extraction pro-
cess in its initial stages. When CNN is training, especially
during feature extraction, it strives to discover new, hidden,

innovative, and unique features that can be effectively used
for classification [17]. Therefore, if the initial data to be
extracted by CNN has already undergone prior extraction,
it will facilitate CNN in learning this information, which
will, in turn, help improve CNN’s accuracy. LBP, acting as
a preprocessing step, can provide a clear facial image by
ignoring other features like lighting and color, while HOG
will work to extract facial features such as the eyes, mouth,
and others in the form of a feature vector. Finally, CNN will
learn the patterns of the previously extracted facial features
for classification.

2. METHODS
On the faces of individuals with autism, there are

biomarkers that can be used to differentiate between those
with and without autism. This research aims to design a
machine learning model capable of determining whether a
person has autism. This study utilizes CNN (Convolutional
Neural Network) as the method to classify a dataset of
digital images, enhanced by combined feature extraction of
Local Binary Pattern and Histogram of Oriented Gradients
to improve detection accuracy. We also comparing our
method with the others method [18] that using LBP and
HOG as a direct input. The research will be divided into
four scenarios: using CNN, CNN + LBP, CNN + HOG, and
CNN + LBP + HOG, and CNN+LBP+HOG (direct input).

Figure 1. Research Architecture

A. Dataset
The data used comes from Kaggle [19] and is publicly

available. The dataset consists of 1470 images of faces of
autistic children and 1470 images of faces of non-autistic
children, with varying sizes. This dataset is derived from
photos collected from the internet, and the actual classes,
consisting of autistic and non-autistic, were determined by
the dataset owner based on their search results. However,
several studies have used this dataset [20][21]. The dataset
is divided into three parts: training, validation, and test, as
shown in Table I. There are 1176 photos for each class
(Autistic and Non-Autistic) in the training set, 144 photos
for each class in the validation set, and 150 photos for each
class in the test set. An artificial dataset will also be added
specifically for the training data with preprocessing such as
rotation, zoom, and shear. These data will be labeled with
label 0 for the Autistic class and label 1 for the Non-Autistic
class.
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TABLE I. Dataset Description

Dataset Composition Percentage

Training 1176 Autistic
1176 Non-Autistic 80 %

Validation 144 Autistic
144 Non-Autistic 9,8%

Test 150 Autistic
150 Non-Autistic 10,2%

B. Preprocessing
Preprocessing will be conducted for all four scenarios.

This stage is divided into four parts:

1) Resize the images to 224 x 224 pixels.
2) Normalize the pixel values from the original range

of 0 to 255 to a range of 0 to 1.
3) Convert the images to Grayscale, resulting in dimen-

sions of (224, 224, 1).
4) Apply rotation, zoom, and shear to the Artificial

Dataset specifically for the training set. Rotation will
vary from 0 to 180°. Zoom will range from 1.3 times
the image size to 0.7 times the image size. Finally,
the shear intensity will vary from 0 to 0.2.

5) Set the batch size for training and validation to 32,
and for testing to 30.

C. Local Binary Pattern (LBP)
The application of Local Binary Pattern (LBP) is per-

formed to produce a digital image in the form of a feature
map that provides high-level information such as edges
(high-level features), thereby reducing the workload of the
CNN and simultaneously facilitating the learning process.
In this study, parameters such as a radius of 1 will be
used, and it will be applied to 8 points, utilizing the LBP
rotation invariance type to produce images like those shown
in Figure 2, Figure3, and Figure4.

D. Histogram of Oriented Gradients (HOG)
The application of Histogram of Oriented Gradients

(HOG) is essentially a feature extraction method to identify

Figure 2. Normal image

Figure 3. Default LBP

Figure 4. Rotation invariant LBP

important information within the image. Additionally, the
application of HOG can reduce unnecessary information,
thereby speeding up the extraction process. In this study,
the parameters used will include a cell size of 8 x 8, a
block size of 2 x 2 cells, and 9 bins consisting of 0°, 20°,
40°, 60°, 80°, 100°, 120°, 140°, 160°. The feature vector
generated from this application will be used for training,
validation, and testing the model.

