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Abstract In this paper, we introduce the concept of lattice valued double fuzzy syntopogenous
structures in framework of double fuzzy topology (proximity and uniformity). Some fundamental
properties of them are established. Finally, a natural links between double fuzzy syntopogenous
structure, double fuzzy topology, double fuzzy proximity and double fuzzy uniformity are given.
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1. Introduction and preliminaries

Kubiak (1985) and Sostak (1985) introduced the notion of (L-)
fuzzy topological space as a generalization of L-topological
spaces (originally called (L-)fuzzy topological spaces by Chang
(1968) and Goguen (1973). It is the grade of openness of an
L-fuzzy set. A general approach to the study of topological-
type structures on fuzzy powersets was developed in Hohle
(1980), Hohle and Sostak (1995), and Kubiak (1985).

As a generalization of fuzzy sets, the notion of intuitionistic
fuzzy sets was introduced by Atanassov (1986). Recently,
Coker (1997) and Coker et al., 1996 introduced the notion of
intuitionistic fuzzy topological space using intuitionistic fuzzy
sets. Samanta and Mondal (2002) introduced the notion of
intuitionistic gradation of openness which a generalization of
both of L-fuzzy topological spaces and the topology of intui-
tionistic fuzzy sets (Coker, 1997).
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Working under the name ““intuitionistic”” did not continue
because doubts were thrown about the suitability of this term,
especially when working in the case of complete lattice L.
These doubts were quickly ended in 2005 by Garcia and
Rodabaugh, 2005. They proved that this term is unsuitable
in mathematics and applications. They concluded that they
work under the name “‘double”.

Csaszar (1963) gave a new method for the foundation of
general topology based on the theory of syntopogenous struc-
ture to develop a unified approach to the three main structures
of set-theoretic topology: topologies, uniformities and proxim-
ities. This enabled him to evolve a theory including the foun-
dations of the three classical theories of topological spaces,
uniform spaces and proximity spaces. In the case of the fuzzy
structures there are at least two notions of fuzzy syntopoge-
nous structures, the first notion worked out in (Katsaras,
1988, 1985a, 1983) presents a unified approach to the theories
of Chang (1968) fuzzy topological spaces, Hutton fuzzy uni-
form spaces (Hutton, 1977), Katsaras fuzzy proximity spaces
(Katsaras, 1985b, 1980, 1979) and Artico fuzzy proximity
(Artico and Moresco, 1984). The second notion worked out
in Katsaras (1991, 1990) agree very well with Lowen fuzzy
topological spaces (Lowen, 1976), Lowen—-Hohle fuzzy uni-
form spaces (Lowen, 1981) and Artico-Moresco fuzzy proxim-
ity spaces (Artico and Moresco, 1984).

In this paper, we establish the concept of double fuzzy syn-
topogenous structures as a unified approach to theores of
(Hohle and Rodabaugh) double fuzzy topology, double fuzzy
proximity spaces and double fuzzy uniformity spaces. Some



34

S.E. Abbas, A.A. Abd-Allah

fundamental properties of them are established. Finally, the
relationship among double fuzzy syntopogenous structures,
double fuzzy topology, double fuzzy proximity and double fuz-
zy uniformity is studied.

Throughout this paper, let X be a nonempty set and
L= (L,<,v,A, L T) a completely distributive lattice where
1(T) denotes the universal lower (upper) bound.

Definition 1.1. CQML, the category of complete quasi-monoi-
dal lattices, (Rodabaugh, 2003).

Comprises the following data, where composition and
identities are taken from SET:

(1) Objects: (L,<,®) where ©® : Lx L — L is isotone and
TOT=T.

(2) Morphisms: All SET morphisms preserves O, T and
arbitrary v.

Definition 1.2. Categories related to CQML (Rodabaugh,
2003).

(1) QUML, the category of quasi-uniform monoidal lattices
is the full subcategory of CQML for which < ©® « is
associative, commutative and < T « is identity.

(2) DQML, the category of deMorgan quasi-monoidal lat-
tices is the full subcategory of CQML for which * is
an order-reversing involution and each morphism pre-
serves the involution.

(3) QUANT, the category of quantales is the full subcatego-
ry of CQML for which © is distributive over arbitrary
joins, i.e.,

([;/l' V,‘) ©s= ié/l"(ri © S).

(4) CQUANT, the category of coquantales is the full subcat-
egory of CQML for which © is distributive over arbi-
trary meets, i.c.,

(ié\l' M os= ié\l"(r[ ©s).

(5) DQUAT, the category of deMorgan, quasi-uniform
monoidal quantales.
In this paper, for each (L, <, ©,*) € DQUAT, we define
x®y=(x 0)).

(6) DBIQUAT = DQUAT N T COQUANT.

