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Abstract 

The exponential expansion of the Internet of Things (IoT) and the extensive utilization of embedded systems, 

such as health trackers and medical gadgets, pose substantial difficulties in ensuring data security, particularly 

throughout the process of transmission. Conventional cryptographic systems, albeit being very safe, are not ideal 

for these devices since they consume a significant amount of power. Lightweight Cryptography (LWC) is a 

practical option that achieves a balance between security and efficiency for devices with limited resources.  

This study examines LWC algorithms, with a specific focus on three stream ciphers that have been authorized 

by NIST: Grain, Trivium, and MICKEY. The comparison of these ciphers is based on factors such as key size, 

initialization vector (IV) size, design objectives, core features, and security attributes. The examination 

emphasizes the appropriateness of each cipher for different applications, especially in resource-constrained 

contexts.  In addition, a thorough literature analysis investigates progress made in lightweight stream ciphers, 

indicating areas where further research is needed and potential avenues for future study. The study highlights the 

necessity for effective and reliable encryption solutions specifically designed to meet the limitations of IoT 

devices.  

A new approach for generating dynamic keys is proposed to improve security in data transmission for Internet 

of Things (IoT) applications. The approach exhibits resilience against diverse attacks and successfully clears 

NIST randomness tests, guaranteeing elevated levels of security and efficiency. This research highlights the 

urgent requirement for optimal LWC algorithms to ensure the security of the ever-changing landscape of IoT 

and embedded devices. 
 

Keywords: Lightweight Cryptography (LWC), Dynamic Key Generation, Stream Cipher, Security and Efficiency, NIST 

Randomness Tests, IoT devices security 

1. Introduction 

The rapid growth of the Internet of Things (IoT) in today’s lives and the utilization of embedded 

systems such as health trackers and medical devices have brought a new challenge: securing data from 

such limited resources.[1], especially in a transition phase. Although conventional cryptosystems provide 

a higher security level, they are considered unsuitable for such devices due to the limited amount of power 

embedded systems consume[2]. The best practice that can manage the tradeoff between providing a 

suitable security level and working well with limited-resource devices is Lightweight Cryptography 

(LWC)[3].  

LWC algorithms are designed to provide an acceptable level of security for encryption while 

minimizing processing power and memory consumption compared to conventional algorithms. Unsecured 

devices are vulnerable to various attacks, such as data theft or breaches. LWC's primary goal is to protect 

data at the point of generation and during transmission [4], particularly for systems with limited 

capabilities. In the healthcare industry, LWC plays a crucial role in securing data generated by medical 

devices and ensuring the privacy of patient data.  
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It is worth mentioning that LWC is not limited to medical devices; it can secure data transmitted 

through environments like remote computing [5] and basic mobile phones[6] [7]. 

2. Light Stream Cipher Approaches 

Lightweight encryption has been extensively researched to make significant improvements that 

balance computational cost reduction against security. Objectives are focused on either lowering the 

calculation time while keeping the security level or increasing the security level with the same calculation 

cost.  

To prioritize essential factors, we conducted a comparative analysis of three stream ciphers: GRAIN, 

Trivium, and MICKEY, as explained by [8] [9], and  [10].  

According to  [8], the research examines the Grain family of efficient stream ciphers in resource-

constrained situations. The analysis covers security and how well various ciphers fight against 

cryptographic attacks. The authors of  [9] studied architecture and differential fault analysis (DFA) of 

Trivium stream cipher ASIC implementations. The study proves Trivium's fault vulnerability and retrieves 

the secret key in all tests. [10]assessed performance and security against classical cryptanalysis and side-

channel attacks e for the low-power, minimum logic gate cipher family. MICKEY excels in resource-

constrained hardware contexts but needs to improve in high-speed ones. 

The three significant algorithms are compared to indicate exciting areas with similarities and 

differences. The comparison factor was determined by considering the key size, the initialization vector 

(IV) size, the design objectives, the main characteristics, and the common uses. Table (1) provides 

comprehensive insights into each cipher, including its construction, intended application, comparative 

advantages, and security goals. 

