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Abstract: Smartphones and tablets are convenient and popular portable devices with processing power and memory comparable to
laptops and desktops. Their connectivity and networking capabilities add to their appeal. Operated through a touchscreen interface,
these devices are highly user-friendly. Users store important data and apps for online shopping, banking, and security system monitoring
on them. Typically, passwords, pattern locks, face-scans or PINs are used to protect these devices. However, after logging in if left
unattended, these devices can be easily accessed by an intruder. Therefore, there is a need for a secondary security mechanism to
maintain authentication even after the user logs in. And it is desirable to do this without requiring extra user attention. This paper
discusses Continuous Authentication (CA) methods for both tablets and smartphones, which provide continuous and unobtrusive user
authentication as a secondary security measure. An unobtrusive ultra-lightweight framework is introduced to implement this using a 117
users’ dataset. The authentication performance of the framework was compared with state-of-the-art methods which use smartphones
and also those using tablets. The results were competitive in both the scenarios. The framework uses only a single stroke swipe data
for authentication eliminating any need for additional sensors data and providing detection at the earliest.
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1. Introduction
Smartphones and tablets are widely used for personal

data storage and on-the-go information processing, with
processing power similar to laptops. Their portability makes
them convenient alternatives to laptops, serving various
functions such as data repositories, authentication devices,
payment tools, entertainment, security controls, and more
[1]. These devices typically use touchscreens, which serve
as both display and input interfaces, enhancing design
and space efficiency. Due to their widespread use, robust
security measures are essential to distinguish between legiti-
mate and illegitimate users, preventing unauthorized access.
Security can be addressed in two ways: first, through initial
user authentication via methods like biometrics, passwords,
or face scans; and second, through continuous or inter-
mittent verification during device use, which helps prevent
unauthorized access [1].

2. Touch Based Continuous Authentication (TCA)
Touch-based Continuous Authentication (TCA) refers to

the ongoing verification of a user’s identity on a tablet

or smartphone after the initial login. This process relies
on the user’s touch interactions, such as tapping, typing,
and swiping, which fall under behavioral biometrics. Each
user’s touch behavior is unique, allowing for the creation
of a digital signature or touch behavioral profile [1]. TCA
can function through various methods, including (a) drawn
patterns, (b) fingerprints, (c) tap/type phrases, (d) touch or
tap Captchas, and (e) Passwords/PINs/OTPs.

A. Importance of TCA
The importance of Touch-based Continuous Authenti-

cation (TCA) as a secondary defense for portable devices
is evident in this scenario: After logging in via password,
pattern, facial recognition, or fingerprint, a legitimate user
leaves the device unattended and unlocked. This leaves the
device vulnerable to unauthorized access. With TCA, such
threats can be detected and blocked immediately.

TCA implementation requires no extra hardware, utiliz-
ing casual user inputs for data collection. Unlike biometric
methods, compromised TCA profiles can be easily re-
placed. However, some TCA approaches may be obtrusive,
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Figure 1. Swipe Characteristics on Touchscreen

requiring explicit user actions. This paper introduces an
unobtrusive TCA method. Additionally, TCA should detect
impostors quickly, preventing malicious activities.

B. Swipes
The most common activity that the users of these devices

perform are the swipes on its touch screen and it greatly
influences users’ experience [2]. Technically, a swipe can
be defined as an input modality wherein the user makes
contact with the touchscreen of the device with a finite
sequence of consecutive points, say p1, p2, . . . , pn. Each
of these swipes has characteristics such as starting point,
velocity, area, pressure, ending point, etc. [3][4].

3. Literature Review
Although, the number of research works conducted in

the domain of touchscreen-based tablets with regard to
continuous authentication is very few, a good number of re-
search works based on swipe characteristics on touchscreen-
based phones have been conducted. Some of the works uses
sensor data also along with the touch characteristics. Due
to its high relevance across different kinds of touchscreen
devices, all these swipes’ characteristics-based research
works for both phones and tablets have been discussed
below.

In the works of Naji et. al. [3], a Convolutional Neural
Network based continuous authentication system is used
which authenticates swipe gestures of 55 users of mobile
devices resulting in accuracy of 92.24%, recall of 90.2%,
precision of 84.71% and F1 score of 86.93%, respectively.

Mallet et. al. [5] applied machine learning algorithms,
namely – Random Forest, Support Vector Machine, and

K-Nearest Neighbor on the touch dynamics and phone
movement datasets of 100 users and obtained the best au-
thentication performances for the Random Forest as 81.74%
in terms of accuracy, 63.06% in terms of precision, 97.35%
in terms of recall, and 75.34% in terms of F1 score.