(7) CMVAL, the category of complete MV-algebra is the
full subcategory of DBIQUAT for which it satisfies

MV) (x> y)>y =xvy, for all x, y € L where x>y is
defined by x—y = v{dx©®z<y}and x* = x— L.

Definition 1.3 (Kim and Ko, 2008). Let (L,<,0,®,%*)
c|DQUAT and ¢ : X— Y be a function. For each
x{yzeLylierl, f,ge L and f; € LY. we have:

) Ify<z(xoy)<(xoz)and (xdy) < (xOz).
Q) xOy<xAy<xVy<xoy.
) Avi=(Vy) and Vi =(Ay)"
@ x@(Ay)=Axay).
iel’ iel’
Definition 1.4 (Cetkin and Aygun, 2010). The maps

T,T*: LY — Lis called double fuzzy topology on X if it sat-
isfies the following conditions:

(LOV) T (f) <(T*(f))", forall felL®,

(LO2) T(1y) =T (ly) =T and T (1y) =T (ly) = L,

(LO3) T(fiofr)) 2 T(H)OT(fi) and T'(fi ©12) <
T ()T (f1), foreachf,, f,elL",

(LOH) T(v /) > A T() and T'(V.f) < V. T(7)

foreach f,€L*, i€A.

The pair (X, 7,7 ") is called an double fuzzy topological space
(dfts, for short).

Let (X,7:,7;) and (Y,T,,75) be dfts’s. A map ¢ :
X — Yis called fuzzy continuons iff 7> < T jo ¢; and T >
Tiodr.

2. Double fuzzy topogenous order and double fuzzy topologies
Definition 2.1. A maps 7, n" : LXx LY — L is called double

fuzzy semi-topogenous order on X if it satisfies the following
axioms:

(LST1) n(f,g) < (n*(f,g))", forall f, gelL*,
(LST2) n(lx, lx) =n(lp, 1) =T and

1 (1x, 1x) = " (1p, 1y) =L,
(LST3) Ifn(f,g) # L and n*(f,g) # T, thenf <g,

(LSTH) If f1 < f, g <g,
and n*(f1,&,) = n"(f.g)-

Proposition 2.2. Let (1,5 ) be a double fuzzy semi-topogenous
order on X and let the mappings ', i : LY x LY — L defined

by w’(fg) = n(g S )W and i’ (f.g) = ' (g".f"), VS, g € L*.
Then (n',n* ) is double fuzzy semi-topogenous order on X.

then (f1,g,) < n(f,g)

Definition 2.3. A double fuzzy semi-topogenous order (17,1") is
called symmetric if (i7,77) = (7°,n*"), that s,

(LST4) n(f.g) =n(g".f") andn*(f,.g)=n"(g".f"), Vf,geL".

Definition 2.4. A double fuzzy semi-topogenous order (17,1") is
called double fuzzy topogenous if for any f, f1, f2, & &1,
g € Lr.

(LSTS) n(/i @ f2,8) = n(fi,g) ©n(fr,g) and
(i@ g <n(f,e) ®n(f28),

(LST6) n(f, g1 © &) = n(f,g) ©n(f,g) and
n(f,8108) <n(f,g1)@n(f )

Definition 2.5. A double fuzzy semi-topogenous order (17, 1") is
called perfect if (LST7) n(V fi,g) = An(fi,g) and n°(V fi,g)
IS e IS

< Vo (fi,g), for any {g.fri € I} < L,
e

An perfect double fuzzy semi-topogenous order (,17°) is
called biperfect if (LST8) #5(f, '/\rgi) > _/\rn(f7 g;) and
e e

n(f, A g) < V.n*(f,g), for any {g.fi:ie 't < L*.
el el

Theorem 2.6. Let (n,,1}) and (n,,15) be perfect (respectively,
double fuzzy topogenous, biperfect) double fuzzy semi-topoge-
nous order on X. Define the compositions n; o n, of n; and n;
and nyony of ny and iy on X by myony(f,g) = V [n(f;h)
© m(hg) andniom(fig) = A [mi(fh) & nih ™
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Then (1, o ny, 1} o 113)is perfect (resp. double fuzzy topoge-
nous, biperfect) double fuzzy semi- topogenous order on X.

Proof. Let (n,,n7) and (55, 15) be perfect double fuzzy semi-
topogenous order on X. Then (LST3) If n, o ny(f,g) # L and
nyons(f,g) # T then there exists he LY such that

niona(fog) = m(f,h) © na(h,g) =L and njons(f,g) < ni(f, h)
@ ny(h,g) # T. It implies f< h < g.