 

Table 1. Comparison of Lightweight Stream Ciphers (Grain, Trivium, and MICKEY [1,2,3]) 

Feature Grain Trivium MICKEY 

Key Size 80 bits 80 bits 
80 bits, 128 bits 

(MICKEY-128) 

IV Size 64 bits 80 bits Varies, up to 80 bits 

Design 

Goals 

High security, low 

hardware complexity 

The simplicity and 

flexibility of hardware 

implementation 

High security, low 

complexity of hardware 

Algorithm 

Type 

LFSR and NFSR 

stream ciphers 

A stream cipher with 

three shift registers 

A stream cipher with 

irregular shift registers 

clocking 

Security 

Features 

A resistance to 

known attacks, 

including those based 

on correlation and 

algebra 

As secure as using a one-

time pad; resistant to 

common attacks 

Faster than exhaustive key 

search; no deliberate 

weaknesses 

Primary 

Features 

Flexibility in 

hardware resources, 

adjustable speed 

Hardware-efficient, low-

power consumption 

A unique clocking 

technique to enhance 

security 
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Typical 

Applications 

Resource-limited 

environments such as 

RFID tags 

Environments that require 

simplicity and low power 

Hardware platforms with 

limited resources, for 

instance RFID systems 

Security 

Analysis 

A robust solution to 

various cryptanalytic 

methods 

Provides minimal 

susceptibility to linear 

correlations 

Provides resistance to 

statistical attacks and 

complex feedback 

mechanisms 

Hardware 

Efficiency 

A highly efficient 

system with a high 

throughput potential, 

depending on the 

hardware 

Incredibly efficient at 

generating multiple bits 

per clock cycle 

The design is optimized 

for minimal hardware use, 

making it suitable for low-

power applications 

 

2. Literature Review  

This literature review provides a comprehensive review of the current state of lightweight encryption 

research. It will review various approaches and methodologies that have been proposed and analyze the 

strengths and weaknesses of different encryption schemes. This review will analyze existing literature to 

identify gaps and opportunities for future research. The goal is to contribute to the development of 

encryption solutions that are both efficient and safe, designed explicitly for resource-constrained 

applications.  The following paragraphs refer to the different studies in the context of lightweight 

encryption. 

• Stream cipher technique was specifically developed for IoT devices with limited resources as stated 

by [11]. The method employs a dynamic key-dependent strategy to attain strong security while 

minimizing overhead through basic procedures. The suggested encryption guarantees little 

transmission of errors, cheap additional costs, and a more straightforward execution, making it 

appropriate for small-scale devices. Authors of [12]  asserted a new efficient stream cipher that 

combines a chaotic system with two Nonlinear Feedback Shift Registers (NFSRs). The cipher exhibits 

strong cryptographic properties as evidenced by entropy analysis and NIST statistical tests. 

• In the analysis by  [13] the study presented a keystream generator that generates secret keys using 

YouTube thumbnails as an entropy source. The primary discovery is that the suggested technique 

offers a secure and efficient way for generating keys in near-field communication (NFC) devices, 

utilizing the inherent unpredictability of images for entropy. The paper published by [14]  highlighted 

a strategy for protecting social data by employing lightweight and selective EBCOT (Embedded 

Block Coding with Optimized Truncation) coding. The method aims to ensure security while keeping 

computing requirements minimal, making it well-suited for contexts with limited resources, such as 

the Internet of Things (IoT). It employs a selective encryption technique for essential data blocks, 

balancing security and efficiency.  

• [15] demonstrated exceptional key sensitivity and unpredictability, as verified by rigorous statistical 

studies such as entropy analysis, PDF analysis, and correlation testing. Validation experiments were 

conducted to confirm the system's resistance to well-known attacks such as statistical, differential, 

chosen/known plain-text, and brute-force attacks. Utilizing a dynamic key strategy incorporating 

dynamic substitution, permutation, and diffusion layers has dramatically augmented the cipher's 

security. In the article [16], research introduced a low-weight stream cipher that utilizes a Linear 

Feedback Shift Register (LFSR) and a Feedback with Carry Shift Register (FCSR). The design 

guarantees robust security and protection against various attacks, such as meet-in-the-middle, 



4 
 

algebraic, exhaustive, differential, and correlation attacks. [17] presented a comprehensive 

experimental demonstration of successfully breaking Trivium ciphers built using ASIC technology. 

