
ήΒΘΨϣˬ ΔϴϘϴΒτΘϟ΍ϭ ΔΘΤΒϟ΍ ΕΎϴοΎϳήϟ΍ΕΎϴοΎϳήϟ΍ ϢδϗˬΔόϣΎΟΔϠϴδϤϟ΍ή΋΍ΰΠϟ΍

ΕϻΩΎѧόϤϟ΍ ϝϮѧϠΤϟ Δѧϴϧ΍ΪΣϮϟ΍ ϭ ΩϮΟϮϟ΍ ρϭήη ϰϠϋ ϝϮμΤϟ΍ Ϯϫ ΚΤΒϟ΍ ΍άϫ Ϧϣ ϲγΎγϷ΍ ϑΪϬϟ΍
ΔϴϧΎΜϟ΍ ΔΟέΪϟ΍ Ϧϣ ϢϟϭΪϳήϔϟ ΔϴϠϣΎϜΘϟ΍΍˱έΎΒΘϋ΄ΑϯϮѧγ ΪΟϮϳ ϻ Ϫϧ΃ΥΎѧϨΑ ΔѧϨϫήΒϣϢϴѧψϧ ρήΘθѧϳ Ϧѧϳ΃

ϥϮϜΗ ϚϟΫ ΍Ϊϋ ΓΪΣϮϟ΍ Ϧϣ ΎϣΎϤΗ Ϟϗ΃ ϥϮϜϳ ϞϣΎϜΘϟ΍ϞѧΣ ϰϘΒϳωϮѧϨϟ΍ ΍άѧϬϟ Δѧϴϧ΍ΪΣϮϟ΍ ϭ ΩϮѧΟϮϟ΍Ϧѧϣ
ΎΣϭήτϣ ΕϻΩΎόϤϟ΍ϰΘΣ΍άϫ ΎϨϣϮϳ

Shahwan M. J. S., J. of the Association of Arab Univ.  for Basic and Applied Science, Vol. 7, 2009, 115-122

Weisner’s Method to Obtain Generating Functions for the 

Incomplete 2D Hermite Polynomials 

 
M. J. S. Shahwan 

 

Department of Mathematics, University of Bahrain, P.O. Box:32038, Kingdom of Bahrain 

e-mail : dr_mohannad69@yahoo.com 

 

 

ABSTRACT 

 

In this paper, we derive some generating functions for Incomplete 2D Hermite polynomials 

);,(, τyxh nm  by giving suitable interpretations to the indices (m) and (n) through Weisner's 

method. 
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1.INTRODUCTION 

 

The Incomplete 2D Hermite polynomials discussed in the present paper are characterized 

by two indices, two variables and one parameter. These polynomials are defined through 

the generating function (Dattoli 2003) 
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where the polynomials ),,(, τyxh nm are explicitly provided by the series (Dattoli 2003) 
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These polynomials satisfy the following simultaneous partial differential equations 
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Dattoli et al. 2000,2002 and 2003 introduced and discussed a theory of  Incomplete 2D Hermite 

polynomials. Their link with Laguerre polynomials was discussed and it was shown that they are 

a useful tool to study quantum mechanical harmonic oscillator entagled  states .The possibility of 
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developing the theory of complete 2D Hermite polynomials from the point of view of the 

incomplete forms was analyzed too. The orthogonality properties of  the associated harmonic-

oscillator functions were also discussed. 

Recently, (Khan et al. 2008) derived some implicit summations formulae for incomplete 2D 

Hermite polynomials by using different analytical means on their respective generating functions 

[Dattoli, et al  2002; Dattoli, Ricce, 2003; Khan, et al 2008; Weisner, 1955]. 

 

In this paper, we have obtained new generating functions for the Incomplete 2D Hermite 

Polynomials  by constructing a Lie algebra with the help of (Weisner's 1955) method by giving 

suitable interpretations to the indices (m) and (n) of the polynomials under consideration. The 

principal interest in the given results lies in the fact that a number of special cases listed in 

section 3 would yield many new results of the theory of special functions. 