(LST7) It is proved from:
mom(V fig)= V [111 (Vfi,h) © nz(h,g)}
i€l helX iel’

iel Lper®

= /\'7| © 7]2(ﬁ7g)a
iel

\Y

Mony (v fig) = A [mi(y fih) @ ns(hg)]

heLl”

<V { A [n’;(f;,h)@n’f(lhg)ﬂ

iel’ Lper¥
* *
= V. on;(fi, 8).
el

Others are easily proved. [

Definition 2.7. A double fuzzy syntopogenous structure on X%
is a non-empty family Y y¥ of double fuzzy topogenous orders
on X satisfying the following two conditions:

(LS1) Yy¥ is directed, ie. given two double fuzzy
topogenous orders (11,77), (12,15) € Yy, there exists a double
fuzzy  topogenous  order  (y1,77)€ Yy such  that
n =, mpand nt <oy, ;.

(LS2) For every (11,7 € Yy, there exists(17;n}) € Yy, such
that n < ny o npand n* = nj oni.

Definition 2.8. A double fuzzy syntopogenous structure Y y¥
is called double fuzzy topogenous if Y ¥ consists of a single
element. In this case, Yy = {(7,1")} is called a double fuzzy
topogenous structure, denoted by Yy¥ = {(1.7)} = (1.1")
and (X, Yy) is called double fuzzy topogenous space.

A double fuzzy syntopogenous structure Y,V is called
perfect (resp. biperfect, symmetric) if each double fuzzy
topogenous order(n,n") € Yy is perfect (resp.respect, biperfect,
symmetric).

Theorem 2.9. Let (1,5 ) topogenous order on X. The mapping
C,: L¥x Lyx L, — L, is defined by

Cpw(fir,s) =Ng € LY in(g.f") > r and n*(g,f°) < s}.

For each f, f;, f>€ L~ and r, r;, r> € Ly, s, 51, s> € Ly, we have
the following properties:

(1) Cn.t1*(1w7r7s) = 1(/)'

2) £ <Cppr(fyr,s).

() If f1 < fa, then Cy e (f1,7,5) < Cyye(f2,7,9).

4) Cw-ﬂ*(fl D fr,ror,s @ s) < Cn_y,*(fl,r,s) @
Cﬂ,w‘(va”l’Sl)‘

(5) If ri <ryand 51 = 55, then Cype (f,r1,81) <

Cope (f72,52).
(6) If (X,n,n*) is double topogenous space,

(Cﬂ,n* (_f,}",S),}’, S) < Cn,n* (_fv V,S).

Proof. (1) Since n(lp,1p) = T and y*(1y,1p) = L Cppe
(1$7rys) = 1@'

(2) Since n(g.f)#L and n'(g.f)=T, g</ implies

thenC, -

f< (?mﬂ*(f;r,s)

(3) and (5) are easily proved.
(4) Suppose that there exists fi, f> € L¥y such that

Cor (i @ for©ri,s & s1)1 Cop(fior,s) & Cyype(f2,11,51).

By the definition of C,,- there exists g, g € LY with

n(gr. /), n°(g.fy) < s, n(ga.fo)ir and n*(gy./3) < s1 such
that C,,-(fi @ fo,r@ri,s @ s1)i1g; & g5
On the other hand,

v(g10&; (i ©f)) = n(g1©&./7) On(g ©g,.f5) (byLST6)
= (g /1) On(gs.f3)

(by LST4)
nrory,
n'(g1 08, (h ©£)) <" (g ©22./7) ®n'(g,0&,./3) (byLST6)
<n'(g /1) ®@n'(g,.fs)  (byLST4)
<SP sy

*

It implies G- (i @ fo,r Or,5@51) < (g,08) =g @Y.
It is a contradiction.

(6) Letn(g./") £ rand ' (g./) <s. Theng” > Cyyp(fi15).
Since (X,n,7n ) is double fuzzy topogenous space, by (LS2) of
Definition 2.7, there  exists  (,5") such  that
n<nonandn =n on". It follows

n(g,f) <nonl(g.f) and n'(g.f) = n on'(g.f)

Since non(g.f) # rand " on'(g.f) # s, there exists h € LY
such that

non(g.f) = n(g.h) © n(hf) £ r and

s

non(gf)<n(gh@n (hf)<s.

Hence, g* > C,,(h",r,s) and i > C,,+(f,r,s). Thus,
g = Cpy (Cpyp(fir,s),1,5). So,
Co (Co (firy8),1,8) < Cyype (fy 1, 5). O

Theorem 2.10. Let (X,n,n") be a double fuzzy topogenous order
space. Define the maps T, T . : LY — L by

—=Ty(f) =V{re Lo | Cn(f,r,s) <[}
T, =nseLi|Cn(f,rs) <f}

Then, (T, T,.) is double fuzzy topology on X induced by
(n.m).
Proof. (LO1) clear.

(LO2) Cyp(1g,r,s) =1gand Cyye(ly,r,s) =1y for all r
eLly,seLl, Ty(lp) =T,(lx)=T and T, (1y) =
T, (lxy)=L.

