
International Journal of Computing and Digital Systems
2024, VOL. 17, NO. 1, 1–10

http://dx.doi.org/10.12785/ijcds/XXXXXX

A Novel Fault Tolerant Scheduling Approach with Energy
Optimization for Real-Time Embedded Systems

NEDJOUA LOUCHENE 1, RIADH HOCINE 1, MALIKA BACHIR 2 and SALIM KALLA 1

1Department of Computer Science - University of Batna2, LaSTIC Laboratory, BATNA, ALGERIA
2Department of Common Core in Mathematics and Computer Science - University of Batna2, LaSTIC Laboratory, BATNA, ALGERIA

Received 12 March 2024, Revised 15 June 2024, Accepted 10 July 2024

Abstract: In this paper, we address two critical yet conflicting aspects of real-time embedded systems: fault tolerance and energy
consumption. We propose an Optimizing Energy consumption and Fault-Tolerant Scheduling Algorithm (OE FTS), designed to achieve
simultaneous minimization of energy consumption and maximization of system reliability. OE FTS is based on a hybrid combination
of active and passive replication and the Dynamic Voltage and Frequency Scaling (DVFS) technique. Active and passive replication
are employed for tolerating multiple transient faults to improve reliability; therefore, Dynamic Voltage and Frequency Scaling (DVFS)
technique is used for minimizing power consumption. We classify real-time tasks into critical and non-critical categories. Critical
tasks are characterized by tight, stringent deadlines and limited execution time, while non-critical tasks have more flexible and less
strict deadlines. This classification is used to decide which type of redundancy to apply and how to exploit the available slack time
to lower the CPU frequency and voltage, thereby reducing energy consumption. Our technique is applied in a system designed to
manage and execute several dependent tasks scheduled on a set of homogeneous processors linked by a multi-point connection. Our
experimental findings confirm the effectiveness of the proposed approach which improves reliability while managing energy consumption.

Keywords: Real-time embedded systems, Active Redundancy, Passive Redundancy, Fault tolerance, Dynamic Voltage Scaling,
Minimizing Energy Consumption

1. INTRODUCTION
Whether we realize it or not, embedded systems are an

integral part of our daily lives. They represent the core of
technological innovation, contributing to the improvement
of our environment and our interconnected communication.

Developing real-time embedded systems requires meet-
ing multiple conditions such as satisfying time constraints,
ensuring fault tolerance, and minimizing energy consump-
tion [1]. In the design of real-time embedded systems, fault
tolerance and energy consumption are critical factors that
require careful consideration. However, low energy usage
and high fault tolerance are contradictory objectives and
are often at odds with temporal constraints.

Fault tolerance is the capacity of a system to operate
continuously and properly even when faults are present [2],
and is ensured by several methods, with redundancy being
the most widely used. Redundancy can be applied to either
software or hardware; in the context of software redundancy,
it can be temporal or spatial. Spatial redundancy, in turn,
can be classified into three types: active, passive, or hybrid.
As we focus on embedded systems, our attention is directed

specifically towards software redundancy, particularly using
spatial redundancy. Faults can be categorized as perma-
nent, intermittent, or transient, depending on their dura-
tion. Permanent faults persist until the defective component
is exchanged or fixed, while transient faults occur once
and then disappear. Intermittent faults are identified by
the occurrence of a fault, its disappearance, and then its
reappearance, repeating the pattern [3]. Transient faults have
recently gained more interest compared to permanent faults,
as they represent the most frequent type of failure in such
systems [4]. For this reason, we have focused on transient
faults.

Energy management is influenced by multiple factors.
Increasing the frequency speeds up task execution but also
raises energy consumption. Conversely, lowering the fre-
quency extends execution time, which can make it difficult
to meet deadlines. Thus, a compromise occurs between
runtime and energy consumed [5]. Additionally, reducing
the supply voltage to save energy negatively impacts circuit
reliability by increasing the occurrence of transient faults
[4] [6]. Various energy management strategies have been

E-mail address: n.louchene@univ-batna2.dz, riadh.hocine@univ-batna2.dz, m.bachir@univ-batna2.dz, s.kalla@univ-batna2.dz

http://dx.doi.org/10.12785/ijcds/XXXXXX

2 NEDJOUA LOUCHENE, et al.

developed to lower energy consumption in real-time sys-
tems, including the standby technique and dynamic voltage
and frequency scaling (DVFS). DVFS is the most popular of
these techniques and is supported by the majority of today’s
processors.

