Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

Complexity of Parallel Block Gauss Jordan Algorithm
Salman H. Abbas
Department of Mathematics University of Bahrain P O Box 32038, Bahrain
ABSTRACT

In this paper the block Gauss-Jordan algorithm for solving linear systems of equations is
presented in the proposed for multitasking. The paper indicates how the availability of
more than one processor must change our approach to the problem of computing
solutions of linear systems.

KEYWORDS

Block Gauss-Jordan algorithm; multitasking; multiprocessor Sequent Balance, predicted
time.
1. INTRODUCTION.

The problem we want to consider is how to compute the numerical solution of the linear
system.

Ax=> (1)

Where Ais a dense matrix of size nxnand x, b are vectors of size nx /. We consider

here parallel solution techniques, which are suitable for MIMD local memory,
3

architectures. On sequential machine the method requires Y + O(n”) multiplication and

divisions. On parallel machine with (N —1)(N + M) processors [Heller, 1978] shows

that the method required 3N + I steps, where Ais of size M x N. If only N processors
are available [Quinn, 1988] shows that the Gauss — Jordan algorithm without pivoting

requires N 2 4 2NM + M arithmetic steps.

In the present paper, we show that parallel block Gauss — Jordan algorithm is much faster
than parallel LU-decomposition and if the number of processors matches the number of
block rows ¢, then block Gauss — Jordan algorithm is better suited to parallel

implementation than any methods of Gaussian type in computing numerical solutions of
linear systems.

A comprehensive list of references is available in the recent study, see for example
[Abbas, (1990); 2000,2001; Bader, Gehrke (1991); Barrodale, Stuart, (1977),
Charmberlain (1987); Geist, Romine (1988); Heath, Romine (1988); Heller, (1978); Lord,
Kowalik, Kumar, (1983); Ortega et al (1988); Pease (1976); Purushotam et al, (1992);
Quinn, (1988); Rivers et al, (1990); Sameh, Kuck, (1978)].

2. THE ALGORITHM

Our purpose in this section is to explain the idea of parallel algorithm for solving (1) on
multiprocessor computer. If we consider the above system (1), partition the matrix A into
blocks of size wx wand the vectors x, b into blocks of wx /, where / <i < ¢ and ¢ the

number of blocks rows (= ﬁ), then the system becomes:
w

57

(4, A, A Alq 1 [x B,
Ay Ay Ay AZq X, B,
4, Ay,

_Aql Aq2 Aqq] _Eq] _Eq]

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

Gauss — Jordan algorithm every block is eliminated from each row of the matrix except

In
the diagonal block, which is made equal to unity. The algorithm consists of four stages:

St

Reduce the blocks below the diagonal to zero,

age 1:
Fori=1.g-1 loop
Compute A,;J ;
For j=i+1.4q loop
-1
sz' = Aji A
For k=i+1.4q loop

By =By - M j;; x Ay;

end loop;
end loop;
end loop;

This involves getting zeros below the diagonal and updating the right hand side vector.

Reduce the blocks above the diagonal to zeros:

Stage 2:
For i=¢q...2 loop
For j=i-1..1 loop
-1
sz' = Aji x A
For k =i..1 loop
Ajk = Ajk -M x Ajy
By =By -M;xB;
Stage 3: Reduce the blocks in the diagonal into unit blocks:
Fori=1.q loop
-1
Ajj = Aii” x A4
B; = Ai;] x B;
end loop

58

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

Stage 4: Solve the full set

Solve for i =1,2,...,q
x. =B

Zi T =i

3. PARALLEL ALGORITHM

In this section we consider the parallel implementation of block Gauss-Jordan algorithm
using multitasking. Assuming that P processors are available and p <g¢g, then the
updated blocks in each block row can be carried in parallel. Therefore, the following
procedures are needed:

1- procedure to compute the inverse block A;

2- procedure to multiply two blocks;

3- procedure to multiply a block vector by block;
4- procedure to subtract two blocks vectors.

On this basis the major tasks are as follows:

(D The first task is to reduce the blocks below the diagonal to zero;
Accept block row (i), blockrow (), i;

Call procedure to compute 4;; L

Evaluate the multipliers M ; — A ; x 4; " in parallel;
Call a task to update the blocks;

Collect the results.

