
 

 

 

International Journal of Computing and Digital Systems 
ISSN (2210-142X)  

Int. J. Com. Dig. Sys. 5, No.1 (Jan-2016) 

 

 

E-mail: s.m.azharul.karim@gmail.com, jeff.prevost@utsa.edu, paul.rad@utsa.edu 

  http://journals.uob.edu.bh 

 

Efficient Real-Time Mobile Computation in the Cloud  

Using Containers 

S M Azharul Karim
1
, John J Prevost

2
 and Paul Rad

3 

1Department of Electrical Engineering, University of Texas at San Antonio, San Antonio, USA 
2 Assistant Professor, Department of Electrical Engineering, University of Texas at San Antonio, San Antonio, USA 

3 Chief Research Office and Assist Director, Open Cloud Institute, University of Texas at San Antonio, San Antonio, USA  

 

Received 14 May  2015, Revised 17 July 2015, Accepted 2 Oct. 2015, Published 1 Jan. 2016 

 

Abstract: Mobile devices have limited resources in terms of power and bandwidth. Cloud computing offers a way to reduce the 

power consumption of mobile devices by offloading computation to the cloud. However, offloading computation means an increase 

in communication energy consumption. The trade-off between energy and network characteristics (bandwidth/latency) in a mobile 

device is very important. Therefore computation offloading must be done strategically. The optimum utilization of the available 

mobile device resources needs to be assured. In this paper, we propose an intelligent and dynamic algorithm to offload computation 

to the cloud utilizing containers. We focus on offloading computation based upon the communication topology, device energy and 

user inputs. We analyze the cost of offloading computation for different user inputs, and based on the inputs, we decide whether to 

offload the application to the cloud or not. Our algorithm was implemented using two different approaches, a fuzzy-logic system and 

a neuro-fuzzy system. These were both simulated using MATLAB®, and the results compared. Our previous work demonstrated that 

the fuzzy-logic system performed better than the referenced system. This paper demonstrates that the neuro-fuzzy approach, utilizing 

a container based hosting model, improves on our prior results. 

Keywords: Cloud computing, offloading computation, network topology, bandwidth, latency, MATLAB®, Container.

1. 1
INTRODUCTION  

Mobile cloud computing is becoming more and more 

popular. Every day, billions of devices vie for access the 

cloud. With the advancement in wireless connectivity 

technologies (4G, 4G+, 5G, Wi-Fi), and with the plethora 

of cloud services available, connecting to the cloud has 

become very easy. Even a few years ago, one had to pay 

a lot of money to buy a smart device with Internet access. 

Today, smart devices, such as Mobile phones, smart 

watches, tablet PCs, etc are all becoming less expensive. 

Devices like Apple iPhone [1], Samsung Galaxy phones 

[2], Microsoft Lumia phones [3] etc are becoming 

cheaper and popular. More and more people are using 

them to access the Internet and the cloud. According to 

Cisco [4], global mobile data traffic grew 69% in 2014. 

Total number of mobile devices in 2014 grew to 7.4 

billion, compared to 6.9 billion in 2013. Smart phones 

accounted for 88% of that growth. And the number of 

mobile devices will continue to grow. 

                                                           

 
1
 This research is partially supported by the Open Cloud 

Institute at the University of Texas at San Antonio. 

As companies are capitalizing on the proliferation of 
mobile and wearable devices to develop new products and 
services globally, they rely on cloud capabilities to fulfil 
their large-scale parallel computation requirements. Many 
data analytic applications are too computation intensive to 
perform on a mobile or wearable device. If a mobile user 
wants to use such applications, computation must be 
performed in the cloud. Figure 1 shows us the mobile 
cloud distribution model. 

 

Figure 1: Mobile-Cloud Distributed Computing Model 

http://dx.doi.org/10.12785/ijcds/050103 



 

 

22       S M.Karim, et. al.: Efficient Real-Time Mobile Computation in the Cloud using Containers 

 

http://journals.uob.edu.bh 

Cloud computing is a new paradigm where 
application services are provided through the Internet and 
computing resources such as processing, memory, and 
storage are not physically present at the user’s location. 
Cloud computing can enhance the computing capability 
of mobile systems, but requires higher application 
mobility [17] [18]. 