As our objective is to find a fault-tolerant methodology
for embedded and distributed real-time systems while guar-
anteeing time constraints and minimizing energy consump-
tion, we propose in this study a new heuristic that combines
active and passive replication to handle a fixed number of
arbitrary transient faults, while ensuring timing constraints
(deadlines) and utilizing the the DVFS technique to lower
energy consumption.

We classify real-time tasks into critical and non-
critical categories. Critical tasks are characterized by close
and stringent deadlines with very limited execution time,
whereas non-critical tasks have deadlines that are less strict
and more flexible. Active replication is used for critical
tasks to ensure that their deadlines are met, while passive
replication is employed for non-critical tasks. In the latter
case, we exploit the available slack time to lower the CPU
frequency and voltage, thereby reducing energy consump-
tion. This is why we have integrated the dynamic voltage
and frequency scaling (DVFS) technique to achieve our goal
of reducing energy consumption.

Our technique is applied within a system designed to
manage and execute several dependent tasks. These tasks
are scheduled on a set of homogeneous processors that are
linked via a communication bus.

The organization of this paper is as follows: Section
2 offers an overview of related work. The system models
discussed in this paper are presented in Section 3. The
proposed fault tolerance methodology is detailed in Sec-
tion 4, followed by a discussion on the fault tolerance
methodology utilizing the dynamic voltage and frequency
scaling (DVFS) technique in Section 5. Section 6 introduces
the proposed OE FTS algorithm. Sections 7 and 8 cover
simulation parameters and results, respectively. Finally, the
paper concludes in Section 9.

2. RELATED WORKS
The optimization of scheduling strategies based on two

criteria -meeting temporal constraints and reliability- has
been the subject of several published studies. Additionally,
some studies focus on optimizing scheduling rules using
three criteria, including power consumption.

Assayad et al [7] have proposed a technique that is a
list scheduling heuristic. This heuristic uses a bi-criteria
compromise function to prioritize the tasks that need to be
scheduled and identify the subset of processors where these
tasks should be allocated. The approach employs active
redundancy of tasks.

Alain Girault et al [8] proposed an approach based on

active redundancy that can tolerate a specified number of
failed communication links and arbitrary processors. The
process involves two steps: the first step transforms a non-
redundant graph specification into one that incorporates re-
dundant software components. Following this, the software
components of the new redundant graph are allocated in
terms of space and time.

The focus of the study in [9] was hardware faults, partic-
ularly in the area of communication. The author proposed a
strategy based on both active and passive replicas. The fault-
tolerant data scheduling optimization problem, considering
two types of backup copies, is formulated using linear
programming with the aim of reducing scheduling length.

The study in [10] has proposed fault-tolerant schedul-
ing heuristics to tolerate multiple transient faults. These
heuristics are based on an active replication strategy and
checkpointing technique, aiming to maximize reliability.
Additionally, the approach utilizes dynamic voltage fre-
quency scaling to minimize energy consumption.

Salim Kalla et al. [11] have proposed an approach that
tolerates transient faults and reduces energy consumption
by employing graceful degradation, which incorporates the
dynamic voltage scaling technique. This approach aims
to decrease battery life variability, consequently reducing
overall energy consumption.

The strategy presented by Yeganeh-Khaksar et al. [12]
attempts to fulfill the power consumption limit at the
chip level while achieving system reliability. The tasks are
initially assigned according to a reliability-aware lowest
utilization strategy; after that, they are scheduled with the
maximum power taken into consideration and the Earliest
Deadline First (EDF) policy. In the end, the DVFS technique
is applied, accounting for peak power and dependability, to
meet thermal design power (TDP) requirements.

The study presented in [13] introduces two fault-tolerant
scheduling algorithms that are energy-aware and based
on the primary-backup approach known as ’Fault-Tolerant
Energy-Efficient Task Scheduling with Delayed and Over-
loaded Backups (FEED-O)’ and ’FEED-O with Dynamic
Deferring (FEED-OD). In this approach, backup copies
are allocated on an secondary processor using dynamic
power management (DPM) to reduce energy consumption,
whereas the primary tasks are executed on a compatible
dynamic voltage scaling (DVS) processor. This research
proposes a method for minimizing energy consumption in
scheduling periodic tasks employing a monotonic strategy.

Tavana et al. [6] have proposed an approach that ad-
dresses reliability and energy consumption. by achieving
reliability and tolerating transient faults through the use of
standby-sparing and re-execution techniques. Additionally,
they employ dynamic voltage scaling (DVS) for the main
processor and dynamic power management (DPM) for the
secondary unit to reduce energy consumption.