(IT)y The second task is to reduce the blocks above the diagonal to zero,

compute the multipliers M ; = 4 ; x Az

Update the blocks and the right hand side vector using the following formula:

A=Ay =M j x Ay ;
By =By -M; xB,.

(IIT) ~ The third task to transfer the diagonal into identity blocks;
Compute A,-;I A;;

And B, = A4;' x B,

Finally solve x, =B, i=1,...q.

1

59

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

For a Multiprocessor Sequent Balance having at least 10 processors, the sequence of
computation in case of reducing the blocks below the diagonal to zeros taking place in
each processor is described below. The computation can go in parallel in all processors.

Processor 1: Compute M ji

Eliminate the blocks in first block row. Communication of the update blocks between
processors.

Processor 2: Eliminate the blocks in second block row, communication of the update
blocks between processors, and soon until the 10" processors.

Processor 10: Eliminate the blocks in the 10" block row communication of the update
blocks between processors.

In our case p < ¢, so the remaining blocks are waiting until the processors are free.

4. PREDICTED COSTS

In this section we give the sequential and parallel costs of the block Gauss — Jordan
algorithm.

4.1 Sequential Algorithm Cost. In the sequential mode the cost depends only on the

number of arithmetic operations required for the algorithm. So, reducing the blocks
below the diagonal to zeros requires:

B EE DI
]{Wj EEV RS)]

j=i+l

~. N
1L
~

Q
\.

7+w (q—l+])(q—l+])+w (q-1i) }

I

(q-1)+wqP(q-1)- 2w’ 2("2 D e wiatq-1)

2
Wsq(q2—1)+W3q(q—1)22q—1)+W2qz(q])
o2 4(a=1) 2a(q-1)(2g-1)

2 -6
w’ w’ 3 2 2 w’ 3 2
=7(q—1)+7(2q 39" +q+3q —3q)+7(2q -39" +q)
W3 3 2

w w
=7(‘]—1)+7(26]3—2‘])*'?(2‘]3—36]2“])

W3 2

=7(3q—3+2q3—2q)+w7(2q3—3q2 +q)

60

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

W3(]3
3 .

Similarly, reducing the blocks above the diagonal to zeros requires:

=i[w%'—1)+w3i(i—1)+w2i(i—1):

i=2
q 3 .. . 2.,. i
=E[w (i-1)(i+1)+w’i(i-1)
=2
3 2 2 2 2
w w w w
=?eq3+3q2—5Q)+?eq3+3q2+q)— q +7q

2
qus)

and the cost of reducing the diagonal to identity blocks is:
q
t=Yw +w Fwgswig =009
=1

Hence, the total cost required in the sequential block Gauss-Jordan algorithm is

I=Eti

3
i=1

z%jqu +q—3)W73@q3 +3q° —5q:

: : : : . 2
Hence, the sequential running time for block Gauss-Jordan algorithm is 0(§w3q3)

obtained from the above formula (2) which is more expensive than sequential LU-
decomposition obtained in [1].

4.2 Parallel Algorithm Cost. We give the predicted cost of the algorithm mentioned in
the previous section in terms of arithmetic operation count, communication cost and data
sending. A test program was written to measure these quantities. The estimate of the
cost of one arithmetic operation, lr, is 0.26 millisec, the time to set up one rendezvous,

t,,1s 2 millisec and the time to send one data item, ¢, , is 0.02 millisec.

The following table describes the number of multiplication and additions, and the number
of steps required for each operation. It is assumed that there are at least g processors.

61

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

Table 1
Operation Number of Number of steps
multiplications and
additions
Inverse A4 w qg-1
2
Compute the W q-1
multipliers
Reduce the blocks w q(q-1)/2
below the diagonal to
Zero
Reduce the blocks w q(q-1)/2
above the diagonal to
Zero
Reduce the blocks in w3 q(q-1)/2
the diagonal to identity
blocks

If we assume that the number of processors p < g, then the total number of arithmetic
operations should be multiplied by ¢/p [18]. Therefore, the total cost of arithmetic

— : 3 50
operations is approximately EW q / plt .