Although mobile devices are becoming smarter and 
more powerful, they have limitations. Smart-phones are 
energy hungry. The high-end devices can often run apps 
smoothly, but they also require a lot of energy to operate. 
According to an article in Science Time [5], an iPhone 
requires as much energy as a refrigerator. The battery 
power has not increased significantly in recent years. 
However, people want better batteries on their smart-
phones that can run their devices for more than 24 hours. 
In a mobile device, different applications consume energy 
in different ways [9]. There are different approaches to 
reduce mobile energy usage. One way is to calculate how 
much power the application requires before it is executed 
[6]. In [6], the authors suggest an algorithm that can 
calculate energy consumption of an application by 
examining the source code of that application. Another 
way to optimize energy consumption is to offload 
computation to the cloud [7][8]. This approach reduces 
mobile energy consumption significantly but it doesn't 
take into account the available network and environment. 
According to [10], cloud mobile augmentation allows 
resource-rich clouds to increase, enhance, and optimize 
computing capabilities of mobile devices aiming at 
execution of resource-intensive mobile applications. 
However, an increase in offloading to the cloud means the 
device has to transfer more data to the cloud. Offloading 
more data and computation increases the energy to 
communicate with the cloud. If communication energy is 
more than executing the computations in the phone, then 
offloading computation may not be a wise decision. So, a 
smarter approach is required to offload computation to the 
cloud. In [11], the authors suggest an algorithm to offload 
computation to the cloud by partitioning every application 
into different processes. And then the device will offload 
computation heavy processes to the cloud, and execute 
data-intense processes in the device. That way it can 
ensure better optimization of mobile device resources. But 
this approach does not consider the wireless broadband 
service available (3G, 4G, 4G+, and Wi-Fi). The mobile 
communication energy may vary based on different 
networks and their data rates.  

In this paper, we have focused on offloading 

applications to the cloud based on the available network 

and its characteristics, device energy and user inputs. We 

have applied fuzzy logic and adaptive neuro-fuzzy 

modeling to decide whether to offload the application to 

the cloud or not. We have implemented our algorithm 

separately using both systems. Using our algorithm, we 

have implemented an image matching application in 

MATLAB®. We have allowed for different input 

parameters to be used to decide where to execute the 

application. In this paper, we have shown that through 

offloading applications to the cloud, our algorithm saves 

device energy. We have compared our result with [11], 

and showed that our algorithm saves more time 

compared to the approach in [11]. We have also 

compared the two systems to show which system 

performs better for the same inputs. Figure 2 represents 

the implemented algorithm. 

 
 

Figure 2: Flow diagram of implemented algorithm 

The rest of this paper is organized as follows. At first 

we will describe the system model used in our algorithm. 

Next we will implement our model using a simulated 

numerical example. We then evaluate our results and 

lastly provide a conclusion of our work. 

 



 

 

 Int. J. Com. Dig. Sys. 5, No.1,21-30 (Jan-2016)                        23 

 

 

http://journals.uob.edu.bh 

2. SYSTEM MODEL 

We will first assume access to a cloud infrastructure 

with unlimited computational ability and infinite power 

supply. In this cloud, we will implement our device clone 

that will be used to execute different applications. Our 

objective is to optimize energy use in the device.  

For that, we consider the following parameters- (1) 

available bandwidth, (2) energy level on the device, (3) 

user input data and (4) latency incurred for executing 

each application in cloud. Based on these parameters, we 

have decided whether to offload the application to the 

cloud or not.  

This decision-making is done by two different 

approaches: A. Fuzzy logic, B. Adaptive neuro fuzzy 

modeling. Both approaches implement the same 

algorithm. For the fuzzy logic approach, we have to 

design the membership functions, rules, and variables. 

On the other hand, the neuro-fuzzy analysis takes a 

training data set as input, and creates a fuzzy transfer 

function using that training data set. 

Figure 1 represents the flow diagram of the 

algorithm that we have implemented. It shows how the 

algorithm decides about offloading to the cloud based on 

the above mentioned parameters. 

To decide whether to offload to cloud or not, we 

have made some assumptions. Table 1 represents the 

assumptions that we made for the paper. 

Table 1: Assumptions made for this paper 

# Description of Assumption 

1 Combined file size of the two input images will not 

exceed 10 MB. 

2 The two images will not have combined dimension of 

more than 50,000,000 pixels. 

3 Energy level on the handheld device ranges between 0-

100 

4 Both the device and the cloud clone has the same 

application, and the application can be executed in the 

device or in cloud clone. 