International Journal of Computing and Digital Systems 3

In Table I, we show a summary and overview of the
proposed approaches.

This paper aims to address the scheduling problem
a software architecture composed of dependent tasks on
a hardware architecture consisting of homogeneous pro-
cessors while guaranteeing tolerance to multiple transient
faults and optimizing energy consumption while respecting
temporal constraints, the primary contributions provided by
this article are as follows:

- We have proposed a scheduling algorithm capable of
tolerating K transient faults.

- To minimize energy, we take advantage of non-critical
tasks to apply the DVFS technique. While with critical
tasks, task replicas require execution at the highest possible
frequency.

- Our approach relies on the AAA (Algorithm Archi-
tecture Adequation) methodology that aims to optimize the
length of scheduling.

3. SYSTEM MODELS
A. Algorithm model

The architecture of the algorithm used is represented
through a data flux graph [14], specifically a directed hy-
pergraph known as the algorithm graph ALG. The vertexes
of the algorithm’s graph indicate the task components of
the system, denoted as T = {Ti,T j, . . . ,Tn}, and the arcs
denote the data dependencies between tasks. These tasks
are not preemptive, meaning that other tasks are unable to
stop them. They are connected by precedence dependencies,
where a task can be executed only after receiving data from
its preceding tasks.

Tasks without any predecessors are known as input
operations and act as the algorithm’s entry points for data
flow. Output operations, indicating the end outcomes, are
tasks that have no successors after them.

A tuple (Ci, Di) that includes the execution time of the
task (Ci) and its deadline (Di) is used to characterize each
task. The utilization of the Ti task can be defined as shown
below:

Ui =
Ci

Di
,where 0 ≤ Ui ≤ 1 (1)

Figure 1 illustrates an algorithm graph example formed
of eight dependent tasks {T1,T2, ...T8}: T1 and T2 (resp. T8)
are input (resp. output) tasks; T3 − T7 are regular tasks.

B. Architecture model
The architecture consists of homogeneous processors,

called Arc which is represented using a non-directed graph
in which the nodes represent the processors and the edges
indicate the links that connect them physically. Homo-
geneous processors mean that each task has a similar

Figure 1. Algorithm graph example

execution time on each processor. We have considered a
bus network (multi-point link).

The example of an algorithm graph illustrated in Fig-
ure 2.

Figure 2. Architecture example

C. Fault model
This paper primarily focuses on transient faults rather

than permanent faults because, when the processor voltage
is reduced to save energy, there is a risk of transient failure
triggered by even extremely low-energy particles producing
critical charges [15]. We assume the capability to tolerate
k processor transient faults. These faults may vary among
different processors or occur within a single processor.

We use the Shatz and Wang [16] fault model, in which
the maximum duration of fault only affects the current task
that is executing on the faulty processor and does not have
any impact on subsequent tasks.

D. Power model
In this study, we follow the energy model used in [5]

[17] [18], Where the system’s power usage P is determined
by

P = Ps + h(Pind + Pd) (2)

Pd = Ce f V2 f (3)

Where:

Ps :is the static power (can only be removed by turning
off the all system)

Pind:is the frequency independent active power, constant,
generally known as the CPU processing speed independent
power.

4 NEDJOUA LOUCHENE, et al.

TABLE I. summary and overview of the proposed approaches

Ref. Model for Application Model for Architec-
ture

Fault-Tolerant Tech-
nique

Aims Constraints Energy
Management
Technique

[7] Acyclic oriented graph Heterogeneous pro-
cessors

Active replication Timing, Reliability -

[8] Data-flow graph Heterogeneous pro-
cessors

Active redundancy Timing, Reliability -

[9] Directed Acyclic Graph Heterogeneous Com-
munication links

Active,passive
backup

Timing, Reliability -

[10] Directed Acyclic Graph Homogeneous
processors

Checkpointing and
active replication

Energy, Timing, Reliability DVFS

[11] Acyclic oriented graph Heterogeneous pro-
cessors

Re-execution Energy, Timing, Reliability DVFS

[12] Periodic Homogeneous multi-
core

Replicas of periodic
real-time tasks

Energy, Timing, Reliability RPPA-DVFS

[13] Periodic Homogeneous
Multi-core

Standby Sparing Pri-
mary Backup

Energy, Timing, Reliability DVS, DPM

[6] Directed Acyclic Graph Homogeneous
Multi-core

Standby-sparing re-
execution

Energy, Timing, Reliability DVS, DPM

Pd:is the frequency dependent active power, which in-
cludes the dynamic power of the processor and any power
that depends on the speed of the CPU [17]. It is equivalent
to 1 when the system is in an active state and 0 when in
an inactive state.