E. Convolutional Neural Network (CNN)
This study proposes two different CNN architectures,

namely CNN-1 and CNN-2, as shown in Figure 6 and

Figure 5. Results of Applying HOG
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Figure 6. CNN-1 Architecture

Figure 7. Each architecture consists of Convolutional Layer,
Max Pooling, Dropout, Flattening, Fully Connected Layer,
and Output Layer. The feature fusion is performed for CNN
+ HOG and CNN + LBP + HOG scenario before entering
the fully connected layer. The difference between the two
architectures lies in the fully connected layer, where CNN-
1 uses 2 dense layers, while CNN-2 uses 1 dense layer
and 1 Dropout. The direct input architecture is based on
a model from another study [18]. In each architecture,
hyperparameter tuning will be applied to the convolutional
layer, dropout, and dense layer. Each convolutional layer
and dense layer will use ReLu and the dropout layer will
use softmax as the activation function. The training process
will run for 60 epochs, and an early stop will be applied
if the model does not show improvement for the next 10
epochs.

F. Hyperparameter Tuning for CNN
This stage will involve tuning several hyperparameters

in the CNN-1 and CNN-2 architectures, specifically the
number of filters in the Convolutional Layer, the number
of neurons in the Dense Layer, the Dropout rate, and the
Learning Rate. In both CNN-1 and CNN-2 architectures,
the first Convolutional Layer will apply a random value
between 32 and 128, the second Convolutional Layer will
apply a random value between 32 and 64, and the third
or fourth Convolutional Layer will apply a random value
between 16 and 32. The configuration of the Dense Layer
differs between the CNN-1 and CNN-2 architectures. CNN-
1 consists of two Dense Layers, where the first Dense Layer
will apply a random value between 8 and 32, and the second
Dense Layer will apply a random value between 16 and 64.
The CNN-2 architecture has only one Dense Layer, which
will apply a random value between 8 and 32. The Dropout
hyperparameter in both CNN-1 and CNN-2 architectures
will be selected from three possible values: 0.7, 0.6, and

Figure 7. CNN-2 Architecture

Figure 8. CNN Direct Input

0.5. Lastly, the learning rate will be set by choosing between
two values: 0.0001 and 0.00001.

The tuning process will be conducted using the random
search method with 10 trials. Each trial will produce a
model that will then undergo training for 20 epochs, during
which the best validation accuracy from all 20 epochs will
be recorded. The models obtained from the 10 trials will
then be ranked from the highest to the lowest validation
accuracy.

G. Evaluation
At this stage, an evaluation of the resulting model will

be conducted. The aspects to be evaluated are accuracy,
precision, and recall for 5 scenarios. The first scenario
involves not applying either LBP or HOG, the second
scenario applies only LBP, the third scenario applies only
HOG, and the final scenario applies both LBP and HOG.
Accuracy, precision, recall, and F1-Score are used to assess
the performance of the CNN in each scenario, which will
then be compared to find the best accuracy in line with the
objectives of this study.

3. RESULTS AND DISCUSSIONS
The research was conducted according to the steps previ-

ously described, and results were obtained for each scenario
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TABLE II. Testing results on the CNN scenario with the CNN-1
architecture

Model P (%) R (%) F (%) Acc (%)

Model 1 72 75 74 73
Model 2 67 83 74 71
Model 3 73 83 78 76
Model 4 69 80 74 72
Model 5 64 9 16 52
Model 6 0 0 0 50
Model 7 49 90 64 48
Model 8 50 89 64 50
Model 9 50 100 67 50

Model 10 0 0 0 50

TABLE III. Testing results on the CNN scenario with the CNN-2
architecture

Model P (%) R (%) F (%) Acc (%)

Model 1 50 100 67 50
Model 2 0 0 0 50
Model 3 50 100 67 50
Model 4 50 100 67 50
Model 5 80 3 5 51
Model 6 50 100 67 50
Model 7 50 100 67 50
Model 8 0 0 0 50
Model 9 0 0 0 50

Model 10 71 23 34 56

using two different architectures, with each architecture
consisting of 10 different models, bringing the total to 20
models. Specifically, for the CNN+LBP+HOG direct input
scenario, only one architecture was used, resulting in 10
models.