The study illustrates the susceptibility of Trivium to differential fault analysis, successfully retrieving 

the secret key in all examined situations with minimal assumptions and under real-world 

circumstances. According to [18] , the research examined the hardware implementation of the 

Enocoro128v2 stream cipher, focusing on its small and efficient design for limited embedded systems.  

Authors  [19] provides evidence for novel joint encryption-modulation (JEM) techniques for phase 

encryption in IoT sensor transceivers. JEM demonstrates minimal complexity and high performance 

while maintaining a satisfactory packet error rate (PER) and bit error rate (BER) performance. This 

makes it well-suited for several modulation types, including high-order modulations such as 64-256 

QAM. 

• As investigated by [20], the suggested system includes a structure similar to Grain and an extra key 

filter to safeguard against typical cryptanalytic techniques. The design's security and efficiency have 

been demonstrated through thorough hardware implementations and cryptanalysis. The research [21]  

demonstrated the notion of "perfect trees" to develop energy-efficient symmetric encryption methods. 

The primary innovation is a framework designed to optimize encryption algorithms regarding energy 

usage, rendering them well-suited for energy-limited contexts. Authors  [22] discussed the necessity 

of effective data transmission in the Internet of Things (IoT) through lightweight cryptography. The 

suggested approach proposes a technique to decrease the amount of data by utilizing compression and 

substituting SSL/TLS with a more lightweight cryptographic method based on the Vernam cipher 

principle. 

• As founded by [23], cryptographic algorithms that utilize chaos theory has the ability to attain a high 

level of security while keeping hardware complexity minimal, making them well-suited for Internet 

of Things (IoT) applications. And when it is implemented on a Field-Programmable Gate Array 

(FPGA). In the study of   [24] the DRACO stream cipher is introduced as an energy-efficient solution 

with a compact state size and verifiable security against time-memory-data tradeoff (TMDTO) 

attacks. The primary results highlight DRACO's efficacy and robustness, rendering it well-suited for 

low-power cryptographic applications. As per [25], authors suggested a new self-shrinking (SSG) 

generator called the Self-Shrinking Conflation Generator (SSCG). The primary outcome is that SSCG 

strengthens security by merging discarded and kept bits via XOR operations, hence enhancing 

resilience against different cryptanalytic assaults. As mentioned by [26] ,the research improved the 

Salsa20 stream cipher by using random chaotic maps to promote diffusion. The enhanced cipher 

exhibits enhanced performance and diffusion properties, ensuring security while boosting encryption 

speed. As per [27] the research explored enhancements in lightweight designs for the SNOW-V 

cipher, aiming to achieve superior performance in limited contexts. Concentrate on optimizing the 

execution to improve efficiency and minimize resource use. 

• [28] emphasized improving the software implementation of SNOW-V for 32-bit platforms with 

restricted resources. SNOW-V is specifically engineered as a pseudorandom number generator, 

primarily focusing on its application in 5G communications.  

• [29] argued the Rabbit Algorithm and Aizawa Attractor-based image encryption method. In this 

algorithm, color images are blocked and encrypted with chaotic Aizawa Attractor keys in this hybrid 

technique, boosting security and minimizing computer load. PSNR, MSE, SSIM, and NIST 

demonstrate the method's efficacy and attack resilience. Real-time applications like IoT benefit from 

this lightweight, effective solution. Fast and secure image encryption is ensured. 

• Author  [30] introduced a streamlined authentication encryption system integrating stream ciphers 

with chaotic maps within a sponge structure. This system's primary advantage is its appropriateness 
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for Internet of Things (IoT) applications, as it offers robust security while requiring minimal 

computational resources. 

• According to the research of   [31], this study investigates several arrangements of the Espresso stream 

cipher, assessing their efficacy and robustness for optimal utilization in resource-limited settings. As 

observed by  [32],  a rigorous examination of stream ciphers' security against general assaults 

provided verifiable security assurances. The primary outcome is the determination of limits on 

adversaries' advantage, which guarantees the resilience of the examined stream ciphers. 

3. Problem Statement  

The processing and transmission of massive data volumes often raise several security issues. Since 

many of these devices use limited power and other resources, traditional cryptographic systems are 

inappropriate due to their high energy and resource consumption. This means a critical need for a workable 

solution that can also preserve the limited resources of these devices. The resource investigated did not 

perform dynamic key generation, so if a ciphertext is broken, the encryption key will no longer protect 

the transmitted data. To deal with the problem of encryption key breaches, the paper explores a new 

algorithm for increasing security through "dynamic" key generation.  