Ce f :is the switch capacitance, is the supply voltage, and
f is the operating frequency.

Only the frequency-dependent power Pd is considered
and Ps = 0. Hence, the expression for the power usage is
as follows:

P = Ce f V2 f (4)

Since f ∝ V , and in [19] a polynomial of frequency with
a degree of 3 can be used to express the dynamic power.
Hence, we reformulate the power usage P in (5) as

P = Ce f f 3 (5)

The energy consumed by task Ti is

E = P Ci (6)

E(fi) = Ce f f 2
i Ci (7)

Where Ci represents the execution time of a task under
frequency fi .

The total energy consumption Etotal of processors while
performing a set of tasks is as follows:

Etotal =

n∑
i=1

Ei(fi) (8)

This study considers only processor energy consump-
tion. Before presenting our new approach, which combines

two new techniques for fault tolerance and energy savings,
we first describe each of them in detail in Sections 4 and
5.

4. PROPOSED FAULT TOLERANCE METHODOL-
OGY
We propose a novel fault-tolerance methodology that

combines a hybrid approach of active and passive redun-
dancy to tolerate K transient faults of processors. Our pri-
mary objective is to meet temporal constraints and enhance
reliability, even when faults are present.

We employ passive replication for non-critical tasks;
it relies on replicating the software components of the
algorithm in several copies. However, only one copy, called
the primary copy of each component, is executed, and the
other copies, called backups, will be executed only if a fault
causes an error [20]. With passive replication, we need to
ensure a fault detection mechanism [21]. For critical tasks,
we use active replication when passive redundancy cannot
satisfy the task deadline. Active replication is achieved by
replicating the algorithm’s software components in several
copies and the execution of the same task simultaneously
on multiple separate processors [20].

Based on the work presented by Motaghi and Zarandi
[22], we determine the task utilization Ui of each task Ti
to decide whether it is critical or noncritical.

The task would be considered critical when Ui is closer
to 1; in this situation, the scheduler is unable to delay task
execution. When faults occur, time-consuming fault-tolerant
methods, like passive replication, will not be appropriate for
critical tasks.

A threshold θ is used to determine if the task is critical

International Journal of Computing and Digital Systems 5

or not as follows:

Ti =

{
Noncritical, i f Ui < θ,
Critical, i f Ui > θ,

where0 < θ < 1 (9)

θ varies from one task to another. In Section 6, we
explain how to calculate the criticality threshold for each
task T on processor P.

In the following, we describe the different basics of our
methodology:

A. Passive redundancy
Costs and energy consumption can be reduced by using

a passive technique, which involves executing secondary
copies of a task only when a failure of its processor is
detected; and for this reason, an error detection technique
is required. For this purpose, we insert an additional task
referred to as a watchdog, denoted as W, appended as a
successor to every task in the architectural graph [23].

Starting from an algorithmic graph called ALG and
applying the principle of passive redundancy, we obtain a
new transformed graph called ALGnew where:

- Every task is duplicated in K+1 replicas, where K
signifies the maximum number of transient faults on pro-
cessors. Among these K+1 replicas, only one, designated as
the primary task, is actively executed. The other K replicas
designated as the secondary tasks are on standby, ready to
be activated when the primary task fails. These replicas are
distributed on distinct processors.

- For each primary task, K watchdog (W) tasks are
inserted. Each task W is positioned between the main task
and its copy. The task W and its successor must be placed
on the same processor.

The task W is responsible for receiving a signal indi-
cating that its predecessor (primary task) has been well
executed. Therefore, if it doesn’t receive any signal after
a certain time denoted ∆, which is owner to each task, it
detects a failure in the processor P responsible for executing
the primary task. Consequently, each task W activates its
successor; the first replica which finishes its execution
sends a blocking signal to the other replicas. Below, we
summarize the main steps involved in transforming the
algorithm graph using passive replication.

For each task Ti

- Make k secondary copies T 1
i ,T 2

i ,. . . T K
i of the primary

task Ti, (Ti must be placed on a different processor from
its replicas).

- Place each T j
i (j ranging from 1 to k) on k distinct

processors.

- Place k wachdog tasks(W j
i), each W j

i is placed between
Ti and T j

i (j running from 1 to k).

