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ABSTRACT 

  

In this paper the block Gauss-Jordan algorithm for solving linear systems of equations is 

presented in the proposed for multitasking.  The paper indicates how the availability of 

more than one processor must change our approach to the problem of computing 

solutions of linear systems. 
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1. INTRODUCTION.  

 

The problem we want to consider is how to compute the numerical solution of the linear 

system. 

bxA =          (1) 

Where A is a dense matrix of size nn! and x , b  are vectors of size 1n! .  We consider 

here parallel solution techniques, which are suitable for MIMD local memory, 

architectures.  On sequential machine the method requires )(
2

2
3

nO
n
+  multiplication and 

divisions.  On parallel machine with )MN)(1N( +! processors [Heller, 1978] shows 

that the method required 1N3 + steps, where A is of size NM ! .  If only N processors 

are available [Quinn, 1988] shows that the Gauss – Jordan algorithm without pivoting 

requires MNM2N
2

++ arithmetic steps. 

In the present paper, we show that parallel block Gauss – Jordan algorithm is much faster 

than parallel LU-decomposition and if the number of processors matches the number of 

block rows q ,  then block Gauss – Jordan algorithm is better suited to parallel 

implementation than any methods of Gaussian type in computing numerical solutions of 

linear systems. 

 

A comprehensive list of references is available in the recent study, see for example 

[Abbas, (1990); 2000,2001; Bader, Gehrke  (1991); Barrodale, Stuart, (1977), 

Charmberlain (1987); Geist, Romine (1988); Heath, Romine (1988); Heller, (1978); Lord, 

Kowalik, Kumar, (1983); Ortega et al  (1988); Pease  (1976); Purushotam et al, (1992); 

Quinn, (1988); Rivers et al, (1990); Sameh, Kuck, (1978)]. 

 

2. THE ALGORITHM 

 Our purpose in this section is to explain the idea of parallel algorithm for solving (1) on 

multiprocessor computer.  If we consider the above system (1), partition the matrix A into 

blocks of size ww! and the vectors x , b  into blocks of 1w! , where qi1 !!  and q the 

number of blocks rows ,
w

n
!
"

#
$
%

&
=  then the system becomes: 
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In Gauss – Jordan algorithm every block is eliminated from each row of the matrix except 

the diagonal block, which is made equal to unity.  The algorithm consists of four stages: 

 

Stage 1: Reduce the blocks below the diagonal to zero, 

   

  For 1q...1i !=  loop 

      Compute 
1

iiA
!

; 

   For q...1ij +=   loop 

      
1
iijiji A*A:M !

= ; 

    For q...1ik +=  loop 

       ikjijkjk AMA:A !"= ; 

       ikjikk AMB:B !"= ; 

    end loop; 

   end loop; 

  end loop; 

 

This involves getting zeros below the diagonal and updating the right hand side vector. 

 

Stage 2: Reduce the blocks above the diagonal to zeros: 

 

  For 2...qi =    loop 

        For 1..1ij !=   loop 

   
1
iijiji AAM
!

"= ; 

        For 1..ik =    loop 

   ikjijkjk AMAA !"=  

   ijikk BMBB !"=  

 

Stage 3: Reduce the blocks in the diagonal into unit blocks: 

 

   For q..1i =    loop 

 ii

1

iiii AAA !=
"

 

 
i

1

iii
BAB !=

"
 

     end loop 
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Stage 4: Solve the full set 

  Solve for q,...,2,1i =   

  
ii
Bx =  

 

3. PARALLEL ALGORITHM 

  In this section we consider the parallel implementation of block Gauss-Jordan algorithm 

using multitasking.  Assuming that P processors are available and ,qp <  then the 

updated blocks in each block row can be carried in parallel.  Therefore, the following 

procedures are needed: 

 

1- procedure to compute the inverse block A; 

2- procedure to multiply two blocks; 

3- procedure to multiply a block vector by block; 

4- procedure to subtract two blocks vectors. 

 

On this basis the major tasks are as follows: 

 

(I) The first task is to reduce the blocks below the diagonal to zero;  

Accept block row )i( , block row )j( , i ; 

 

Call procedure to compute 1

iiA
! ; 

 

Evaluate the multipliers 
1
iijiji AAM
!

"!  in parallel; 

 

Call a task to update the blocks; 

 

Compute .BMBB;AMAA ijikkjkjijkjk !"=!"=  

 

Collect the results. 

 

(II) The second task is to reduce the blocks above the diagonal to zero,  

compute the multipliers :AAM
1
iijiji
!