4. Aims   
Create and optimize a Dynamic Lightweight Cryptography (LCW) algorithm that provides an 

acceptable level of encryption security without consuming excessive processor power or memory, 

especially compared to conventional cryptographic algorithms. The goal could improve the broad 

application range for LCW application, such as medical devices, remote computing, and securing data 

transmission on mobile phones.  

5. Methodology  
Initially, a one-time pad with five million random byte values between 0 and 255 is created for the 

investigation. This configuration must satisfy two essential requirements: firstly, it must consistently 

produce the identical sequence of values whenever executed with the same initial parameters, ensuring 

that both the sender and recipient possess the same one-time pad. Furthermore, the system needs to have 

the ability to produce a distinct sequence of values when the initial pseudo-random number (seed) used to 

construct the sequence is altered. Thus, if the encrypting side, A, and party B (the decrypting side) are 

given the same seed, they will produce identical sequences. Figure (1) represents the block diagram that 

abstracts the cryptanalysis system.  

 

 

 
Fig. (1)  The block diagram for the Encryption-decryption phases 
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Algorithm 1: general system  

• Input:  data file 

• Output: array of ciphered record and its related hash digits  

Steps: 

1. Read input data file as byte 

2. Divide the input data file into records with equal length 

3. Calculate the Hash Digits for each record 

4. Apply encryption algorithm for each record 

5. Attach and send the hash digit with its related ciphered record 

6. At the receiver side, calculate the hash digit for the deciphered record 

7. Compare between calculated Hash Digit at the receiver side and the received hash 

digit from the sender 

8. If the hashes are identical, then received records intact; otherwise, resend the modified 

record and its related hash digit 

End 

Figure (2) represents the Activity diagram for general algorithm 1. While figure (3) represents the 

activity diagram for the encryption process. 



7 
 

 
Fig. (2) The Suggested System Activity Diagram 

Algorithm 2 (Encryption process) 

1. Initialization Variables: 

2. Input: Array of records 

3. Output: Ciphered text 

Steps 

1. Convert record characters into integers between 0-255 

2. Create a one-time pad with byte value (0-255)  

3. For each character in the record  

a. Compute index value utilizing symbolic hashing (ensure maximum index equal or less 

than one-time pad size) 

b. Choose a one-time pad element according to the computed index 

c. XOR the plain text value with One-time pad vale to produce cipher text 

d. Update Index value (make sure the new index value is not equal to the previous value 

and does not exceed one-time pad maximum size)  
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3. Send the ciphered record to the receiver entity 

4. End 

 

Fig. (3) Encryption process 

The suggested encryption system can be considered as a hashing process; hashing final equation is 

designed to have multiple input values and arithmetic operations such as adding, multiplying, adding, 

ANDing, and Xor operations to produce index value within the maximum number not exceeding the one-

time pad. For example, 
 

r1= (record number & long number1) * prime number1 

r2= (record number & long number2) * prime number1 

.. 

.. 

r6= (record number & long number6) * prime number1 

 

  j1 = 2*[(prime number 2 * r1 + prime number 3 * r2) & (length of one-time pad_x)] % (length of 

one-time pad) 
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… 

… 

 j6 = 2*[(prime number 5 * r3) + (prime number 6 * 12) & (length of one-time pad_x)] % (length of 

one-time pad) 

 

where,  int x < length of the one-time pad, the system will choose the six values from the one-time pad 

stored in positions j1,  j2…j6. Then, these 6 values input to XoR operation between them produce only one 

value, which represents the key. 

If we consider the one tie pad array named rg, then 

key[i]=rg1[j1] XoR rg2[j2] XoR rg3[j3] XoR rg4[j4] XoR rg5[j5] XoR rg6[j6]  

where  0 ≤ 𝑖 ≤ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 𝑖𝑛 𝑝𝑙𝑎𝑖𝑛 𝑡𝑒𝑥𝑡. 

 

The variable “record number” can be set to any distinct value, meaning that if an attacker 

compromises the input values, they can be changed instantly. The research utilized a data file containing 

5000 records with 62 characters arranged in different lines or continuously. Characters encompass both 

alphabetical letters and unique symbols. The key is divided into two parts: the first part is a seed number 

used to generate the one-time pad, which should be 16 bits long. The remaining half is used in the 

encryption computation. 