- Execute only the primary copy Ti,

- If Wi fails to receive a signal of primary copy Ti
following a certain period ∆ then

- Each task W j
i wakes up its successor (T j

i)

- The first T j
i that finishes execution blocks the others

in progress

An example of passive replication is presented in Fig-
ure 3.

Figure 3. Transformation scheme of ALG with passive replication

The time out ∆ is given by the following formula:

∆ = Ci(Tbest, Pbest) + N (10)

where:

Tbest:is the best task selected for scheduling

Pbest:is the best processor where task Tbest will be placed

N: is an estimated value which determines a certain
waiting time.

The worst-case response time named WRTi of taskTi
employing passive redundancy when faults occur is

WRTi = Ci + ∆ (11)

Where Ci is the execution time of task Ti and ∆ is the
fault detection time of task Ti

WRTi = 2Ci + N (12)

Note that a fault affects only one task, so K faults mean

6 NEDJOUA LOUCHENE, et al.

(K faulty tasks).

B. Active redundancy
To eliminate error detection time and optimize time

execution for critical tasks, we use active replication. To
apply active replication in our methodology, the starting
graph ALG must be transformed into a new duplicated
graph ALGnew in which all tasks are replicated in K+1
copies, placed on different processors, and are distributed
for simultaneous execution. The first replica, which ends
its execution, blocks the execution of the other replicas
by sending a blocking signal. It also sends the result to
its successor as well as its replicas. In the following, we
summarize the main steps involved in transforming the
algorithm graph using active replication.

For each task Ti

- Make k secondary copies T 1
i , T 2

i ,. . . T k
i of the primary

task Ti, (Ti must be placed on a different processor from
its replicas)

- Place each T j
i (j ranging from 1 to k) on k separate

processors

- Simultaneously execute the primary copy Ti and all its
replicas,

- The first task that finishes execution blocks the others
and sends the result to all replicas of its successor.

Figure 4 shows an example of active replication.

Figure 4. Transformation scheme of ALG with active replication

We have used the AAA (Adequation Algorithm Archi-
tecture) methodology for distributing tasks among proces-
sors, which is considered to be another important basis for
our methodology. AAA relies on a cost function known
as the scheduling pressure denoted σ(n)

Ti,P j
, whose aim is

to minimize the distribution/scheduling length [24]. The

schedule pressure σ is calculated as follows for each Ti
on each processor P j :

σ(n)
Ti,P j
= S T (n)

Ti,P j
+ st(n)(Ti) − R(n−1) (13)

S T (n)
Ti,P j

: represents the earliest time when the task Ti on
the processor P j can begin to be executed.

st(n)(Ti): represents the latest start time from end of Ti

R(n−1): is the critical path length of the partial schedule,
which consists of tasks that have already been scheduled.

5. FAULT TOLERANCE METHODOLOGY UTILIZ-
ING DVFS
Dynamic voltage and frequency scaling (DVFS) is a

common feature in the majority of contemporary proces-
sors, an energy-saving feature that permits a processor to
operate at various voltage levels, with each voltage setting
associated with a distinct operating frequency. Because
of the direct proportionality between a processor’s energy
consumption and the square of its voltage, it is possible
to significantly reduce processor energy consumption by
lowering the CPU voltage and subsequently reducing its
processing speed [25]. We have integrated DVFS into our
proposed methodology to make use of the available slack
time for greater energy savings.

In our proposed methodology, we employ active replica-
tion to satisfy temporal constraints and ensure a high level
of reliability, particularly in situations where deadlines are
close and time is limited. Task replicas with critical timing
requirements should be executed at the highest possible
frequency.

We assume the use of DVFS in passive replication for
non-critical tasks, where their deadlines are not tight. We
calculate the optimal frequency that can be assigned to each
task. Assuming that each task has a deadline, the optimal
frequency allows it to be completed before this deadline
while minimizing energy consumption and being able to
tolerate K faults thanks to passive replication, this leads to
ensuring the reliability and energy efficiency of the tasks.

The optimal frequency that ensures task completes its
execution within its deadline and should achieve the fol-
lowing requirements:

S Ti =
2Ci

f opt
i

+ N ≤ Di (14)

f opt
i ≥

2Ci

Di − S Ti − N
(15)

If f opt
i is not found in F, we select neighboring frequen-

cies

fL+1 ¡ f opt
i ¡ fL such that fL+1 , fL ∈ F.