Machine Learning binary classifiers including Random
Forest, K-Nearest Neighbor, and Support Vector Machine
were employed in the work of Nascimento et. al. [6] to
determine the authenticity of specific user actions based on
touch dynamics in a dataset of 15 tablet users. Accuracy
scores ranging from 78 - 90%, precision scores ranging
from 88 - 95%, recall scores ranging between 88 - 94%,
and F1 Scores in the range of 88 - 94% were obtained.

A Random Forest based method was introduced by
Gattulli et. al. [7] for continuous user verification while
using a smartphone and to identify illegitimate users during
a reading activity. The works was carried out on a dataset
of 20 users comprising of data from touch and hardware
sensors. An accuracy of 96% was obtained while the F1
Score was 95%.

In a work by Aaby et. al. [8] the Extra Trees Classifier
and Gradient Boosting algorithms were used on a 35-user
dataset. While the accuracy of the method is not known, it
could identify a user by using at least 3 strokes.

A related work by DeRidder et. al. [9] demonstrates
the effectiveness of touch dynamics for user authentica-
tion using ML classifiers – Random Forest and K-Nearest
Neighbor on a dataset of 25 users playing mobile games.
The Random Forest algorithm performed better than K-
Nearest Neighbor with accuracy of 93.45%, precision of
90.76%, recall of 86.74%, and F1 Score of 88.58%.

An experiment involving 40 participants used a Neural
Network based technique resulting in accuracies of 90.04%
and F1 Score of 91.41% in the works of Pelto et. al. [10].

A user authentication method on multiple smart devices
using behavioral biometrics, combining Convolutional Neu-
ral Network and Long Short-Term Memory network was
illustrated in the exploits of Wang et. al. [11] involving a
dataset of 20 users. Sensor data from accelerometer and
gyroscope were used for both smartphones and tablets
resulting in accuracies of 99.8% and 99.2%, respectively.
However, authentication could be done only when the user
is walking.

The works of Li et. al. [12] introduces SearchAuth
which is a continuous authentication system on smartphones
using Neural Architecture Search and Auto Augmenta-
tion Search to enhance security. The technique utilizes
accelerometer, gyroscope, and magnetometer sensor data
from 88 users. Accuracy of 93.95% and F1 Score of 94.30%
are reported for the work.

It is observed that the number of users involved in most
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TABLE I. The Dataset

# Parameter Description

1 minx Minimum x coordinate within the full swipe.
2 miny Minimum y coordinate within the full swipe.
2 miny Minimum y coordinate within the full swipe.
3 maxx Maximum x coordinate within the full swipe.
4 maxy Maximum y coordinate within the full swipe.
5 eucliddist Euclidean Distance (ED) between the swipe’s first and last points.
6 Dlist List of EDs between consecutive pairs of points composing a swipe.
7 tanangle The swipe’s tangent angle.
8 tottime The time duration for the full swipe to complete.
9 vmean The swipe velocity’s mean value.
10 vstd The swipe velocity’s standard deviation.
11 vquarts0 The first quartile of velocity during the swipe.
12 vquarts1 The second quartile of velocity during the swipe.
13 vquarts2 The third quartile of velocity during the swipe.
14 amean The swipe’s mean acceleration.
15 astd The standard deviation of acceleration during the swipe.
16 aquarts0 The first quartile of acceleration during the swipe.
17 aquarts1 The second quartile of acceleration during the swipe.
18 aquarts2 The third quartile of acceleration during the swipe.
19 pmean The swipe’s mean pressure.
20 pstd The swipe’s pressure value’s standard deviation.
21 pquarts0 The first quartile of swipe’s pressure.
22 pquarts1 The second quartile of swipe’s pressure.
23 pquarts2 The third quartile of swipe’s pressure.
24 areamean The mean value of the swipe’s area.
25 areastd The standard deviation of swipe’s area.
26 areaquarts0 The first quartile of swipe’s area.
27 areaquarts1 The second quartiles of swipe’s area.
28 areaquarts2 The third quartiles of swipe’s area.
29 swipetype The direction of the swipe (left, up, right, down).

Figure 2. Distribution of No. of Users

of the works are few. The normal distribution peaks at a
little over 40 as depicted in Figure 2.

4. Background Concepts
Before introducing the proposed methodology, the sub-

sections below provide a theoretical background on the con-
cepts discussed in the paper. This involves (i) introduction
to the dataset, (ii) standardization of the data, (iii) machine
learning methods, and (iv) performance measures used.