5 We assume our handheld device has an ARM Cortex 

A7 processor, and the cloud computers have Intel Xeon 

5300 series processor. 

6 For each iteration, execution time in ARM processor is 

1ns. 

7 For each iteration, energy consumed in ARM processor 

is 10 µW. 
 

(Note: Assumption 1 and 2 are the constraints of the 

image comparing application. The application can handle 

images with even bigger file sizes and dimensions, but 

for the ease of simulation, we have constrained the inputs 

to the above-mentioned values. These assumptions are 

considered for both the fuzzy and the neuro-fuzzy 

analysis.) 

A. Lightweight Containeration of Applications  

Virtual machine (VM) based virtual infrastructure has 

been adopted widely in cloud computing environment for 

elastic resource provisioning. Performing resource 

management using VMs, however, is a heavyweight task 

[19]. Container images, such as those prepared via the 

Docker, or Rocket projects [20], are rapidly becoming 

the unit of deployment for cloud-native application 

architectures.  Containers leverage modern Linux kernel 

primitives such as control groups (cgroups) and 

namespaces to provide resource allocation and isolation 

features as those provided by virtual machines with much 

less overhead and much greater portability. Figure 3 

shows the containerization of mobile apps. 

 

 
 

Figure 3: Containerization of Mobile Applications 

The experiment results show that our proposed 

containerized based resource management approach 

outperforms the VM-based approach in terms of 

feasibility and resource-efficiency [18]. 

B. Fuzzy variables 

1)   Cost (execution energy) 

Mobile applications require a lot of energy to 

execute. With the increase in complexity and size of 

mobile apps, modern mobile apps consume a lot of 

energy. That is why energy required to execute the 

applications should be considered before we offload 

applications to cloud. We have defined energy required 

to execute the application as "Cost". We have assumed 

that the cost is proportional to number of iterations in the 

application.  For the image matching application, the 

number of iterations is equal to the user input image file 

dimensions. 



 

 

24       S M.Karim, et. al.: Efficient Real-Time Mobile Computation in the Cloud using Containers 

 

http://journals.uob.edu.bh 

Let us assume, Image 1 dimensions are X1 and Y1, and 

image 2 dimensions are X2 and Y2. 

Then,  

1 1 2 2
cost

50000000

X Y X Y  
   (1) 

We have categorized cost in three groups: low, 

medium and high. Figure 4 shows us the three 

normalized costs. 

 

Figure 4: Normalized Cost (execution energy) 

 

2)   Device Energy 

Our handheld devices have limited energy. We have 

to consider our device energy level before we want to 

upload any application in the cloud. We have categorized 

energy level on the device as: low, medium and high. 

Figure 5 represents the three device energies. 

 
Figure 5: Device energy 

 

3)   Latency Difference  

Latency is the delay between user input and output. 

High latency is not desired by anyone. That's why we 

have given it the highest priority. We have measured 

execution time in the device, and execution time in the 

cloud. There are two types of latencies in our system: 

a.   Latency for executing the application in the device 

b. Latency for executing the application in the cloud 

clone. 

According to [12], clock speed of an Intel® Xeon® 

5300 series processor is 3.0 GHz. Also according to [13], 

clock speed of an Arm Cortex-A7 processor is 1.5GHz. 

Although only clock speed is not sufficient to determine 

the speed of each processor, for simplicity we will 

assume that each CPU performance is proportional to 

their clock speed. So we define the ratio between these 

two processors as a factor by which Intel® Xeon® 5300 

series processor is faster than ARM cortex A7 processor. 

We define our variable as: 

3
/ 2

1.5

GHz
Xeon ARM

GHz
    (2) 

This factor will be used to calculate execution time 

in cloud clone. 

We assume, total number of iterations for the given 

inputs as N. 

Now, we define the two latencies in detail: 

     

                                    (  

                                  7 )

Latency for device Time to execute application

in device ARM Cortex

A processor



 

Which can be re-written as: 

  1Latency for device N ns   (3) 

And, 

      

 (   )  

   (  )

Latency for cloud Time to execute application

in cloud Intel XEON processor Latency of

transmitting and receiving data communication time





 

Now, latency to execute the application in Cloud  

1
Execution  time  in  cloud

N ns

Xeon ARM


            (4) 

To calculate the communication time between 

mobile device and the cloud clone, we define a variable 

"Bandwidth". Bandwidth defines available data rate of 

the network. The higher the data rate, the more data we 

can send through the network. In the simulation, 

bandwidth is used to measure the latency of the network 

for the given input file sizes. Bandwidth is selected 

randomly in the range of 0.01 to 1, where 0.01 represents 

lowest possible bandwidth and 1 represents maximum 

bandwidth. 