A. CNN Scenario
The results obtained in the CNN scenario are shown

in Table II for the CNN-1 architecture and Table III for
the CNN-2 architecture. The best model in this scenario
is the third model in the CNN-1 architecture. This model
was trained for 60 epochs. After the training process, the
accuracy and loss graphs for this model were obtained, as
shown in Figure 9 and Figure 10. These graphs indicate that
the model did not experience overfitting, as evidenced by
the loss value, which tended to decrease during both training
and validation, and by the accuracy graphs for both training
and validation, which tended to increase. The evaluation
results are obtained after testing on 300 images, with an
accuracy of 76%, precision of 73%, recall of 83%, and an
F1-Score of 78%.

B. CNN + LBP Scenario
The results for the CNN + LBP scenario are shown

in Table IV for the CNN-1 architecture and Table V for
the CNN-2 architecture. The best model in this scenario
is found in the CNN-1 architecture, specifically the third

Figure 9. The accuracy graph of the best model in the CNN scenario

Figure 10. The loss graph of the best model in the CNN scenario

model. This model was trained for 60 epochs, and after
the training process, the accuracy and loss graphs were
obtained as shown in Figure 11 and Figure 12. These graphs
indicate that the model did not experience overfitting or
underfitting, as the accuracy graphs for both training and
validation tended to increase, and the loss value tended to
decrease, although there was no significant decrease before
the 15th epoch. The evaluation results are obtained after
testing on 300 images, with an accuracy of 78%, precision
of 75%, recall of 83%, and an F1-Score of 79%.

C. CNN + HOG Scenario
The results for the CNN + HOG scenario are shown

in Table VI for the CNN-1 architecture and Table VII for
the CNN-2 architecture. The best model in this scenario is
the third model in the CNN-2 architecture. Training was
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TABLE IV. Testing results on the CNN + LBP scenario with the
CNN-1 architecture

Model P (%) R (%) F (%) Acc (%)

Model 1 73 83 78 76
Model 2 74 81 77 76
Model 3 75 83 79 78
Model 4 59 31 40 55
Model 5 51 65 57 52
Model 6 58 45 50 56
Model 7 57 9 15 51
Model 8 55 24 33 52
Model 9 59 28 38 54

Model 10 74 76 75 74

TABLE V. Testing results on the CNN + LBP scenario with the
CNN-2 architecture

Model P (%) R (%) F (%) Acc (%)

Model 1 50 100 67 50
Model 2 50 100 67 50
Model 3 0 0 0 50
Model 4 50 100 67 50
Model 5 56 33 42 54
Model 6 50 100 67 50
Model 7 47 49 48 47
Model 8 50 59 54 50
Model 9 52 8 14 50

Model 10 50 100 67 50

Figure 11. The accuracy graph of the best model in the CNN + LBP
scenario

Figure 12. The loss graph of the best model in the CNN + LBP
scenario

TABLE VI. Testing results on the CNN + HOG scenario with the
CNN-1 architecture

Model P (%) R (%) F (%) Acc (%)

Model 1 66 81 73 70
Model 2 68 82 75 72
Model 3 70 76 73 71
Model 4 68 79 73 71
Model 5 72 76 74 73
Model 6 74 63 68 71
Model 7 74 66 70 71
Model 8 70 68 69 69
Model 9 74 69 72 73
Model 10 77 65 71 73

conducted for 60 epochs, resulting in accuracy and loss
graphs as shown in Figure 13 and Figure 14. These graphs
indicate that the model did not experience overfitting or
underfitting, as shown by the accuracy graph, which tended
to increase, although there was a slight drop and some
stagnation in the validation accuracy. However, the loss
graph tended to decrease, indicating that the model was
able to learn patterns in the available data. The evaluation
results are obtained after testing on 300 images, with an
accuracy of 75%, precision of 75%, recall of 78%, and an
F1-Score of 75%.