(LO3) Suppose there exist f1, f> € L¥such that



36

S.E. Abbas, A.A. Abd-Allah

Ty ©L)ET (1) ©T,y(h) and T,.(i ©L) LT, (/)
o T, ()
By the definition of (77,,7",.) there exists r; € L, 5; € L, with
fi = Gy (fi,ri,s:), i=1,2 such that
T,(0fh) 2rnern and T,.(fi0f) £ 51 ©s.
Putr =r; © rnand s = s; @ 5,. By (4-5) of Theorem 2.9, we
have
CV/:’I"((fl ®f2)*,r,s) < (fl Qﬁ)*

Consequently, 7 ,(fi ©f,) = r and T; (fi ®f>) <s. Hence
(LO3) holds.

(LO4) Suppose there exists a family {f; € LYjeT} such
that

T"(i;/rfi) # ié\F Tuf) or T;* (lé/rf') % i;/F T;* ()-

For each jeTI, there exists

17 = Coyp(f},15,5) such that
TN Ar ot Ty(Y A% Y5

rp€ Lo,s; € Ly with

Put r = AT and s = Vs By (4-5) of Theorem 2.9, we have
Jje je
- B < .
C;]_;] (([é/l_f]) W S) S (/é/rfj)

Consequently, 7 ,(V_f;) = r and T;(vlj,) < 5. Hence (LO4)
holds. [J = a

Definition 2.11.
Let (X,n;,n7) and (Y,1,,13;) be double fuzzy topogenous
order spaces. A function ¥Y¢ : (X,n,17) — (Y,n,,15) is said

to be topogenous continuous if ¥n,(f,g) < n, (¢ (f), ¢ (2))
and n3(f,2) = ni(d; (), b1 (£)), ¥ for each f, g € L.

Theorem 2.12. Let (X,n,,n7), (Y,n,,n3) and (Z,n5,1;) be
double fuzzy topogenous order spaces. If @ : (X, n,,n) —
(Y, ny,m5) and W : (Y, my,15) — (Z,13, 1) are topogenous con-
tinuous, then Wo®: (X,n,,n;) — (Z,n5,1;) is topogenous
continuous.

Proof.
It follows that, for each f, g € L”

m(Wo¢), (N, Wod) (&) =m(ey W (N)dr (W (2))
(Wi (N1 (2)

n:(f.g),
mi((Wo¢), (N, (Wod) (&) =ni(¢, (W () dr (Ve (2))
(b, (N, ¥ (2)

n(f,g). O

\YARV

NN

Theorem 2.13. Let (X,n,,n}) and (Y,n,,15) be double fuzzy
topogenous order spaces. If @ : (X, n,,n;) — (Y,n,,15) ¥ is
topogenous continuous, then it satisfies the following statements:

) d’;(cm-'ﬁ (fsr.8)) < me;((ﬁ;(f):”’s)v Jor each
fer”, rel, secl,

(2) CﬂlaUT(d)r(g)?rv S) < d’;(cﬂz.ﬂé (g7 V,S)) for each
gel” rekl, scl,

3) ¢: (X’T’“’T;I) — (Y, T, 7';;5) is fuzzy continuous.

Proof. (1) Suppose there exist /€ L¥, r € Ly, s € L, such that

d’:(cﬂwﬁ ,I‘,S)) . C’iz"ﬁ (d’: (f)? r, S).

By the definition of C,,,. there exists
(g, (¢, (/)")r and n3(g, (¢, ()") < s such that
Vo, (Copy (fir,8)) £ & (4)

By the topogenous continuity of ¢ we have,

Moy (2), oL (dL(N)7) = nalg, (o (H) )
i (o1 (2), dr (b (N)7) < m3(g, (. (N)) < s

Since (¢ (g).1) = m(dr g ¢ (6 (1)) and ni(y (g),
f) <o (e), o (o))  we  have Gy (firs) =
(¢ (8)) =y (g7) Thus ¢, (Cy, - (fir,5)) < g*. Itis a contra-
diction for equation (A).

(2) Foreachge LY, re Ly, andse€ L, put f=¢j (g).
From (1),

g € L" with

b1 (Cop (D7 (8):7,9)) < Copy (b7 (b7 (8)),7,5)
< Chup(gr,s).