As a result, the energy consumption during the execution

International Journal of Computing and Digital Systems 7

of task (Ti) is expressed as:

E(f opt
i) = Ce f f opt

i
2 Ci

f opt
i

= Ce f f opt
i Ci = Ce f

2C2
i

Di − S Ti − N
(16)

In the following, we present the algorithm of our new
approach to fault-tolerant scheduling with energy opti-
mization for real-time embedded systems which is called
OE FTS.

6. OE FTS PROPOSED ALGORITHM
Our OE FTS algorithm is designed to meet temporal

constraints, minimize energy consumption, and maximize
system reliability. It uses the AAA methodology to mini-
mize the schedule length of the distribution and the schedul-
ing of the algorithm on the hardware architecture while
meeting temporal constraints.

To maximize system reliability, the algorithm employs
active replication for critical tasks, executing them at the
highest possible frequency to meet deadlines.

For non-critical tasks, passive replication is employed
with the integration of dynamic voltage and frequency
scaling (DVFS) to optimize energy consumption.

To determine the criticality of a task, the scheduler
calculates the threshold ”θ” of the best tasks selected by
AAA. It is crucial to remember that, in the case of passive
replication in the presence of faults, the maximum response
time of a task must be less than its deadline (”Di”).
Therefore, we have:

S Ti +WRTi < Di (17)

WRTi < Di − S Ti (18)

Where WRTi is worst-case response time of task Ti
using passive replication, and Equation (12) is used to
replace WRTi for computing θ :

2Ci + N < Di − S Ti (19)
Ci

Di
<

Di − S Ti − N
2Di

(20)

Finally, we can get the criticality

Ui <
Di − S Ti − N

2Di
= θ (21)

In Figure 5, we briefly present our optimizing energy
and fault-tolerant scheduling in the OE FTS Algorithm.
The input for our method includes the ALGnew application,
the variable K representing the tolerated number of transient
faults, the architecture Arc, and the set of frequency levels
F, as well as the constraints in real time. First we present
its main outlines:

• The algorithm initiates by initializing the list of
candidate tasks, which comprises tasks without pre-
decessors (Line 1).

• For each task Ti in this candidate task list, we calcu-
late the scheduling pressure σ(n)

Ti,P j
on each processor

P j in the Arc based on equation (13) (Line 5).

• Subsequently, we select the processor (Pbest) that
minimizes this scheduling pressure (Line 6).

• Among the pairs (Ti, Pbest), we choose the one max-
imizing the scheduling pressure, resulting in (Tbest,
Pbest) (Line 7).

• Task Tbest is then placed and scheduled on processor
Pbest (Line 8).

• The scheduler computes the criticality of task Tbest
(Line 9). If task Tbest is noncritical, passive redun-
dancy and dynamic voltage and frequency scaling
(DVFS) policy are applied (Lines 10-11), and Tbest
is executed under the calculated frequency f opt based
on (15) (Lines 13-14).

• If task Tbest is critical, active replication is employed,
and Tbest is executed at the maximum frequency
(Lines 16-17).

• After the execution of Tbest , energy consumption
is calculated (Line 18), and total energy is updated
accordingly (Line 19). Finally, Tbest is removed from
the list of candidate tasks (Line 21).

• This allocation process iterates for all remaining tasks
until none are left.

7. SIMULATIONS PARAMETERS
To evaluate our approach, we have implemented our

heuristic on a set of software graphs (graph algorithm)
randomly generated by a random graph generator, inspired
by the work of H.Kalla in [24] using a set of parameters that
influence our results. The parameters that we considered
effective to study the performance of our methodologies
are the number of faults, the number of processors, and the
number of tasks. A description of the parameters and their
values is presented in the Table II.

TABLE II. Parameters for simulation

Parameter Value

Number of tasks T = {5, 10, 15, 20, 25, 30}
Number of processors P = {3, 5, 7, 9, 15}
Execution time (ms) EXT = {10, 100}
Number of faults k K = {1, 3, 5}

Operating frequencies F = {0.1, 0.2, . . . , 1}
Ce f assume = 1

The general goal of our simulations is to examine how

8 NEDJOUA LOUCHENE, et al.

Figure 5. The proposed OE FTS Algorithm

International Journal of Computing and Digital Systems 9

changes in the number of faults and tasks affect energy
consumption. Additionally, we aim to analyze the effects
of the number of processors on both overall execution time
and energy consumption. We compare our approach with
the approach introduced in [10], called DVFS fault-tolerant
scheduling (DVFS FTS).