To calculate the latency to transmit and receive data 

from the device to the cloud clone, we have defined a 

Gaussian distribution. According to [14], the maximum 

latency for 4G LTE network is 150 ns. We have set the 

maximum value of the Gaussian distribution as 150, and 

the minimum value as 0. From the Gaussian distribution, 



 

 

 Int. J. Com. Dig. Sys. 5, No.1,21-30 (Jan-2016)                        25 

 

 

http://journals.uob.edu.bh 

we select the time to transmit, or receive data. We define 

this latency as, "network latency".  

Figure 6 shows us the Gaussian distribution from 

which we have selected the network latency. 

 

Figure 6: Gaussian distribution for network latency 

Although this latency value is fixed, the time to 

transmit the total data might be even more. If the 

available bandwidth is low, then the device might need to 

split the data and then send them one by one. This will 

require more time than sending the data at once. To 

calculate this effect of low bandwidth, we have read the 

total size of the two input files in Bytes and stored them 

in a variable called "filesize". According to [15], the 

average upload data rate for Verizon 4G LTE network is 

14.63 MB. We read the normalized available bandwidth 

in the "BW" variable.  

 Time to transmit the data to cloud is defined as: 

 1
 

14.63 1048576

network latency ns filesize
Tx time

BW

 


 
 (5) 

The output of the application is a floating-point 

value. In any 4G LTE network, it will need one unit time, 

or "network latency" time to send the data back to the 

device. 

Time to receive the data from cloud, 

  1Rx time network latency ns               (6) 

Then, the equation to calculate latency for cloud 

becomes- 

  

1  1

14.63 1048576

 1

Latency for cloud

N ns network latency ns filesize

Xeon ARM BW

network latency ns



  
 

 

 

    

 

Finally, we calculate the difference between cloud 

latency and device latency, and use it as a fuzzy input set. 

     Latency difference Latency for cloud Latency for device 
 

If the Latency difference is positive, it means that 

the latency for the cloud is greater than that of the device, 

and therefore the application should be executed in the 

device. If it is negative, it means the application should 

be executed in the cloud. If it is zero (or close to zero) 

other input parameters will come into consideration and 

based on these parameters, a decision will be made 

regarding the run location of the application. Figure 7 

represents the three latency differences. 

 
Figure 7: Latency difference 

4)   Decision 

We have divided the output based on where to 

execute the app: in the device, or in the cloud. Based on 

the inputs, our algorithm generates an output. The output 

has two possible outcomes- a. execute in device, b. 

execute in cloud. Based on the decision, the application 

is executed either in the device or in the cloud. If it is 

executed in the cloud, the data is sent from the mobile 

device to the cloud, and after execution, the result is sent 

back to the device. Figure 8 represents the output 

decisions. 

 
Figure 8: Output decision 



 

 

26       S M.Karim, et. al.: Efficient Real-Time Mobile Computation in the Cloud using Containers 

 

http://journals.uob.edu.bh 

C. Adaptive Neuro-Fuzzy Modeling 

For the neuro-fuzzy approach, we have used the 

"Neuro Fuzzy Designer" toolbox in MATLAB®. The 

neuro-fuzzy designer toolbox combines artificial neural 

network and fuzzy logic to implement human-like 

reasoning in computers. It uses some training data to 

train itself and creates a fuzzy logic algorithm, which 

will establish a relationship between the input and the 

output. We have created a training data set and a test data 

set to train and test the neuro-fuzzy toolbox. The training 

data set includes three sets of inputs and one set of 

outputs. The inputs are 1. Normalized cost (execution 

energy), 2. Device energy, and 3. Latency. The output set 

is the decision. Unlike the fuzzy logic approach, we have 

not calculated the input data from the user inputs. 

Instead, we have followed our algorithm and the 

assumptions. For different input conditions and 

corresponding output conditions, we have generated the 

data sets. Using the inputs and outputs, the neuro-fuzzy 

designer establishes a system model, or a transfer 

function, and stores it as a fuzzy logic algorithm. After 

executing the training data, the neuro-fuzzy toolbox 

creates some variables and membership functions. The 

following figures represent those variables and 

membership functions. 