It implies

Cor (D1 (2)51,8) < G (DL (Cop (PL(2),7,9)))

b (Cooy (g:7,9))-

(3) From (2), C,,,:(g,r,5) =g implies Cy (¢, (g), 1,5) =
¢, (g). It is easily proved from Theorem 2.10. O

<
<

3. Double fuzzy quasi-proximities

Definition 3.1 (Cetkin and Aygun, 2010). A maps 9, 5
LY x LY - Lis called a double fuzzy quasi-proximity on X if it
satisfies the following axioms:

(LP1) 3(f,g) < (5'(f,2))' Y f,g € V. *
(LP2) 6(1yx,1p) = d(ly,1x) =L and 6 (1x,1g) = 0 (1g, 1y)
=T. (LP3) If 6(f,g)#=T and & (f,g)#L then f<g .
item(LO4) If f<g then o(f,h) < d(g,h) and (5*(f, h) =
8'(g.h), )
(LPS) o(f1 Of%agl ® g2) <*5(flsgl) ® 4(f2,g2) and o (/1 ©
S2.81 9@ 22) = 6 (f1.81) O 6 (f2,82).
(LP6) For any f, ge L”, there exists i € L¥such that
o(f,8) = A {o(f,h) ® é(h",g)} and &°(f,g) < V

helX helX

{6°(f,h) © 5" (h*,g)}. The triple (X, )is double fuzzy
quasi-proximity space.
A double fuzzy quasi-proximity space (X,4,5") is double

fuzzy proximity space if it satisfies:

(LP) 8(f,2) = 8(2./) and 5"(/,) = &"(g.).
Proposition 3.2
(1) Let (X,n.5") be a double fuzzy (resp. symmetric) topo-

genous space and let the maps &,,6,. : L* x LY — L
defined by o,(f,.g) = (n(f.g)) and 9,.(f,g) =
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(n"(f,€)", Vf, g € L*. Then (,,0,.) is double fuzzy
quasi-proximity space (resp. double fuzzy proximity
space) on X.

(2) Let (8,0") be a double fuzzy quasi-proximity space(resp.
double fuzzy proximity space) on and let the mappings
Ny My : LY X LY — L defined by ns(f.g) = (5(f.g°))"
and ﬂ;*(fvg) = (5*(fvg*))*7 va gec L¥. Then ('767'7;*)
is double fuzzy (resp. symmetric) topogenous space.

(3) (57 6*) (5’1)’ 6; )“”d(%””?;;*) = (1’]71’[*)

Proof. (1) Since oy =nand 5" on" <y

0,(f,8) = (f:87)" = ((mon)(fig")"
> ( v Aw(fh) ©n(h,g)})
/ﬁx{("("’h)) (n(h,g)) +¥
=]]€ALX{5»1(f, n) @ é,(hg)},
o,.(f,8) = (' (£,87) < (" o) (f,€7))
(AL (h) © n'(hgM)})
he\éx{(n*(f h)" © (n(h,g))"}
15\&{5'*’*(’{’/1 ) © 3. (h,g)}.

I A

Let (X,3,67) be a double fuzzy symmetric topogenous space.
Then

o (f.8) = (n(f.8"))" = (n(g.f)” = 6,(f.8),
S, (f,.8) =" (f,g"))" = (' (.S") = 0,.(f,8)."

Others are easily proved. [
(2) and (3) are easily proved.

From Theorem 2.9 and 10, we can obtain the following

theorems.

Theorem 3.3. Let (8,0°) be a double fuzzy quasi-proximity
space. The mapping WCss : LX x Ly x L; — L* defined by
WCip (firys) = Mg € LY : (g /)

Foreach f, /1, /> € L,
lowing properties:

and 6(g,f) = s}
r,r1 € Lygand s, s; € Ly, we have the fol-

(1) C,;,(;x(lm,r,s) = lw.

() f < Co5(f,r,5).

(3) If fi < fa, then Cs5(f1,7,5) < Cs5(f2,7,5).

(4) C&,tj‘(‘f‘l (&) fz,}’@rl,s (&) S]) < Ctsyts*(f],}’,s)
® C(S,é*(qurhsl)~

(5) If r<ryand s = sy then Cs5(f,r,s)

(6) C,;J‘(C&(;* (f, r, S),V,S) < C(S.é* (f,}"7 S).

< Cé.d*(f7rl7sl)'

Theorem 3.4. Let (X,0,8") be a double fuzzy quasi-proximity
space. Define the maps T s, T s : LY — L by

T(S(f):\/{reLol C(i,é*(f*arvs) f}?
T:;*(f):/\{SEL]ZC(;?a*(f‘,V,S) f}
Then (T 5, Ty.) is double fuzzy topology on induced by (3,5 ).

<
<

Definition 3.5. Let (X, d,0;) and (Y,,,0;) be double fuzzy
quasi-proximity spaces. A map ¢ : (X, 0y,0]) — (Y, 0,,0) is
said to be quasi-proximity continuous if

or 6(/,¢)

02(f,8) = 61(dy (f), ¢ (2))
< ge L.

01 (dr () &1 ()Y,

Theorem 3.6. Let (X,01,0)) and(Y,d,,05) be double fuzzy
quasi-proximity spaces. A map ¢ : (X,0,,07) — (Y,0,,05) is
quasi-proximity continuous iff ¢ : (X, nél,n’gq) — (Y, ’76:7'73;) is
topogenous continuous.