8. RESULTS
In the initial simulation, as illustrated in Figure 6,

we plotted the energy consumption while maintaining the
number of tasks at T =10, and the number of processors at
P= 4, with the value of K varying from 1 to 5.

Figure 6. Energy consumption in function of number of faults

As seen in Figure 6, our approach OE FTS, outper-
forms DVFS FTS in terms of energy consumption. With
1 fault, the energy consumption of OE FTS (29.18%)
is lower than that of DVFS FTS (41.2%). Similarly,
with 5 faults, our approach consumes (35.75%) less than
DVFS FTS, which consumes (42.3%), we can clearly see
that energy consumption increases with the increase in the
number of transient faults. This is explained by the replica-
tion of tasks triggered by transient failures, resulting in more
processor activity and therefore higher energy consumption.
This was expected, as the two criteria maximizing reliability
(tolerating a large number of faults) and minimizing energy
consumption are contradictory.

In the second simulation, shown in Figure 7, we have
varied the number of tasks within the interval of 5 to 30
tasks.These tasks were scheduled on an architecture graph
with 5 processors, and 2 probabilistic faults with a value of
K = 2.

In this case, it’s clear that each time the number of tasks
executed increases, energy consumption also increases, and
this is due to processor occupancy rates (the workload).
When comparing energy consumption between OE FTS
and DVFS FTS, we observe OE FTS consumes less en-
ergy than DVFS FTS. For instance, with 10 tasks, energy
consumption of OE FTS (29,25%) is lower than that
of DVFS FTS (43%). Similarly, with 20 tasks, energy
consumption of OE FTS (33,62%) is lower than that of
DVFS FTS (42%) and with 30 tasks, energy consumption

Figure 7. Effect of number of tasks on Energy consumption

of OE FTS (36,9%) is lower than that of DVFS FTS
(38,7%) .

The findings indicate that our approach surpasses the
performance of DVFS FTS.

In the third simulation, illustrated in Figure 8 and
Figure 9, we have plotted energy consumption and schedule
length while varying the number of processors (P from 3 up
to 15), while keeping the application size T=20 and number
of faults fixed K=2.

Figure 8. Effect of number of processors on Energy consumption

Figure 9. Effect of number of processors on schedule length

10 NEDJOUA LOUCHENE, et al.

It is clear that with each increase in the number of
processors, energy consumption correspondingly decreases.
This is because the overall execution time is reduced by
the simultaneous rather than sequential operation of all the
processors.

As a result, there are two advantages: shorter execution
times and lower overall energy consumption.

9. CONCLUSIONS
In this article, we have presented a novel approach to ad-

dress the trade-off in real time embedded systems between
antagonistic criteria such as fault tolerance and energy
consumption. Our OE FTS Algorithm combines active and
passive replication of tasks tasks to enhance reliability while
utilizing dynamic voltage and frequency scaling to lower
energy consumption. The study takes into consideration
factors such as the number of faults, processors, and tasks
in the system. The results of the simulation demonstrate
the effectiveness of our proposed approach, a correlation is
observed between the energy consumption and and the rise
in the number of faults, processors, and tasks. The proposed
approach achieves improved reliability while managing en-
ergy consumption. As a direction for future work, and given
the dynamic and continually evolving nature of the real time
embedded systems field, we propose to test our heuristics
on a heterogeneous architecture, incorporating additional
parameters such as temperature, permanent faults, etc.

References
[1] S. Safari, M. Ansari, H. Khdr et al., “A survey of fault-tolerance

techniques for embedded systems from the perspective of power,
energy, and thermal issues,” IEEE Access, vol. 10, p. 12229, 2022.

[2] P. Jalote, “Fault tolerance in distributed systems,” 1994.

[3] C. Wilwert, “Influence des fautes transitoires et des performances
temps réel sur la sûreté des systèmes x-by-wire,” 2005.

[4] J. Gan, F. Gruian, P. Pop, and J. Madsen, “Energy/reliability trade-
offs in fault-tolerant event-triggered distributed embedded systems,”
2011.

[5] I. Assayad, A. Girault, and H. Kalla, “Scheduling of real-time
embedded systems under reliability and power constraints,” 2012.

[6] M. K. Tavana, N. Teimouri, M. Abdollahi, and M. Goudarzi,
“Simultaneous hardware and time redundancy with online task
scheduling for low energy highly reliable standby-sparing system,”
ACM Transactions on Embedded Computing Systems, vol. 13, no. 4,
p. 1, 2014.

[7] I. Assayad, A. Girault, and H. Kalla, “A bi-criteria scheduling
heuristic for distributed embedded systems under reliability and real-
time constraints,” 2004.