A. The Dataset
Although many datasets in this research area are not

publicly accessible, some are available from their sources.
Most of the datasets used in the contemporary works
discussed in section 3, except one [11] uses only one type
of device, i.e. either smartphone or tablet. This work uses
a dataset, by Belman [13], which contains data from both
smartphone and tablet users, respectively.

For example, Belman [13] recently introduced a dataset
that includes data from both smartphones and tablets, de-
tailed in Table I. This dataset comprises around 1,14,660
parameter values from 15,027 swipe vectors, encompassing
29 parameters collected from 117 users. The dataset is
available at the url http://dx.doi.org/10.21227/rpaz-0h66
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B. The Methods
Based on their performance and relevance to the prob-

lem at hand, seven methods have been identified. The next
section discusses the fundamental working principles of
these methods.

1) Support Vector Machine (SVM):
To perform binary classification wherein data samples

are represented as points in space normally as

T = {(xi, yi) : 1 ≤ i ≤ m} (1)

where xi is an n-dimensional vector and yi ∈ +1,−1
[14][15][16]], one of the methods is the Support Vector
Machine (SVM). SVM creates a gap or distance between
two categories. It classifies new or unclassified data points
based on which side of the gap they fall on, with +1 for the
positive side and −1 for the negative side. A hyperplane,
which maintains the largest distance from the nearest points
of each class, separates the two categories. These nearest
points are known as support vectors [14][15][16]. Below,
in equation (2), the classification function is represented in
the following manner

f (x) = x · w − B (2)

with weight vector (w) and bias (B). During the training
process, the values for w and B are computed. To correctly
classify the training set [14][15][16], the function f must
produce positive values for positive data samples and nega-
tive values for others. This means that the equations in (3)
must be satisfied for all data points xi in T . SVM identifies
a linear separating hyperplane with the largest margin in
this higher-dimensional space [14][15][16].

xi · w − B > 0, i f yi = +1
xi · w − B < 0, i f yi = −1 (3)

Except in ideal conditions, an SVM by default may or
may not yield the desired performance which is why certain
parameter in the same may be optimized. The ‘penalty’
(usually denoted as C) and the ‘type of kernel’ being used
are two such parameters which have been optimized for this
work.

2) Decision Tree (DT):
Decision Trees (DTs) are supervised learning methods

used for both classification and regression by learning deci-
sion rules from training data to predict the target variable’s
class or value. A DT consists of nodes containing data, with
the topmost node being the root [14][15][16][17]. If the
class label is unknown, the attribute values of a tuple T are
compared to the DT, and the class prediction is found in a
leaf node reached by following a path from the root. While
constructing the DT by splitting nodes, two concepts are

used: Entropy and Information Gain. Entropy measures the
homogeneity of the dataset, indicating its degree of impurity
and heterogeneity. For a dataset like TORG with positive
and negative examples, equation (4) calculates the entropy
relative to this Boolean categorization [18].

E(TORG) = −(pposLog2 ppos + pnegLog2 pneg) (4)

where ppos and pneg are the portions of positive and
negative instances, respectively. Entropy measures dataset
impurity, and the effectiveness of an attribute in classifying
the training set can be quantified using Information Gain
(IG). IG represents the reduction in Entropy achieved by
splitting the dataset based on an attribute. Equation (5)
defines the Information Gain IG(TORG, A) for an attribute
A in relation to the dataset TORG [14][15][16][17].

IG(TORG, A) = E(TORG) − Σv∈Values(A)
|T v

ORG |

|TORG |
(5)

where Values (A) represents the complete set of possible
values for attribute A, T v

ORG is the subset of TORG for which
attribute A has value ‘v’.

3) Artificial Neural Network (ANN):
Artificial Neural Networks (ANNs), as defined by

Raschka [14], Grus [16], and Zheng [17], are mathematical
constructs consisting of interconnected ’neurons’. The input
layer receives parameter values xi (1 ≤ i ≤ n) from the
dataset, which are then passed to one or more hidden layers.
Each neuron in these layers has an activation function
and receives weighted inputs from the previous layer. The
neuron sums the weighted inputs, and if this sum exceeds a
threshold τ, it outputs 1; otherwise, it outputs 0. The final
layer, the output layer, receives inputs from the last hidden
layer and provides the network’s final output, which can be
either singular or multiple. Furnished below in equation (8)
is the mathematical model of a neuron given in [14][16][17]

y = θ(Σn
i=1 = wixi − τ) (6)

The NN learns from the training samples in iterations
and the performance of the network may be optimized using
its multiple number of parameters.