Figure 9 represents normalized cost (execution energy) 

for the neuro-fuzzy analysis. 

 

Figure 9: Normalized cost for neuro fuzzy 

Figure 10 represents device energy for the 

neuro-fuzzy analysis. 

 

Figure 10: Device Energy for neuro fuzzy 

 

Figure 11 represents latency for the neuro fuzzy 

analysis. 

 

Figure 11: Latency 

Figure 12 represents output decisions for the neuro-

fuzzy analysis. 

 

Figure 12: Decisions 

After creating the fuzzy system using the adaptive 

neuro fuzzy designer toolbox, we have used it to 

implement our algorithm. Just like the fuzzy approach, 

we have used the new fuzzy system to decide whether to 

offload to the cloud or not based on different user inputs. 

We have used the testing data set to compare the neuro-

fuzzy system with the fuzzy system. We have 

implemented both the fuzzy system and the neuro-fuzzy 

system separately for different input images and made 

decisions. 

3.  NUMERICAL ANALYSIS: AN EXAMPLE 

A.   Image Comparing Software 

To better demonstrate our algorithm and how it 

works, we take a sample application- an image 

comparing software, which takes two images as input 

and compares percentage similarities between them. Our 

software uses corner detection to compare between two 

input images. We have used the "canny" edge detector 

algorithm to find the edges of the two images. Then we 

have compared the edges of the two images to find total 

matches. Finally, we have divided total no of matches by 

total no of data points to find percentage similarities 

between the two images. 



 

 

 Int. J. Com. Dig. Sys. 5, No.1,21-30 (Jan-2016)                        27 

 

 

http://journals.uob.edu.bh 

As mentioned before, we assume that we have a 

software clone of our device running in the cloud. The 

clone has the same image matching software installed in 

it. We have introduced images of different sizes and 

types to test our algorithm. We have also provided 

different network conditions: different latencies and 

bandwidths, different device power levels to make a 

decision on application offloading. This decision-making 

is done by our algorithm. We have implemented both the 

fuzzy and the neuro-fuzzy system to make the decisions. 

The fuzzy system has user defined variables, 

membership functions and rules. From the inputs, it 

calculates the normalized cost (execution energy), device 

energy, and latency. Then it makes a decision based on 

its membership functions and rules. On the other hand, 

the neuro fuzzy system has trained itself and generated 

variables, membership functions and rules. Using its self 

generated variables, membership functions and rules, the 

neuro fuzzy system makes a decision. The two systems 

were implemented separately. We have used the same 

inputs for both systems. Both of them show similar 

outputs for the same inputs.  

Table 2 shows the images that were used to test our 

algorithm: 

 
Table 2: Properties of images that were used 

# File Name File 

resolution 

(pixel*pixel) 

File size 

1 

 

flower.jpg 1920 * 1438 554 kB = 

567296 B 

2 

 

flower 2.jpg 1920 * 1438 411 kB = 

420864 B 

3 

 

flower 3.jpg 6000 * 4000 4.27 MB = 

4477419 B 

4 

 

flower 

4.png 

1920 * 1438 6.20 MB = 

6501171 B 

5 

 

flower 5.jpg 515 * 515 71.2 kB = 

72908 B 

6 

 

flower 6.jpg 448 * 336 24.1 kB = 

24678 B 

7 

 

flower 7.jpg 7 * 6 7.23 kB = 

7403 B 

 

Table 3 shows the output of the image comparing 

application for different input images: 

Table 3: Output of image comparing app. 

# Input images Similarity 

(%) 

1 1 & 2 69.18 

2 1 & 3 0.8346 

3 3 & 3 100 

4 1 & 4 95.8791 

5 3 & 5 0.1093 

6 2 & 6 0.3440 

7 2 & 7 0 

8 3 & 7 2.4*10^-04 

9 1 & 7 0 

10 2 & 5 0.9322 

11 7 & 7 100 

12 3 & 4  0.8246 
 

Table 4 shows us the inputs, the outputs of the 

software and the decisions made by our algorithm. 