D. CNN + LBP + HOG Scenario
The results for the CNN + LBP + HOG scenario

are shown in Table VIII for the CNN-1 architecture and
Table IX for the CNN-2 architecture. The best model in this
scenario is the fourth model in the CNN-2 architecture. This
model was trained for 60 epochs, and the resulting accuracy
and loss graphs are shown in Figure 15 and Figure 16. These
graphs indicate that the model did not experience overfit-
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TABLE VII. Testing results on the CNN + HOG scenario with the
CNN-2 architecture

Model P (%) R (%) F (%) Acc (%)

Model 1 70 73 71 71
Model 2 70 73 71 71
Model 3 73 78 75 75
Model 4 75 71 73 73
Model 5 74 67 70 72
Model 6 74 69 71 72
Model 7 73 71 72 72
Model 8 70 67 68 69
Model 9 75 71 73 74

Model 10 73 74 74 73

Figure 13. The accuracy graph of the best model in the CNN +
HOG scenario

Figure 14. The loss graph of the best model in the CNN + HOG
scenario

TABLE VIII. Testing results on the CNN + LBP + HOG scenario
with the CNN-1 architecture

Model P (%) R (%) F (%) Acc (%)

Model 1 73 77 75 74
Model 2 74 78 76 75
Model 3 73 78 75 75
Model 4 73 73 73 73
Model 5 74 80 77 76
Model 6 74 77 75 75
Model 7 74 73 73 74
Model 8 74 67 71 72
Model 9 79 70 74 76
Model 10 74 71 72 73

TABLE IX. Testing results on the CNN + LBP + HOG scenario
with the CNN-2 architecture

Model P (%) R (%) F (%) Acc (%)

Model 1 73 82 77 76
Model 2 74 75 74 74
Model 3 73 82 77 76
Model 4 79 81 80 80
Model 5 76 60 67 70
Model 6 70 85 77 74
Model 7 75 63 68 71
Model 8 77 65 71 73
Model 9 75 63 68 71
Model 10 76 65 70 72

ting or underfitting. It can be observed that the validation
accuracy graph fluctuates significantly with each epoch, but
the validation loss graph tends to decrease with each epoch,
indicating that the model is continuously learning the data
patterns. The evaluation results are obtained after testing on
300 images, with an accuracy of 80%, precision of 79%,
recall of 81%, and an F1-Score of 80%.

E. CNN + LBP + HOG Direct Input Scenario
The results for the CNN + LBP + HOG Direct Input

scenario are shown in Table X for the CNN + LBP +
HOG Direct Input architecture, with the best model in this
scenario being the fifth model. This model was trained for
36 epochs, and the resulting accuracy and loss graphs are
shown in Figure 17 and Figure 18. The graphs indicate that
the model was close to overfitting, so early stopping was
applied to prevent it. It can be observed that the validation
accuracy graph tends to increase, although it occasionally
drops, while the validation loss graph generally decreases
but rises again in the last epoch, indicating that the model
could potentially overfit if training were continued. The
evaluation results obtained after testing on 300 images, with
an accuracy of 68%, precision of 68%, recall of 69%, and
an F1-Score of 68%.
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Figure 15. The accuracy graph of the best model in the CNN + LBP
+ HOG scenario

Figure 16. The accuracy graph of the best model in the CNN + LBP
+ HOG scenario

TABLE X. Testing results on the CNN + LBP + HOG Direct Input
scenario

Model P (%) R (%) F (%) Acc (%)