 

 

2. GROUP-THEORETIC METHOD 
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 in (1.3) and (1.4) respectively we get  
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We see that   is a solution of (2.1) and (2.2), since mn

nm spyxhspyxu );,();,,,( , ττ =
);,(, τyxh nm is a solution of (1.3) and (1.4). 

 

 

 

 

   We first consider the following first order linear differential operators  
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such that 
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where the operators {  satisfy the  following commutation relations }

]

6,5,4,3,2,1: =iAi

 

[A1,A2]=0  [A2,A3]=0  [A3,A4]=1 

[A1,A3]=-A3   [A2,A4]=0  [A3,A5]=0 

[A1,A4]=A4  [A2,A5]=-A5  [A3,A6]=0  

[A1,A5]=0  [A2,A6]=A6 

[A1,A6]=0 

[ ]54 A,A  =0           =0   and     [ ]=1 , [ 64 A,A 65 A,A

 

 

where [A,B]=AB-BA. 

The above commutation relations show that the set of operators{ } generate a 

Lie-algebra 

6,5,4,3,2,1: =iAi

λ  and the sets of operators and  form a sub algebras of  }{  A,A,A 431 }{ 652 A ,A ,A

λ . 

It is clear that the differential operators 
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which can be expressed as: 

 

L1=A3A4-n  and   L2=A5A6-m 

 

commutes with { } that is 6,5,4,3,2,1: =iAi
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[L1, Ai]= 0  , i = 1,2,3,4,5,6 

and                      (2.3) 

[L2, Ai]= 0  , i = 1,2,3,4,5,6       

 

The extended form of the groups generated by { } 6,5,4,3,2,1: =iAi

are as follows: 
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where );,,,( τspyxf is an arbitrary function. 

 

Then we have 
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3. GENERATING FUNCTIONS 

   From the above discussion, we see that 
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If we put  in equation (3.3), we get ==

τττ +

∞

=

=+ ∞<

==

ττ −

∞

=

+−−−=+ ∞<

}
τ

=

{ ====
τ =



{ }=

ττ =

ττ =

ττ +=

τττ +=

ττ +=

τττ +=

τ

=τ

( ) τττ +++++

τ

ττ =

=−
=

=−
=

τ =

Shahwan M. J. S., J. of the Association of Arab Univ.  for Basic and Applied Science, Vol. 7, 2009, 115-122

and 

L ττ = , where 

 

Therefore, the transform

 also annulled by L  and L . 

}baaai == 65 ,;4,3,2  and writing 

);,(, τ  in (2.4), we get  

 

 

));,(());,(( ,2,2

mn

nm

mn

nm spyxhSLspyxhS

ation  ));,(( ,

mn

nm spyxhS τ  

 

is 1 2

          By setting { ia == ,1:0
mn

nm spyxhspyxf );,,,( τ =

mn

nm

mn

nm

aAbA
spbsy

s

a
xhbsxspyxhee );,()exp());,(( ,,

56 τττ ++=  (3.1) 

 

but 

lkmn

nlkm

k

l k

l
mn

nm

aAbA
e 6 spyxhkmmmm

k

a

l

b
spyxhe +−

+−

∞

=

∞

=

+−−−= );,())1)...(2)(1((
!!

));,(( ,

0 0

,
5 ττ

 (3.2) 

 

combining the above two relations (3.1) and (3.2), we get                             
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If we put  in equation (3.3), we get 
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       Again by setting } and writing 
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ombining the above two relations (3.6) and (3.7), we get 
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 we put  in equation (3.8), we get 
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 we put  in equation (3.8), we get If  1,0 == pd
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. CONCLUSION: 

e have seen that Weisner's   group theoretic method is a power full tool in getting generating 

 

4

 

W

functions . It is also interesting to define a new function which forms generalization for the 

Incomplete 2D Hermite Polynomials under consideration and then by using Lie theoretic 

technique  , we can obtain generating functions. We will deal with this aspect in the subsequent 

communication. 
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