[8] A. Girault, H. Kalla, and Y. Sorel, “An active replication scheme
that tolerates failures in distributed embedded real-time systems:
Processors and communication links failures,” pp. 83–92, August
2004.

[9] C. Arar and M. S. Khireddine, “An efficient fault-tolerant multi-bus
data scheduling algorithm based on replication and deallocation,”
Cybernetics and Information Technologies, vol. 16, no. 2, pp. 69–
84, 2016.

[10] B. Kada and H. Kalla, “An efficient fault-tolerant scheduling
approach with energy minimization for hard real-time embedded
systems,” pp. 102–117, 2019.

[11] S. Kalla, R. Hocine, H. Kalla, and A. Chouki, “Graceful degradation
for reducing jitter of battery life in fault-tolerant embedded systems,”
International Journal of Systems Science, vol. 49, no. 11, pp. 2353–
2361, 2018.

[12] A. Yeganeh-Khaksar, M. Ansari, and A. Ejlali, “Remap: Reliabil-
ity management of peak-power-aware real-time embedded systems
through task replication,” IEEE Transactions on Emerging Topics in
Computing, vol. 10, no. 1, p. 312, 2022.

[13] S. Bansal, R. K. Bansal, and K. Arora, “Energy efficient backup
overloading schemes for fault-tolerant scheduling of real-time
tasks,” Journal of Systems Architecture, vol. 113, p. 101901, 2021.

[14] P. Lopez, “Approche par contraintes des problèmes
d’ordonnancement et d’affectation: structures temporelles et
mécanismes de propagation,” 2003.

[15] D. Zhu, R. Melhem, and D. Mossé, “The effects of energy man-
agement on reliability in real-time embedded systems,” pp. 35–40,
November 2004.

[16] S. M. Shatz and J.-P. Wang, “Models and algorithms for reliability-
oriented task-allocation in redundant distributed-computer systems,”
IEEE Transactions on Reliability, vol. 38, no. 1, p. 16, 1989.

[17] S. Djosic and M. Jevtic, “Dynamic voltage and frequency scaling
algorithm for fault-tolerant real-time systems,” Microelectronics
Reliability, vol. 53, no. 7, p. 1036, 2013.

[18] A. Mahmood, S. A. Khan, F. Albalooshi, and N. Awwad, “Energy
aware real-time task scheduling in multiprocessor systems using a
hybrid genetic algorithm,” Electronics, vol. 6, no. 2, p. 40, 2017.

[19] H. E. Zahaf, “Energy efficient scheduling of parallel real-time tasks
on heterogeneous multicore systems,” 2016.

[20] M. Bachir, R. Hocine, N. Louchene, and H. Kalla, “A fault-tolerant
scheduling heuristics for distributed real-time embedded system,”
pp. 1–6, 2021.

[21] C. B. Holroyd, N. Yeung, M. G. Coles, and J. D. Cohen, “A
mechanism for error detection in speeded response time tasks,”
Journal of Experimental Psychology: General, vol. 134, no. 2, p.
163, 2005.

[22] M. H. Motaghi and H. R. Zarandi, “Dfts: A dynamic fault-tolerant
scheduling for real-time tasks in multicore processors,” Micropro-
cessors and Microsystems, vol. 38, no. 1, p. 88, 2014.

[23] M. Bachir and H. Kalla, “A fault-tolerant scheduling heuristics for
distributed real-time embedded systems,” Cybernetics and Informa-
tion Technologies, vol. 18, no. 3, pp. 48–61, 2018.

[24] H. Kalla, “Génération automatique de distribu-
tions/ordonnancements temps réel, fiables et tolérants aux
fautes,” 2004.

International Journal of Computing and Digital Systems 11

[25] X. Zhu, R. Ge, J. Sun, and C. He, “3e: Energy-efficient elastic
scheduling for independent tasks in heterogeneous computing sys-

tems,” Journal of Systems and Software, vol. 86, no. 2, p. 302, 2013.

	INTRODUCTION
	RELATED WORKS
	SYSTEM MODELS
	Algorithm model
	Architecture model
	Fault model
	Power model

	PROPOSED FAULT TOLERANCE METHODOLOGY
	Passive redundancy
	Active redundancy

	FAULT TOLERANCE METHODOLOGY UTILIZING DVFS
	OE_FTS PROPOSED ALGORITHM
	SIMULATIONS PARAMETERS
	RESULTS
	CONCLUSIONS
	References