Model 1 63 63 63 63
Model 2 62 64 63 63
Model 3 65 63 64 64
Model 4 66 66 66 66
Model 5 68 69 68 68
Model 6 71 62 66 68
Model 7 65 57 60 63
Model 8 61 52 56 59
Model 9 62 59 60 61

Model 10 66 57 61 64

Figure 17. The accuracy graph of the best model in the CNN + LBP
+ HOG Direct Input scenario

Figure 18. The loss graph of the best model in the CNN + LBP +
HOG Direct Input scenario

F. Analysis
Based on the five scenarios that have been conducted,

the best results were obtained in the CNN + LBP +
HOG scenario with an accuracy of 80%. Compared to the
CNN scenario, the LBP feature extraction, which serves
as preprocessing, and the combination of LBP and HOG
feature fusion are better than not using feature extraction.
This aligns with the statement by Simon and Uma (2020),
which asserts that if the initial data to be extracted by CNN
has already undergone prior extraction, it will facilitate
CNN in learning the information, thereby improving CNN’s
accuracy. The lower accuracy in the CNN + HOG scenario
compared to the CNN scenario indicates that feature fusion
with images that have not had their features extracted before
entering the convolutional layer has not been effective in
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TABLE XI. Comparison of accuracy for each scenario

Scenario Precision(%) Recall(%) F1-Score(%) Accuracy(%)

CNN 73 83 78 76
CNN + LBP 75 83 79 78
CNN + HOG 73 78 75 75

CNN + LBP + HOG 79 81 80 80
CNN + LBP + HOG Direct Input 68 69 68 68

helping CNN identify patterns in faces that can distinguish
individuals with autism from those without.

The CNN + LBP + HOG scenario also produced better
accuracy compared to the CNN + LBP + HOG Direct Input
scenario, even though feature extraction was applied in the
CNN + LBP + HOG Direct Input scenario as suggested by
Simon and Uma (2020). This indicates that using HOG as a
feature extraction method was less effective in assisting the
feature extraction process in the CNN convolutional layer,
leading to CNN’s inability to effectively learn patterns in
the faces of individuals with autism. The CNN + HOG
scenario also resulted in better accuracy compared to the
CNN + LBP + HOG Direct Input scenario, indicating that
feature fusion is more appropriately used on facial image
datasets for autism detection.

This study concludes that applying LBP and HOG
feature extraction to digital image datasets can help im-
prove CNN’s accuracy in early autism detection. In this
context, LBP serves as preprocessing to assist the CNN
convolutional layer in the feature extraction process. The
HOG feature extraction, which extracts features that have
already been preprocessed by LBP, is used in combination
with the features extracted by CNN, thereby enriching the
information in the image, which positively impacts CNN’s
classification accuracy in detecting autism.

4. CONCLUSION AND SUGGESTION
A. Conclusion

This study found that the combined feature extraction
using Local Binary Pattern (LBP) and Histogram of Ori-
ented Gradient (HOG) can improve the accuracy of the
CNN model in the case of autism detection using a digital
facial image dataset. This demonstrates that the use of
combined feature extraction can aid the learning process
of the model by providing important information present
in facial images, which positively impacts the model’s ac-
curacy. Additionally, the combination of feature extraction
methods resulted in better accuracy compared to using only
one feature extraction method in this case. However, this
combination must be applied correctly to avoid making it
difficult for the CNN to recognize patterns for classification,
as this could lead to a decrease in accuracy.

B. Suggestion
Future research could build upon the findings of this

study by exploring more complex and advanced model

architectures, as well as larger and more diverse datasets.
Enhancing the diversity of the dataset in terms of quantity,
racial, and ethnic representation would likely improve the
generalizability of the model. Additionally, future studies
could investigate other combinations of feature extraction
techniques to further improve the accuracy and robustness
of the model. Experimenting with different architectures
and methodologies could lead to the development of more
effective models for the task at hand.
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