 

Table 4: Inputs and output of the fuzzy algorithm 

Input 

image 

Cost 

 

Latency 

difference 

Device 

energy 

Output 

decision 

1, 2 0.1104 -0.1104 100 Device 

1, 3 0.5352 -0.5352 100 Cloud 

3, 3 0.9600 -0.9598 100 Cloud 

1, 4 0.1104 -0.1104 10 Cloud 

3, 5 0.4853 -0.4853 50 Cloud 

2, 6 0.0582 -0.0582 5 Cloud 

2, 7 0.0552 -0.0552 100 Device 

3, 7 0.4800 -0.4800 100 Cloud 

1, 7 0.0552 -0.0552 50 Cloud 

2, 5 0.0605 -0.0605 100 Device 

7, 7 1.62E-6 1.62E-6 100 Device 

3, 4 0.5352 -0.5352 80 Cloud 

 

Now, let's recall our algorithm and see if the output 

data matches them or not. For the first example, the 

comparison between image 1 and image 2, we see that 

the latency is close to zero. So, other parameters will 

come into consideration. As the cost of execution is low, 

and device energy is high, so our decision is execution is 

device.  

For the third example, since the latency is negative 

as well as a very small value, the other parameters will 

not be considered. The decision will be to execute in 

cloud. 

 



 

 

28       S M.Karim, et. al.: Efficient Real-Time Mobile Computation in the Cloud using Containers 

 

http://journals.uob.edu.bh 

For the sixth example, since the latency is not a very 

small value, both the cost and device energy will be 

considered. Since the cost is low, and the device energy 

is also low, the decision will be execution in the cloud. 

4.  EVALUATION 

We have simulated our algorithm in MATLAB®, 

tested it with sample software, and derived the outputs. 

We have implemented our algorithm using two different 

systems and generated outputs for both systems. We 

found out that both systems generate same outputs for the 

same inputs. We have compared our results to a previous 

approach. In [11], the authors implemented and tested 

their algorithm, CloneCloud, to offload computation to 

the cloud. The objective of CloneCloud is to partition the 

software into several threads/partitions and offload the 

threads to the cloud which will save time and energy. At 

first, they do the static analyzing to partition the software 

into different threads. Then, they do the dynamic 

profiling based on the execution time and energy 

consumed to select which thread/partition should be 

offloaded so that minimum execution time and energy 

can be achieved. So, their total execution time is as 

follows: 

Clonecloud total execution time = Static analyzing time

 + Dynamic profiling time + Execution time of the soft-

ware till the thread/threads which will be offloaded + 

pausing time + time to transmit the thread and necessary

data to cloud + execution time in cloud + time to receive

the output of the thread/s from cloud + resuming time +

execution time for the rest of the software + time to print

output

  

Whereas total execution time for our algorithm 

consists of the following:  

Execution time of our algorithm= Dynamic decision

making time about offloading based on user inputs,

network characteristics, & device energy + 

time to transmit input data from device to cloud 

(if the decision is to offload) + execution time in the

cloud + time to receive output data from cloud +

time to print output

 

If we compare the two algorithms, we can see that if 

both decide to offload to the cloud, then our algorithm 

will take less time compared to their approach.    

 

 

In [11], the authors implemented a virus scanning 

application in a mobile device, whereas we have 

implemented an image comparing software algorithm. 

We then performed the comparison based on input file 

sizes and observed the time required to offload for both 

the algorithms. Table 5 shows the comparison between 

the algorithms. 

Table 5: Comparison  

# Input 

file 

size 

Execution 

time in 

cloud(sec) 

(CloneCloud) 

Execution time 

in cloud(sec) 

(our algorithm) 

1 100kB 0.2 0.000208 

2 1 MB 2.2 0.0028 

3 10 

MB 

22.5 0.0267 

 

We can see that our algorithm saves significant time 

offloading to the cloud compared to the approach in [11].  

Also, for the mentioned offloads, our algorithm 

saves energy of the device. We have assumed that for 

each iteration, energy consumed in ARM processor is 10 

µW, and calculated the amount of power saved. Figure 

13 shows how much power is saved for each input file 

sizes. 

 

Figure 13: Device power saved by offloading to the cloud for 

different file sizes 

We have also compared the two systems that we've 

implemented. We have used a testing data set to compare 

the two systems. We have used the neuro fuzzy designer 

toolbox in MATLAB® to generate error signal for the 

testing data set for both systems. Finally, we have plotted 

the two error signals so that we can compare them. We 

have plotted the error signals against epochs.  

 



 

 

 Int. J. Com. Dig. Sys. 5, No.1,21-30 (Jan-2016)                        29 

 

 

http://journals.uob.edu.bh 

Figure 14 represents the error signal for the fuzzy 

system. 