"=  

 

Update the blocks and the right hand side vector using the following formula: 

 

 

;AMAA ikjijkjk !"=  

.BMBB ijikk !"=  

 

(III) The third task to transfer the diagonal into identity blocks; 

Compute ii

1

ii AA
!  

And 
i

1

iii
BAB !=

"  

Finally solve .q,...,1i;Bx ii ==  
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For a Multiprocessor Sequent Balance having at least 10 processors, the sequence of 

computation in case of reducing the blocks below the diagonal to zeros taking place in 

each processor is described below.  The computation can go in parallel in all processors. 

 

Processor 1: Compute jiM  

Eliminate the blocks in first block row.  Communication of the update blocks between 

processors. 

 

Processor 2: Eliminate the blocks in second block row, communication of the update 

blocks between processors, and soon until the 10
th

 processors. 

 

Processor 10: Eliminate the blocks in the 10
th

 block row communication of the update 

blocks between processors. 

 

In our case ,qp <  so the remaining blocks are waiting until the processors are free. 

 

 

4. PREDICTED COSTS 

 

In this section we give the sequential and parallel costs of the block Gauss – Jordan 

algorithm. 

 

4.1 Sequential Algorithm Cost.  In the sequential mode the cost depends only on the 

number of arithmetic operations required for the algorithm.  So, reducing the blocks 

below the diagonal to zeros requires: 
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Similarly, reducing the blocks above the diagonal to zeros requires: 
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and the cost of reducing the diagonal to identity blocks is: 

 

 [ ] )( 3

1

2323

3 qwOqwqwww
q

i

t =+=+=!
=

  

 

Hence, the total cost required in the sequential block Gauss-Jordan algorithm is 

  

 !
=

=

3

1i

itt  

 ( ) ( )q5q3q2
6

w
3qq2

6

w 23
3

3
3

!++!+"  

 !
"

#
$
%

&
' 33

qw
3

2
O  

 

Hence, the sequential running time for block Gauss-Jordan algorithm is !
"

#
$
%

& 33
qw

3

2
O  

obtained from the above formula (2) which is more expensive than sequential LU-

decomposition obtained in [1]. 

 

4.2 Parallel Algorithm Cost.  We give the predicted cost of the algorithm mentioned in 

the previous section in terms of arithmetic operation count, communication cost and data 

sending.  A test program was written to measure these quantities.   The estimate of the 

cost of one arithmetic operation, ft , is 0.26 millisec, the time to set up one rendezvous, 

r
t , is 2 millisec and the time to send one data item, 

c
t , is 0.02 millisec. 

 

The following table describes the number of multiplication and additions, and the number 

of steps required for each operation.  It is assumed that there are at least q processors. 
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Table 1 

Operation Number of 

multiplications and 

additions 

Number of steps 

Inverse jiA  

2

3
w

 
1q !  

 

Compute the 

multipliers 

 
3
w  

 

1q !  

 

Reduce the blocks 

below the diagonal to 

zero 

 
3
w  

 

2)1q(q !  

 

Reduce the blocks 

above the diagonal to 

zero 

 
3
w  

 

2)1q(q !  

 

Reduce the blocks in 

the diagonal to identity 

blocks 

 
3
w  

 

2)1q(q !  

 

If we assume that the number of processors ,qp <  then the total number of arithmetic 

operations should be multiplied by pq  [18].  Therefore, the total cost of arithmetic 

operations is approximately ftpqw !
"

#
$
%

& 22

2

3
  . 

 

 

At stage i , we have )(2 iq ! rendezvous and 2/)1(3 22
wqq !  data sent. Therefore, 

!
"

=

"
1

1

2)(
q

i

iq  which is equal to 3/)12)(1( !! qqq rendezvous and 3/)1(2 2
wqq !  data are 

sent. 

 

Hence, the predicted time for this algorithm is:  

 

[ ] [ ] ptqwwqqqtqqq f
ct /

2

3

6
)417)(1(3/)1)(1(2 232

!"

#
$%

&
+''++' (   (  ) 

 

The above formula shows that the arithmetic operations cost is of  )/( 23
pqwO  where as 

the arithmetic operations cost of parallel LU-decomposition depends on )/( 33
pqwO . 

 

This indicates that the parallel block Gauss-Jordan is much faster than parallel LU-

decomposition and if the number of processors matches the number of block rows, ,q  

then block Gauss-Jordan algorithm is better suited to parallel implementation than any 

methods of Gaussian type. 
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الملخ�س
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