4) Extremely Randomized Trees (ERT / ETC):
The Extra Trees Classifier (ETC) or Extremely Random-

ized Trees (ERT) ensemble technique generates predictions
by averaging the outcomes of multiple randomly created
trees [19]. Each tree is constructed by selecting the split
that maximizes the splitting score from a set number of
random splits at each node, with both the threshold τ and
variable xi chosen randomly. Trees are built iteratively until
every leaf node and end node contains learning samples
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below a predetermined threshold nmin or is pure in terms of
outputs [19].

5) Adaboost (ADB):
Machine learning ensemble methods use the AdaBoost

algorithm, or Adaptive Boosting (ADB), which redistributes
weights so that incorrectly classified instances receive
higher weights. This helps reduce bias and variation in
supervised learning. During training, AdaBoost creates n
Decision Trees (DTs), with each subsequent tree focusing
on the records that were misclassified by previous trees.
This process continues until the desired number of base
learners is achieved [14][15][19].

6) Random Forest (RF):
The Random Forest (RF) algorithm may be described

as a classifier made up of a number of tree structured
classifiers {h(x, θk), k = 1, . . .} where the θk are independent
and identically distributed random vectors wherein each tree
casts a single vote for the most prevalent class at input
x [14][15][20]. The algorithm operates as follows: (i) n
random records are selected at random from a data set
containing k records; (ii) individual Decision Trees (DT)
are built for each sample; (iii) each DT produces an output;
and (iv) the final output is evaluated based on majority
voting (for classification) and averaging (for regression),
respectively.

7) Extreme Gradient Boost (XGB):
Extreme Gradient Boosting (XGB) [14][19] is a tree-

based supervised machine learning method used for both
classification and regression. It utilizes decision trees as
base estimators, built using residuals. XGBoost’s unique
tree-building approach involves determining optimal node
splits through the Similarity Score (SS) and Gain, as shown
in equations (7) and (8).

S S =
(Σn

i=1Residuali)2

Σn
i=1[PPi ∗ (1 − PPi)] + λ

(7)

where, (i) Residual is the real value that was seen or
anticipated, (ii) the likelihood of an occurrence determined
in a prior stage is known as the Previous Probability (PP),
(iii) Lambda is a parameter for Regularization.

The Gain is calculated using the following formula after
obtaining the Similarity Score for each leaf as shown in
equation (10) with Left Leaf (LL), is Right Leaf (RL) and
Root (RT ), respectively.

Gain = LLsimilarity + RLsimilarity − RTsimilarity (8)

C. Performance Metrics
While many studies focus on accuracy and equal error

rate in relation to authentication performance, additional

metrics are also important for a complete assessment. This
includes evaluating how well the system flags genuine users
as impostors or intruders as legitimate users. Classification
concepts introduced in [14] are defined below.

True Positives (T+): The accurately identified class
samples are known as True Positives.

True Negatives (T−) Correctly detected samples that do
not belong in the class are referred to as True Negatives.

False Positives (F+): False Positives are the quantity of
samples that were incorrectly identified as belonging to the
positive group.

False Negatives (F−): Samples that were mistakenly
assigned to the negative class whereas, in reality, they
belong to the positive class.

Based on the above, this work lists the related metrics
below in equations (9), (10), (11) and (12) which are used
for measuring the overall performance of the CA technique.

Accuracy (A) =
(T+ + T−)

(T+ + T− + F+ + F−)
(9)

Recall (R) =
T+

(T+ + F−)
(10)

Precision (P) =
T+

(T+ + F+)
(11)

F1 S core =
(2 ∗ P ∗ R)

(P + R)
(12)

5. Proposed Framework
The proposed framework involves a series of experi-

ments described below in subsection 5.2. However, prior to
that, the data are to be processed before being inputted to
the various machine learning techniques.

A. Data Processing
To address scale differences in the original dataset,

either z − score or normalization techniques are applied
[21]. Z − score adjusts parameter values to a 0 to 1
range, while normalization scales them between −1 and
+1. This process eliminates the bias from parameters with
wider value ranges, ensuring uniformity. Such consistency
is crucial for unbiased classification results in most machine
learning methods. Equations (13) and (14) in [21] show how
z−score and normalized values are calculated. The z−score
value si for a parameter value xi of a parameter x is given
by

si =
(xi − M)

S
(13)
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where, the symbol S represents the standard deviation
while M is the mean value of x.