Proof. Forall f, g L”

02(£,8) 2 01(d; ().07 (8)) <= (n5,(1:87)" = (n5, (1 (1), ($ (2))")
= 5,(1.8") <5, (97 (N): b7 (7))

,(1.8) < 01(¢r (N, ¢ (2)) = (m5,(1,.87))" < (m5: (b7 (). (b7 (€))7)
= (fg) =5 (b (1,41 (¢7). O

4. Double fuzzy quasi-uniform spaces and double fuzzy
syntopogenous spaces

Now we recall some notions and terminologies about double
fuzzy quasi-uniform spaces used in this paper.

Let Q(L¥) denote the family of all mappings a : LY — LY
with the following properties:

() f<alf) foreachfe L*,

(2)a(V f;) = V. al(f,), foreachf, € L*.
el iel’

For a, b € Q(L¥), we have that a !, a © b and a o b € Q(LY)

by

a'(f)=Mgla(g) </},
(a@b)()=Na(h) @ b(f2) /i @ /,=/} and (aob)(f)=a(b()).
Definition 4.1. The mappings U, U : Q(LY) — L is called a

double fuzzy quasi-uniformity on X if it satisfies the following
conditions: for a, b € Q(LY),

(LUD) U(a) < U (a))", for all a € Q(LY),

(LU2) U(a®b) = U(a) ©U(b) and U (a ©® b)
<SU(a) ® U (D).

(LU3) there exists a € Q(L*) such that U(a) =T  and
U(a) =L

(LU4) U(a) < V{U(D) :bob < a}
and U (b) = {U'(b) : bob < a}.

The triple (X,U,U") is said to be double fuzzy quasi-
uniform space.

A double fuzzy quasi-uniform space (X, U, U") is said to be
a double fuzzy uniform space if it satisfies.
(LU) U(a) =U(a™") and U (a) = U (a™").
Definition 4.2. The mappings B, B*: Q(L") — L is called a

double fuzzy quasi-uniform base on X if it satisfies the follow-
ing conditions: for a, b € Q(LY),
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(LUB1) B(a) < (B'(a))", for all a € Q(LY),

(LUB2) B(a) ® B(b) = V{B(b) : b < a® b} and B'(a)
& B(b) <K N{B'(b):b<adb}.

(LUB3) there exists a € Q(LY) such that B(a) =T and
B(a)=1

(LUB4) B(a) < V{B(b):bob < a} and B'(a) = A
{B*(b): bob < a}.

A double fuzzy quasi-uniform base (B, B") on X is said to be
double fuzzy uniform base if it satisfies

(LUB) B(a) < V{B(b):b<a '} and B*(a) = AN{B*(b):b<a'}.

Theorem 4.3. Let B, B : Q(LY) — L be a double fuzzy uniform
base on X.

Define Up, Uy : Q(L*) — L as

Ugp(a) = V{B(b) : b < a} and Uy (a) = N{B*(b) : b < a}.
Then (Ug,Uy. ) is double fuzzy uniformity on it X.

Proof. (LU) For each Ya € Q(LY)

(byLUB)

b<a e<p!

<vUs(b =

b<a b

Us(a)=V{B(b):b<a)< VI Vv B(e)}
LV Un(h) <Us(a ),

Ug (a)=NB'(b):b<a} = AN{ A Blc)}

b<a c<p!

(byLUB)

> AU Y= AN Uz ) =Ug(ah).
b<a b'<a!
Since a=(a")"", we have Ugp(a')<Uz(a)and
Uy (@) > Uy (@. O

Other cases are easily proved.

Definition 4.4. Let Yy be a double fuzzy biperfect syntopo-
genous structure on X. The mappings S, 8" : Yy — L is called
double fuzzy syntopogenous structure on X if it satisfies the
following conditions: for for (n,7%), (n,,n7), (12,1%) € Yx.

(LT S(n,n*) < (8" ()"

(LT2) There exists (7,7 ) € Y such that S(n,#*) = T and
S () =1

(LT3) SOn,n7) © S(naym3) < V{S(n, 1)
nism, = '} and S (ny,ny)
© S (1,m5) = MS (07 =y,
1, <nand ni,ny =0

(LT4) S(n,n*) < V{S(ni,n;):mon, = nand njon;
<} and 8*(ny,n7) = MS () :
mony, =nand ny,ny <yt

M1, < 1 and

The triple (X,S,8") is said to be double fuzzy syntopo-
genous space.

A double fuzzy syntopogenous space (X, S, S") is said to be
double fuzzy symmetric syntopogenous space if it satisfies
(LST), S(n,n") < V{S(&,¢) : & = ' and & <™},
S () = M8(&E) &= and & <™}

Lemma 4.5. To every ac Q(LY), we define 1, e LY
xLX — L as

T, if f > a(g),
1 otherwise,

L, if /= alg),
T otherwise.

e = | e =

Then it satisfies the following properties:

(1) The maps n,, n, € Yy is double fuzzy biperfect
topogenous order.