 
Figure 24: Error signal for fuzzy system 

 

Figure 15 represents the error signal for the neuro 

fuzzy system. 

 
Figure 15: Error signal for neuro fuzzy system 

From the two figures, we can see that the neuro-

fuzzy system generates smaller error compared to the 

fuzzy system. Also, we can see that the neuro-fuzzy 

system converges faster than the fuzzy system.  

From the two figures, we can conclude that the neuro-

fuzzy system is better than the fuzzy system. 

 

6. CONCLUSION 

In this paper, we have focused on offloading 
computation to the cloud in a strategic way to ensure 
optimum utilization of mobile device resources. Our 
algorithm considers network conditions, mobile device 
energy, user inputs, and dynamically decides whether to 
offload the computation to the cloud or not. For better 
application in real life decision-making, fuzzy logic is 
used to implement our algorithm. We have simulated our 
algorithm in MATLAB®. We have implemented an 
image comparing application to evaluate our algorithm 
and gathered data for different inputs. Finally, we have 
compared our algorithm with previous approaches and 
found that our algorithm performs better than compared 
to a previous approach. And it also saves significant 
device energy by offloading to the cloud. 

ACKNOWLEDGEMENT 

We gratefully acknowledge the following:  

(i) Time grants to access the facilities of the Open Cloud 

Institute of University of Texas at San Antonio. 

REFERENCES 

[1] https://www.apple.com/iphone/ 

[2] http://www.samsung.com/us/mobile/cell-phones/all-

products?filter=galaxy-s 

[3] http://www.microsoft.com/en/mobile/phones/lumia/ 

[4] http://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/white_paper_c11-

520862.html 

[5] http://science.time.com/2013/08/14/power-drain-the-

digital-cloud-is-using-more-energy-than-you-think/ 

[6] S. Hao, D. Li, W. Halfond, R. Govindan, "Estimating 

mobile application energy consumption using program 

analysis", ICSE '13 Proceedings of the 2013 International 

Conference on Software Engineering, Pages 92-101, IEEE 

Press Piscataway, NJ, USA , 2013 

[7] S. Kosta, A. Aucinas, P. Hui, R. Mortier, X, Zhang, 

"ThinkAir: dynamic resource allocation and parallel 

execution in cloud for mobile code offloading", MCS 

'13 Proceeding of the fourth ACM workshop on Mobile 

cloud computing and services, Pages 9-16, ACM, New 

York, NY, USA, 2013 

[8] A. Belogazov, J. Abawajy, R. Buyya, "Energy-aware 

resource allocation heuristics for efficient management of 

data centers for cloud computing", Future Generation 

Computer Systems, Volume 28 Issue 5, May, 2012, Pages 

755-768, Elsevier Science Publishers B. V. Amsterdam, 

The Netherlands 

[9]  G.P. Perrucci, F.H.P Fitzek , J. Widmer, "Survey on 

Energy Consumption Entities on the Smartphone 

Platform", Vehicular Technology Conference (VTC 

Spring), 2011 IEEE 73rd, Pages 1-6, Yokohama, Japan 

[10]  S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, R. Buyya, 

"Cloud-based augmentation for mobile devices: 

motivation, taxonomies, and open challenges", 

Communications Surveys & Tutorials, IEEE  (Volume:16 

,  Issue: 1 ), Pages 337-368, 2013 IEEE Publications.  

[11] B. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, 

"Clonecloud: elastic execution between mobile device and 

cloud", EuroSys '11 Proceedings of the sixth conference 

on Computer systems, Pages 301-304, ACM, New York, 

NY, USA  

[12] http://www.dell.com/us/dfb/p/poweredge-2950/pd 

 

[13] http://www.anandtech.com/show/4991/arms-cortex-a7-

bringing-cheaper-dualcore-more-power-efficient-highend-

devices 

[14] http://www.evdoinfo.com/content/view/4818/64/ 

[15] http://www.cnet.com/news/4g-lte-showdown-how-fast-is-

your-carrier/ 

[16] Paul Rad, Mohan Muppidi, Aldo S. Jaimes, Sos S. Agaian, 

and Mo Jamshidi “A Novel Image Encryption Method to 

Reduce Decryption Execution Time in Cloud”, the 9th 

2015 IEEE International Systems Conference, April 2015. 

 

http://www.sigmobile.org/mobisys/2013/
http://www.sigmobile.org/mobisys/2013/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5954014
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5954014
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6734841
http://eurosys2011.cs.uni-salzburg.at/
http://www.acm.org/publications
http://www.cnet.com/news/4g-lte-showdown-how-fast-is-your-carrier/
http://www.cnet.com/news/4g-lte-showdown-how-fast-is-your-carrier/