The normalized value ni of a given parameter value xi
(belonging to a parameter x having minimum and maximum
values xmin and xmax) is given by

ni =
(xi − xmin)

(xMax − xmin)
(14)

The data in the dataset need to be standardized before
further processing.

B. Parameter Bk

In the original swipes portion of the BB-MAS dataset
denoted in Table 1, there is a parameter named Dlist which
is explained below.

Let, (x1, y1), (x2, y2), . . . , (xp, yp) be the consecutive co-
ordinates composing a single ‘swipe’. Then, the Euclidean
distance [17] between any two consecutive points (xd, yd),
(xd+1, yd+1) is given by

e =
√

(xd − xd+1)2 + (yd − yd+1)2 (15)

Based on the above concepts and equation (15), param-
eter Dlist is defined below by the equation (16)

Dlist = {e1, e2, ..., ep−1} (16)

where e1 = Euclidean distance between (x1, y1) and
(x2, y2), e2 = Euclidean distance between (x2, y2) and
(x3, y3), and so on. Based on the above concepts, a pa-
rameter named Bulk (Bk) has been proposed as equation
(17)

Bk = 1 + |Dlist| (17)

C. The Experiments
Initially, the original standardized swipe data of all the

N number of users of the device (smartphones and tablets,
separately) is considered as DORG. Subsequently a new
parameter Bk is derived which is detailed in the next sub-
section below. A new dataset DAUG is created from the
concatenation of DORG and Bk. Consider U as the total
set of N distinct number of users. For each user u j ∈ U,
an intruder dataset I j is created from the (N − 1) other
users. A set of 7 machine learning techniques discussed
in the previous section 4, are applied on each of these u j
users using 10-fold cross validation [17][20]. The average
of the results for the performance parameters (Accuracy -
A, Precision - P, Recall - R and F1 score) are collected in
set V . The experiment is repeated for DAUG and the average

of the performance parameters are collected in V . Figure 3
illustrates the data processing and proposed methodology.

6. The Algorithm
An algorithm is proposed to implement the LUCIDS

framework for the experiments and is detailed below as
Algorithm 1.

Algorithm 1: LUCIDS Implementation
1 Define TORG = original swipes dataset for
tablet users

2 Define TAUG = TORG augmented with
parameter BK

3 Define PORG = original swipes dataset for
smartphone users

4 Define PAUG = PORG augmented with
parameter BK
/* The steps 5 - 8, 12 and 17 will be
applied for DX = TORG, DX = TAUG, DX
= PORG and DX = PAUG in sequence */

5 Define M = {mi : 1 ≤ i ≤ 7} /* The set of
seven methods */

6 Define V = {vi : vi is a tuple (va, vb, vc,
vd) where va is the accuracy score of mi,
vb is the precision score of mi, vc is
the recall score of mi, and vd is the F1
score of mi }

7 Define U = {u j : 1 ≤ j ≤ N} where the
distinct number of users in DX is N
/* Set of Users */

8 for j = 1 to N do
9 Define U j = {x : x ∈ u j and U j ⊂ DX}

/* Set of swipes for user u j */
10 Define I j = {r : r ∈ DX and r < U j}

/* Intruder dataset I j for user u j
contains n tuples where
n = (N − 1) × K and
K =
⌊
no. of u j tuples in DX

N−1

⌋
*/

11 Define D j = U j ∪ I j
/* Experimental dataset for user u j */

12 for i = 1 to 7 do
13 for j = 1 to N do
14 Do mi on D j with 10-Fold Cross

Validation
15 Calculate pmavg for method mi

/* Average of performance metrics
*/

16 Set vi = pmavg

17 Output V

7. Results and Discussions
The algorithm from Section 6 was applied to four

datasets: TORG, TAUG, PORG, and PAUG in four separate
experiments labeled as Sets 1, 2, 3, and 4. TORG and PORG
were referred to as DORG, while TAUG and PAUG were
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Figure 3. Implementation of the LUCIDS framework

termed DAUG. The algorithm generated balanced datasets,
D js, using factor K, and applied 10-fold cross-validation
[17][20] across 7 methods.

Experiment Set 1 (TORG) achieved the highest accuracy
(92.07%) and F1 score (93.04%) with Extreme Gradient
Boost (XGB). Set 2 (TAUG) with BK augmentation also saw
XGB excel, with 92.17% accuracy and 93.11% F1 score. In
Set 3 (PORG), XGB led in accuracy (93.77%), and AdaBoost
(ADB) in F1 (93.61%). Set 4 (PAUG) saw the Support
Vector Machine (SVM) dominate, with 94.32% accuracy
and 94.39% F1 score. Table II presents these results.