At stage i, we have 2(g —i)rendezvous and 3g°(g —1)w” /2 data sent. Therefore,
q-1
(¢ —i)* which is equal to g(g —1)(2¢g —1)/3 rendezvous and 2¢g(g —1)w* /3 data are

sent.

Hence, the predicted time for this algorithm is:

atq- g+ 1}, 13+ fsg-na7g -4]2/ +

%W3q2]tf/p ()

The above formula shows that the arithmetic operations cost is of O(w’q”/ p) where as

the arithmetic operations cost of parallel LU-decomposition depends on O(w’q’/ p).

This indicates that the parallel block Gauss-Jordan is much faster than parallel LU-
decomposition and if the number of processors matches the number of block rows, ¢,

then block Gauss-Jordan algorithm is better suited to parallel implementation than any
methods of Gaussian type.

62

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

REFERENCES

Abbas, S.H. Parallel Algorithms of Linear Systems and Initial Value Problems, Ph.D.
Thesis, University of Liverpool (1990).

Abbas, S.H. (2000) On the cost of sequential and parallel algorithms for solving linear
system of equations, Inter. J. Computer Math, 74, 391-403

Abbas, S.H. (2001) Pacallel solution of dense linear equations, Analele Universitatti din
Timisora, Seria Mathematics-Information, XXXXIX, No. 1, 3-12.

Bader G., Gehrke E. (1991) On the performance of transputer networks for solving linear
systems of equations, Parallel Computing, 17, 1397-1407.

Barrodale 1., Stuart G. F. (1977) A new vaciant of Gaussian elimination, J. Ins. Maths.
Applics., 19, 39-47.

Charmberlain R.M., An Alternative View of LU Factorization with Partial Pivoting on

Hyper-cube Multiprocessor, Hyper-cube Multiprocessor, Hypercube Multiprocessors,
STAM, Philadelphia (1987).

Geist G. A., Romine C.H., (1988) LU-factorization algorithms on distributed memory
multiprocessor, SIAM J. Sci. Stat. Comput., 9.

Heath M., Romine C., (1988) Parallel solution of triangular systems on distributed
memory multiprocessors, SIAM J. Sci. Stat. Comput., 9.

Heller, (1978) A survey algorithum in numerical linear algebra, SIAM Review, 20, 740-
776.

Lord R. E., Kowalik J.S., Kumar S.P., (1983) Solving linear algebric equation on MIMD
computer, J. Assoc. Comput. Mach., 30. 103-117.

Ortega J.M., Romine C.H., (1988)The IJK forma of factorization methods, II, Parallel
System, Parallel Computing, 7, 149-162.

Pease M. C., (1976) Matrix inversion using parallel processing, J. Assoc. Complit. Mach.
, 14, 757-764.

Purushotam B.V. et al, (1992) Performance Estimation of LU factorization on message
passing multiprocessors, Parallel Processing Letters, 2. No. 1, 51-60.

Quinn M.J., (1988) Designing Efficient Algorithm for Parallel Computers, McGraw Hill
International Editions, Computer Science Series.

Rivers et al, (1990) Gaussian elimination with pivoting on hypercubes, Parallel
Computing, 14, 51-60.

63

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

Pease M. C., (1976) Matrix inversion using parallel processing, J. Assoc. Complit. Mach.
, 14, 757-764.

Purushotam B.V. et al, (1992) Performance Estimation of LU factorization on message
passing multiprocessors, Parallel Processing Letters, 2. No. 1, 51-60.

Quinn M.J., (1988) Designing Efficient Algorithm for Parallel Computers, McGraw Hill
International Editions, Computer Science Series.

Rivers et al, (1990) Gaussian elimination with pivoting on hypercubes, Parallel
Computing, 14, 51-60.

Sameh, D.J. (1978), On stable linear system, J. Assoc. Comput, Mach., 25 81-89.

64

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

099 m9la daey,yleddl dajlemisd]l Gilelhdll Gilanies
b lodu

Ozl o Aasls clisly)l @b

oaaladl

Faglaiall Jyln slmgl 2 U3yl yud 13 B3| A sl) 2l ellias (o 31 5055 e) sl
(sl

65