To validate the proposed method's effectiveness in generating secure data, the research conducted 

various randomness tests, such as the NIST randomness tests [33]  and entropy calculation [34]. These 

tests play a crucial role in ensuring the security of the encrypted data. The encrypted data is transformed 

into a binary representation before a randomness test.  

Cryptography resilience is crucially assessed by the correlation between the ciphertext and the 

plaintext and between several ciphertexts produced from the same plaintext using slightly different inputs. 

Determining those minor modifications in the inputs of the encryption system result in uncorrelated 

ciphertexts is of utmost importance. The Pearson correlation is used to evaluate this characteristic. This 

statistical metric provides a means to assess the level of correlation, therefore assuring that the encryption 

system generates outputs that exhibit a high level of resistance to patterns or predictability, even when 

minor modifications are introduced to the input variables. This guarantees the security of the encryption 

procedure, posing challenges for unauthorized organizations to derive significant conclusions from the 

ciphertext  [35] . 

 

6. Results 

Multiple sub-keys of varying lengths and numbers are employed to generate the master key, which is 

then utilized for encryption and decryption. 

Table (2) presents the results achieved in each instance, where varying the number of sub-keys and 

the length of each base key led to different outcomes. The maximum number of sub-keys required to 

ensure compliance with cipher text security standards is also stated. The results showed the recommended 

length of the encryption key is between (52 -92) bits. 
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Table 2.  Result of tests: The data file size is 300000 characters, and the Length of each record=62 

characters 

Key 

Length 

Encryption 

time (ms) 

NIST 

test 

No of 

(0, 

zeros) 

No. of 

(1, ones) 

Ratio of 

(0) 

Ratio of 

(1) 

Entropy for 

2,400,000 

bits 

98 75 Pass 1198784 1201216 0.49949 0.50050 0.99999925 

76 89 Pass 1198088 1201912 0.49920 0.50079 0.99999816 

64 118 Pass 1201987 1198013 0.50082 0.49917 0.99999807 

52 99 Pass 1207354 1192646 0.50306 0.49693 0.99997290 

40 89 Fail 1204975 1195025 0.50207 0.49792 0.99998760 

28 83 Fail 1208011 1191923 0.50333 0.49666 0.99999678 

 

The results obtained for implementing the suggested algorithm are listed in Table )3(.  

  

Table (3) NIST test results (file size =2400000 bits), key length= 98 bits 

Test p-value state 

Frequency 0.911413 pass 

Block Frequency 0.739918 pass 

Cumulative Sums 0.911413 pass 

Run 0.534146 pass 

Longest Run 0.213309 pass 

Rank 0.004301 pass 

FFT 0.350485 pass 

Non-Overlapping 

Template 
0.000001 pass 

Overlapping Template 0.213309 pass 

Universal 0.000000 pass 

Approximate Entropy 0.122325 
Pass at block 

1500 

Serial 0.534146 pass 

Linear Complexity 0.122325 Pass 

 

These results were obtained when The NIST test application was set up at the below initials: 

• Significance level (𝛼): 0.01; 

• Size of the block in the frequency test within a block: 128; 

• Size of the length in bits of each template in the non-overlapping template matching test: 9; 

• Length in bits of the template in the overlapping template matching test: 9; 

• The length of each block in the approximate entropy test: 10; 

• The length in bits of each block in the serial test: 16; 

• The length in bits of a block in the linear complexity test: 500; 

 

Furthermore, plain text values range between 10–122, containing 50 distinct values, while cipher text 

has a full range from (0 to 255). The histogram clearly illustrates the distribution of contrasting original 
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and ciphered values. The distribution of the frequent values in the original data, as depicted in Figure (4), 

is entirely dissimilar to that observed in the ciphered data file, as seen in Figure (5). 