Overall, augmenting datasets with BK improved per-
formance, with XGB excelling for tablets and SVM for
smartphones. Figures 4, 5, 6 and 7 shows the comparative
performance results.

8. Improvements over the State-of-the-ArtMethods
The proposed LUCIDS framework resulted in the fol-

lowing improvements over the State-of-the-Art methods:

(1) both smartphones and tablet devices are included in

Figure 4. Performance on dataset TORG

this work which most of the contemporary works did not
include.

(2) authentication is done without requiring any addi-
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TABLE II. Experiment Sets

# Dataset Method Accuracy F1 Score

Set 1 : Tablets (original dataset)

1 TORG ADB 0.9160 0.9250
2 TORG DT 0.8399 0.8519
3 TORG ETC 0.9149 0.9251
4 TORG NN 0.8821 0.8953
5 TORG RF 0.8939 0.9023
6 TORG SVM 0.8951 0.9095
7 TORG XGB 0.9207 0.9304

Set 2 : Tablets (dataset with parameter BK)

8 TAUG ADB 0.9161 0.9247
9 TAUG DT 0.8411 0.8513

10 TAUG ETC 0.9161 0.9248
11 TAUG NN 0.8864 0.9007
12 TAUG RF 0.8905 0.8967
13 TAUG SVM 0.8960 0.9113
14 TAUG XGB 0.9217 0.9311

Set 3 : Phones (original dataset)

15 PORG ADB 0.9376 0.9361
16 PORG DT 0.8832 0.8795
17 PORG ETC 0.9337 0.9309
18 PORG NN 0.9333 0.9326
19 PORG RF 0.9196 0.9134
20 PORG SVM 0.9322 0.9321
21 PORG XGB 0.9377 0.9359

Set 4 : Phones (dataset with parameter BK)

22 PAUG ADB 0.9369 0.9352
23 PAUG DT 0.8838 0.8808
24 PAUG ETC 0.9348 0.9320
25 PAUG NN 0.9342 0.9334
26 PAUG RF 0.9172 0.9106
27 PAUG SVM 0.9432 0.9439
28 PAUG XGB 0.9372 0.9350

Figure 5. Performance on dataset TAUG

Figure 6. Performance on dataset PORG

Figure 7. Performance on dataset PAUG

tional sensors’ data because the method does not require
the user to perform any additional activities like walking,
reading, etc.

(3) most of the contemporary methods have used
datasets with a few number of users. The peak in the Normal
Distribution curve for the same spikes near above 40 (Figure
II). This work uses over 100 numbers of users.

(4) authentication is done using only a single swipe from
the user. The ensures intruder detection at the earliest before
the intruder is able to perform any further activities.

Separately, a comparison of LUCIDS with the State-of-
the-Art methods are described in Table III.

The basic comparatives between State-of-the-Art meth-
ods and LUCIDS in terms of No. of Users, Accuracy and
F1 score is illustrated in Figure 5.
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# Work Method Users Data Description Performance Remarks
1 Naji [3] CNN based

continuous
authentication
system

55 Swipe gestures;
Subsets of
BioIdent and
HMOG datasets

92.24% (Acc)
86.93% (F1)

- works in Smartphones

2 Mallet [5] RF, SVM,
and KNN
based
methods

100 Touch dynamics /
phone movement
data from BioIdent
and HMOG
datasets

81.74% (Acc)
75.34% (F1)

- works in Smartphones
- Sensor data required

3 Nasci-
mento [6]

RF, KNN,
and SVM
based
classifiers

15 Customized
dataset on touch
actions of user

78-90% (Acc)
88-94% (F1)

- works in Tablets

4 Gattulli [7] RF based
method for
continuous
user
verification

20 Subset of HMOG
dataset

96.00% (Acc)
95.00% (F1)

- works in Smartphones
- works while reading

5 Aaby [8] ETC and
Gradient
Boosting
based
methods

35 Subset of
Touchalytics
dataset

(Not
mentioned)

- works in Smartphones
- needs Min. 3 strokes

6 DeRidder
[9]

RF and KNN
based
classifiers

25 Touch dynamics
data from users
playing mobile
games

93.45% (Acc)
88.58% (F1)