 

 

30       S M.Karim, et. al.: Efficient Real-Time Mobile Computation in the Cloud using Containers 

 

http://journals.uob.edu.bh 

[17] Paul Rad, Van Lindberg, Jeff Prevost, Weining Zhang, 

and Mo Jamshidi “ZeroVM: Secure Distributed 

Processing for Big Data Analytics” , World Automation 

Congress (WAC) 2014 

[18] S. He, L. Guo, Y. Guo, C. Wu, M. Ghanem, and R. Han, 

"Elastic application container: A lightweight approach for 

cloud resource provisioning," in AINA. Los Alamitos, CA, 

USA: IEEE Computer Society, 2012 

[19]  https://www.docker.com/ 
 

 

S M Azharul Karim received his B.Sc. 

degree from Bangladesh University of 

Engineering and Technology in April 

2012. He then joined Dhaka Electric 

Supply Company Limited (DESCO) in 

October 2012 and worked their till 

December 2014 as an assistant engineer. 

Currently, he is doing master's in Electrical 

Engineering in University of Texas at San Antonio. He has 

published 2 conference papers. 

 

 

John Jeffrey Prevost received his 

first B.S. degree from Texas A&M in 

Economics in 1990. He received his 

second B.S. degree in Electrical 

Engineering from the University of 

Texas at San Antonio, where he 

graduated Magna Cum Laude in 

December 2009. In 2012 he received 

his M.S. degree in Electrical 

Engineering, also from the University 

of Texas at San Antonio along the way to earning his Ph.D. in 

Electrical Engineering in December, 2013. During his academic 

career he received two awards for Best Conference Paper, first 

at the World Automation Congress 2012 conference (Puerto 

Vallarta, Mexico) and again at the System of Systems 

Engineering 2013 conference (Maui, HI). He is currently an 

Assistant Research Professor in the department of Electrical 

and Computer Engineering at UTSA. In 2015, he co-founded 

the Open Cloud Institute where he also leads the Research and 

Education thrust area. Prior to his academic appointment, He 

served many roles as a technical leader in the computer 

hardware and software industry. He has served as Director of 

Product Development, Director of Information Systems and 

Chief Technical Officer. He is an active consultant in the areas 

of complex systems and maintains strong ties with industry 

leaders. He has served in the various capacities at professional 

conferences such as General Chair, Publications Chair, and the 

Tutorial and Organized Session Chair. His is a member of Tau 

Beta Pi, Phi Kappa Phi and Eta Kappa Nu Honor Societies, and 

has been a member of IEEE since 2006. He has published 9 

conference and journal papers. His current research interests 

include energy aware cloud optimization, cloud controlled 

robotics, cloud based communications, and quantum cloud 

computing. 

 

 

 
 

Paul Rad (High performance Cloud 

Group Chair at Cloud Advisory Council) 

received his first B.S. degree from Sharif 

University of Technology in Computer 

Engineering in 1994. He received his 

master in computer science from the 

University of Texas at San Antonio, 

where he graduated Magna Cum Laude in December 1999. 

Currently, he is the Chief Research Officer and Assistant 

Director of Open Cloud Institute (OCI) at the University of 

Texas, San Antonio, TX, USA. He has advised over 200 

companies on virtualization and cloud computing and he has 

over 70 industry and academic technical publications. He holds 

12 US patents on clustering, virtualization, cloud computing 

and big data analytics with over 200 citations by top 100 

leading technology companies such as Microsoft, IBM, Cisco, 

Amazon Technologies, HP, and VMware.  In 2014, he founded 

the Cloud and BigData Laboratory at the University of Texas, 

San Antonio, TX, USA as the first Open Compute Project 

(OCP) Certification Laboratory in the North America. In 2015, 

he co-founded the Open Cloud Institute where he also leads the 

industry and academic research cooperation at the University of 

Texas, San Antonio, TX, USA. He is currently involved in 

research on cloud computing architecture and cloud federation, 

big data analytics architecture, image processing & machine 

learning, hyper-scale computing, container clustering and 

micro-service application architectures for cloud native apps. 

http://wacong.org/
http://wacong.org/
https://www.docker.com/