 

 
Fig (4) Histogram for original data representation 

 
Fig. (5.) Histogram for ciphered data representation 

Pearson correlation test was performed to evaluate the resilience of the encryption process by 

analyzing the correlation between the ciphered values following minor modifications to one or more input 

variables. Table 4 displays the Pearson correlation coefficients that correlate to the fluctuations in the 

different input variables. 
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Table 4: Pearson Correlation Values Based on Changes in Input Variables 

Variable Old value New Value Pearson 

prime 

number1 
201 711 

-
0.017736696 

prime 

number1 
711 1009 

-
0.007301424 

long 

number2 

xr2 = 

"0xaca" 
xr2= "0xffc" 0.030874208 

long 

number3 

xr3 = 
"0xffb" 

xr3 = 
"0xaca" 

0.073759102 

seed 254521 125430 
-

0.020805635 
 

Below is a quantitative examination of the outcomes based on the Pearson values obtained while 

modifying the inputs: 

1. Prime number 1 (Values: 201 → 711, Pearson correlation coefficient: -0.017736696)  

Based on the Pearson correlation coefficient of -0.0177, it may be inferred that the change in the input 

from 201 to 711 led to a negligible linear connection between the original and the ciphered data. The 

subtle negative sign indicates a very feeble inverse correlation.  Thus, the encryption process seems 

resilient against this perturbation, as the correlation is virtually non-existent. 

2. Prime number 1 (Values: 711→1009, Pearson correlation coefficient: -0.007001424)  

The Pearson correlation coefficient of -0.0073 is nearly zero, mirroring the earlier finding. This 

observation suggests a much less pronounced negative correlation (almost insignificant) between the 

original and ciphered numbers when the input changes from 711 to 1009. The encryption process 

retains robustness since the ciphered data do not closely correlate with the input change.  

3. Long number2 (Values: xr2="0xaca" Æ "0xffc", Pearson correlation coefficient: 0.030874208)  

An input change from "0xaca" to "0xffc" results in a very weak positive correlation between the 

original and ciphered values, as seen by the Pearson correlation coefficient of 0.0309. Although there 

is little inclination for the ciphered values to rise with higher input values, the correlation is so feeble 

that it is nearly statistically negligible. These findings indicate that the encryption mechanism remains 

mostly unaltered by this particular modification in the input. 

4. Long integer 3 (Values: xr3="0xffb" "0xaca", Pearson correlation coefficient: 0.073759102)  

The obtained Pearson correlation coefficient of 0.0738 indicates a modest positive association, 

somewhat more pronounced than in earlier instances but yet negligible. These findings indicate a 

limited inclination for the ciphered values to rise when the input value transitions from "0xffb" to 

"0xaca". Although a modest positive correlation exists, it lacks sufficient strength to suggest a 

substantial weakness in the encryption procedure.  

5. Seed (Values: 254521 - 125430, Pearson correlation coefficient: -0.020805635) 

An analysis of the Pearson correlation coefficient of -0.0208 indicates a minimal negative correlation 

between the original and ciphered values as the seed value varies from 254521 to 125430. The correlation 
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is nearly negligible, suggesting that changes in the seed have minimal or no effect on the correlation 

between the input and the ciphered output. This indicates that the encryption process is highly resilient to 

variations in the seed. 

The Pearson correlation coefficients for the various input modifications are near zero, with only a few 

correlations detected. The negative Pearson coefficients indicate modest inverse correlations, whereas the 

positive coefficients indicate relatively weak direct correlations. Nevertheless, the correlations are 

negligible in every instance, suggesting that the encryption process is resilient and not significantly 

affected by minor variations in the input data. The low Pearson values indicate the intended attribute of 

an encryption method, in which the output (ciphered data) should not exhibit a substantial linear 

correlation with the input, preserving both security and unpredictability.  

 

7. Conclusion 

Conclusively, this work emphasizes the crucial need for Lightweight Cryptography (LWC) in 

safeguarding data in situations with limited resources, such as IoT devices and data transmitted via mobile 

device applications.  This work aims to analyze and contrast current stream cipher algorithms and propose 

a dynamic, lightweight cryptography algorithm to meet the urgent requirement for secure and efficient 

encryption techniques appropriate for low-power applications. The capacity of the proposed approach to 

produce dynamic keys dramatically reduces the likelihood of encryption key breaches, improving overall 

security. The empirical findings from various tests, encompassing randomness and correlation 

evaluations, validate the algorithm's efficacy in upholding security while preserving performance. The 

present study contributes to continuously advancing secure and efficient encryption methods designed 

explicitly for resource-constrained settings. This discovery creates opportunities for broader use in 

healthcare, remote computing, and mobile communications. 
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