- works in Smartphones

7 Pelto [10] NN based
technique

40 Data from
participants
playing mobile
games

90.04% (Acc)
91.41% (F1)

- works in Smartphones

8 Wang [11] Combination
of CNN and
LSTM for
authentication
when user is
walking

20 Sensor data from
accelerometer and
gyroscope

Smartphones:
99.80% (Acc)
Tablets:
99.20% (Acc)

- works in Smartphones
- works in Tablets
- sensor data required

9 Li [12] SearchAuth:
based on NN
architecture

88 Utilizes
accelerometer,
gyro, and
magnetometer
sensor data

93.95% (Acc)
94.30% (F1)

- works in Smartphones
- sensor data required

10 LUCIDS
(This
work)

Ultra-
lightweight
framework
for swipes
based
continuous
authentication

117 15,027 swipe
vectors composed
of 29 parameters
from 117 users

Smartphones:
94.32% (Acc)
94.39% (F1)

Tablets:
92.17% (Acc)
93.11% (F1)

- works in Smartphones
- works in Tablets
- needs only swipe action
- Max. 1 swipe required
- sensor data not required

TABLE III. Summary of State-of-the-Art vs. LUCIDS.

9. Conclusions and FutureWork
This paper introduces LUCIDS, an ultra-lightweight

framework for unobtrusively detecting legitimate or illegit-
imate users on smartphones and tablets during device use

after login. It leverages the user’s swipe characteristics on
the device’s touchscreen without requiring any additional or
explicit gestures or activities (such as, walking or reading
or playing games). This works as a secondary security
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Figure 8. State-of-the-Art vs. LUCIDS

mechanism performing continuous authentication in the
background based only on the user’s swipe action.

Various methods were tested on both original and
augmented swipe data incorporating a new parameter Bk.
For tablets, Extreme Gradient Boost (XGB) outperformed
other methods, while for smartphones, the Support Vector
Machine (SVM) technique was more effective. The au-
thentication results were comparable (94.32% accuracy for
smartphones, 94.39% F1 score for smartphones, 92.17%
accuracy for tablets, and 93.11% F1 score for tablets) in
comparison to other State-of-the-Art methods. Some of the
highlights of LUCIDS with respect to other State-of-the-Art
works are, firstly, it uses the highest number of users (117);
secondly, authentication is done within one single swipe
action of the user; thirdly, both types of devices, namely
smartphones and tablets are used; and lastly, it does not
require the user to perform any other additional or explicit
actions (eliminating the need for extra sensors data).

Future research in this area will explore the practicality
of user profile portability across multiple touchscreen based
devices.

10. Declarations
A. Conflict of Interest

The authors declare no conflict of interest.

B. Acknowledgements
The first author dedicates the variable Bk in the name

of his father Late Mr. Kabindra Nath Bhuyan.

C. Data Availability Statement
All data that support the findings of this study are

included in the article.

D. Ethical Approval
This research work does not require any ethical ap-

proval.

E. Funding
This research did not receive any specific grant from

agencies in the public, commercial, or not-for-profit sec-
tors.

References
[1] R. Bhuyan, S. P. K. Kenny, S. Borah, D. Mishra, and K. Das,

“Recent advancements in continuous authentication techniques for
mobile-touchscreen-based devices,” in Intelligent and Cloud Com-
puting, ser. Smart Innovation, Systems and Technologies, D. Mishra,
R. Buyya, P. Mohapatra, and S. Patnaik, Eds. Singapore: Springer,
2021, vol. 194, pp. 263–273.

[2] Y. Zhu, “The role of touch, touchscreens, and haptic technology
in interactive marketing: Evolution from physical touch to digital
touch,” in The Palgrave Handbook of Interactive Marketing, C. L.
Wang, Ed. Cham: Palgrave Macmillan, 2023.

[3] Z. Naji and D. Bouzidi, “Deep learning approach for a dynamic
swipe gestures based continuous authentication,” in Proceedings
of The 3rd International Conference on Artificial Intelligence and
Computer Vision (AICV), vol. 164. Springer, 2023, pp. 48–57.

[4] E. Ellavarason, R. Guest, and F. Deravi, “Evaluation of stability
of swipe gesture authentication across usage scenarios of mobile
device,” EURASIP Journal on Information Security, vol. 2020, no. 4,
2020.

[5] J. Mallet, “Hold on and swipe: A touch-movement based continuous
authentication schema based on machine learning,” in Proceedings
of Asia Conference on Algorithms, Computing and Machine Learn-
ing (CACML), 2022.