(2) If a < b, then n, < n, and 1, < 1.

() If b<ay ©ay, then n,, N, <1, and 1, 10, = 1.

(4) For each a € Q(L*),we have (15, n*) = (1,17 1).

(5) If bob < a, then nyon, = n, and i oy, < 1.

Proof. (1) Since Wa(ly) =1y and a(lp) = 1p, then
Na(lys 1x) = na(lp, 1) = TY and ;(1x, lx) = n;(1g, 1p) = L
Let n,(g.f)# L andn(g./)# T. Then 1n,(g./)=T
and n;(g,f) = L implies g < a(g) <f. Since g < g and f; < f
implies a(g) < a(gy), thenn,(g.f1) < n,(g.f) and n;(g,,. /1) =
n:(g,f). To prove the biperfect condition, since a(_vrg[) =
IS

Viera(g;) <[ iff g <[ for all i€ I'n,(V g./) = A\ 14(gi))
and n5(V gi.f) < V1, (8:.1)- gS N i<

p i N > . P * .
forallj€ A, ni(e, AS) > Ana(gnfi)  and (e, A S)
<V ni(g.f7)-

Jjea

Since

Others are similarly proved.
(2) Since Ya(g) < b(g), ny <n, and n, = .

(3) Since a; © ax(g) < a1(g) ® ax(g)¥ we have a; © ay < a;.
From (2),
Ny <M and n:‘“ > 11;. Similary Ny < M and ’7:2 =¥

(4) Tt easily proved from a~'(g) < fiff a(f) < g

(5) From (2), we only show that #, ®n, =1, and

1’]; © VI;; = 7120# Since My © r]b(ng) = V{r’b(g7 h) © ]117(117f) :
he L¥Yandn; onj(g./) = Muj(g.h) @ my(h,f) - he LY}, we
have

nhom(gﬁ:{‘riff? Gy 7]():{1_ itf> b(b(2)),

o
1 otherwise, bOMs\E Totherwise.

From Lemma 4.5, we easily prove the following theorem. [

Theorem 4.6. Let B,B* : Q(LY) — L be double fuzzy quasi-uni-
form  (resp. double fuzzy wuniform) base on X. Define
S5, Sy : Yy — L as

S, 1) = Bla)

Then (Sg, Sy ) is double fuzzy (resp. double fuzzy symmetric)
syntopogenous structure on X.

and Sy (n,,1,.) = B'(a).

Theorem 4.7. Let U, U : Q(LY) — L be a double fuzzy quasi-
uniformity on X.

The mapping Cyy : LY x Ly x Ly — L*, is defined by
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Cuwr (fir,s) = Ma(f) : U(a) = r and U (a) < s}.

For each f, f;, f>€ LY, r, 11, ra€ Ly and s, s;, s> € L;, we have
the following properties:

(1) CLLM*(I(%V?S) = 1@:

(2) f < CM.M* (fﬂ’,s),

(3) iffy < fa, then Cyyr (f1,7,5) < Cuwr (f2,1,5),

@) Cyw (i & fr,rOr,s @ s1) < Cuw
(f1,7,8) © Cyur (f2,71,51),

(5) if}"] < r and S = 852, then

Cuw (f1,71,51) < Cupr (f2,72,52),
(6) cu.u* (CM.LF (,f7 }",S),}",S) g CM,L{* (_f7 }’,S).

Proof

(1) Since ‘I’a(lw) = lw,Cuﬁu*(lw,}QS) = 1@.

(2) Since Pf < a(f), V¥ implies Vf < Cyp (f,7,5),

(3) and (5) are easily proved.

(4) Conversely, suppose there exist f, fi, foe LY, r, ry,
In € Ly and s, s1, 55 € L;, such that

—Cyw (i ® fr,rOr,s @ s1) £ = Cyw (f1,7,5) @
Cuﬁu*(fzﬂ’hsl)

There  exist  aj,a € Q(LY) with U(ay) = r, U*(a))
<s, Ulan) =, U (az) <51, such  that  Cyr (fi @ /5,
ror,s @ s1)alfi) @ af).

On the other hand, U(a; © @) = U(a))O U(ay) =
rornU (@ 0a) < U(a) @ U(e)) <s @51 and
(a1 © a)(fi ® f2) < ai(fi) @ ax(f2), we have Cypr(fi © /o,

ror,s @ 851) < (@ 0a)fi ® ) <a(fi) ® afy). Itis a
contradiction.

(6) Suppose there exist ¥/ e L, r € Lyand s € L such that
Cure (Cugr (fi1,5),1,5) £ — Cypr (fi1,5).