[6] P. G. do Nascimento, P. Witiak, T. MacCallum, Z. Winterfeldt,
and R. Dave, “Your device may know you better than you know
yourself – continuous authentication on novel dataset using machine
learning,” arXiv preprint arXiv:2403.03832, 2024.

[7] V. Gattulli, D. Impedovo, G. Pirlo, and F. Volpe, “Touch events
and human activities for continuous authentication via smartphone,”
Dental Science Reports, pp. 1–7, 2023.

[8] P. Aaby, M. V. Giuffrida, W. J. Buchanan, and Z. Tan, “An
omnidirectional approach to touch-based continuous authentication,”
Computers & Security, vol. 128, p. 103146, 2023.

[9] Z. DeRidder, N. Siddiqui, T. Reither, R. Dave, B. Pelto, M. Vana-
mala, and N. Seliya, “Continuous user authentication using machine
learning and multi-finger mobile touch dynamics with a novel
dataset,” in 9th International Conference on Soft Computing &
Machine Intelligence (ISCMI), 2022, pp. 42–46.

[10] B. Pelto, M. Vanamala, and R. Dave, “Your identity is your behavior
- continuous user authentication based on machine learning and
touch dynamics,” arXiv.org, 2023.

[11] Y. Wang, X. Zhang, and H. Hu, “Continuous user authentication on
multiple smart devices,” Information, 2023.

[12] Y. Li, J. Luo, S. Deng, and G. Zhou, “Searchauth: Neural architec-
ture search-based continuous authentication using auto augmentation
search,” ACM Transactions on Sensor Networks, vol. 19, no. 4, pp.
1–23, November 2023.

[13] A. K. Belman, L. Wang, S. S. Iyengar, P. Sniatala, R. Wright,
R. Dora, J. Baldwin, Z. Jin, and V. V. Phoha, “Insights from bb-mas



International Journal of Computing and Digital Systems 11

- a large dataset for typing, gait and swipes of the same person on
desktop, tablet and phone,” arXiv:1912.02736, 2019.

[14] S. Raschka, Y. Liu, and V. Mirjalili, Machine Learning with PyTorch
and Scikit-Learn. Birmingham, UK: Packt Publishing, 2022.

[15] H. Tatsat, S. Puri, and B. Lookabaugh, Machine Learning and Data
Science Blueprints for Finance. O’Reilly Media, 2020.

[16] J. Grus, Data Science from Scratch: First Principles with Python,
2nd ed. Sebastopol, CA, USA: O’Reilly Media, 2020.

[17] A. Zheng and A. Casari, Feature Engineering for Machine Learning:
Principles and Techniques for Data Scientists, 1st ed. O’Reilly
Media, Inc., 2018.

[18] O. Cherednichenko, D. Chernyshov, D. Sytnikov, and P. Sytnikova,

“Generalizing machine learning evaluation through the integration
of shannon entropy and rough set theory,” in Proceedings of the
8th International Conference on Computational Linguistics and
Intelligent Systems, Machine Learning Workshop, vol. 19.

[19] P. Bahad and P. Saxena, “Study of adaboost and gradient boosting
algorithms for predictive analytics,” in Algorithms for Intelligent
Systems, G. S. Tomar, N. S. Chaudhari, J. L. V. Barbosa, and M. K.
Aghwariya, Eds. Singapore: Springer, 2019.

[20] A. C. Müller and S. Guido, Introduction to Machine Learning with
Python: A Guide for Data Scientists, 2nd ed. Sebastopol, CA:
O’Reilly Media, 2021.

[21] R. Bhuyan, “Contemporary linear stochastic models for forecasting
iot time series data,” in Lecture Notes in Networks and Systems.
Springer, 2020, pp. 99–106.


	Introduction
	Touch Based Continuous Authentication (TCA)
	Importance of TCA
	Swipes

	Literature Review
	Background Concepts
	The Dataset 
	The Methods
	Support Vector Machine (SVM):
	Decision Tree (DT):
	Artificial Neural Network (ANN):
	Extremely Randomized Trees (ERT / ETC):
	Adaboost (ADB):
	Random Forest (RF):
	Extreme Gradient Boost (XGB):

	Performance Metrics

	Proposed Framework
	Data Processing
	Parameter Bk
	The Experiments

	The Algorithm
	Results and Discussions
	Improvements over the State-of-the-Art Methods
	Conclusions and Future Work
	Declarations
	Conflict of Interest
	Acknowledgements
	Data Availability Statement
	Ethical Approval
	Funding

	References