There exists a € Q(LY)¥ with U(a) > r and U (a) < 5,
such that « Cyy(fir,s) <a(f). On the other hand,
U(a) = r and U (a) < 5, by (LSU3), there exists a; € Q(LY)
« such that ajoa < a,U(a;) = r and U (a;) < s. ¥ Since
Cuw (fir,s) < ar(f), ¥ we have

Cuw (Cunr (fi1,5),1,5) < Cypr (ar(f), 1, 8) < ar(ai(f)) < a(f).

Thus Cuze (Cope (fir,5),1r,5) < a(f). It is a contradiction. [

Definition 4.8. Let (X,U,U") and (Y, V, V") be double fuzzy
uniform (resp. double fuzzy quasi-uniform) spaces. A mapping
PY o (X,U,U") — (Y, V, V") is said to be uniformly contin-
uous (resp. quasi-uniformly continuous) if

V(a) <U(¢; (a)) and V'(a) = U (¢ (a)), Vae€ Qy,
where @ ¢; (a)(f) = ¢ (a($p, () for all £ L*.

From Theorem 4.3, we easily prove the following theorem.

Definition 4.9. Let (X, B,,B]) and (Y, B, B]) be double fuzzy
quasi-uniform  bases. If  By(a) <Bi(¢; (a)) and
B;(a) = Bi(¢; (a)) for all ac QL") then ¢: (X,Ug,,
U;T) — (Y, UBZ,UZ;;) is quasi-uniformly continuous.

Theorem 4.10. Let (X,U,U"),(Y,V, V") and (Z, W, W*) be
double  fuzzy  quasi-uniform  spaces. If ¢ : (X, U,U")
— (Y,V,V") and ¢ : (Y, V, V") — (Z, W, W) are quasi-uni-

formly continuous, then Yo ¢ : (X, U,U) — (Z,W, W) is

quasi-uniformly continuous.

Theorem 4.11. Let (X, U, U )and(Y,V, V") be double fuzzy
quasi-uniform  spaces. Let ¢ : (X, U, U") — (Y,V,V") be
quasi-uniformly continuous. Then:

(1) (:b;(cu-,ux (fv r, s‘)) < CV,V*(QS;U):rv 5)7 fOI each fe LX)
re L(), s € L/.

(2) Cuwr (P, (g),7,5) < ¢, (Cyy-(g,r,s)), for each ge L”,
re L(), s e L].
Q) ¢: (X, Tu.Ty)— (Y, Ty, T, is fuzzy continuous.

Proof. (1) Suppose there exist fe€ L*, r e Ly and s € L, such
that

b1 (Cuzr (fi1,5)) £ Cyoy (dr (1)1, 5).
There exists a € Q(LY) with V(a) > r and V*(a) < s such

that Cyy- (o, (f),r,5) £ a(d, (f))-

On the other hand, ¢ is quasi-uniformly continuous,

Uy (a)) =2 V(a) =2 r and U (¢, (a)) < V'(a) < s.
It implies a(d, (/)(d(x)) = ¢ (@) (N(x) = Cuar (f,r)(x). Ttis
a contradiction.

(2) and (3) are similarly proved as Theorem 2.13. O

Theorem 4.12. Let (X, 8,8") be a double fuzzy syntopogenous
space. The mapping Cs.s- : LY x Ly x L, — L~ is defined by

Co(fir,s) =Me:n(f,e) >Ln(fg) <T,%0n,n")
> rand S (n,77) < s}

For each Pf, f1, [>€ L, r, r;, ra€ Ly and s, s;, s> € L;,we have
the following properties:

(1) 0878*(107r75) = 107

(2) f< 6378*(f7r7s)7

(3) lffl <ﬁ70578*(flvr7s) < 0575*U23r7s)7

(4) Cs, 8" (f1 © fo,r ©r1,5®51) < Cs, 8™ (f1,7,9)
®CS7S*(ﬁ7rlvsl)7

(5) if ri<ryands, = s, then Cs,8 (f,r1,s1)
<CS7S*(.f.7r27S2)7

(6) Cs,8(Cs, 8" (f,r,s),r,s) =Cs,8 (f,r,5).

Proof. (1) Since ¥ n(ly,1p) =T and 5*(lp,1g) =L for
Sn)=T,8(nn) = L,
C57S*(1@,V7S) = l(z)a

2 Since Pf<gforn(f,g) L and n"(fg) < T,
f< cSaS*(fvrvs)'

(3) and (5) are easily proved.

(4) Suppose there exist fi, f>, € LY, r, r € Ly and s, 51 € L,
such that



40

S.E. Abbas, A.A. Abd-Allah

Cs, S (i ®for Or1,5 @ 51)%Cs, 8 (f1,7,5)
@ Cs, 8" (f2,11,51).
There exist,
(), (n2,m3) €Ty With S(nyy) = 1, 8(n,3) 2 11,8 (n1,m7) < s,

S (12,1m3) <si,mifing)) € L and n7(fi,g;) < T such that,
Css (i @fo,rOr,s@s) %8 B8,

On the other hand, S(n,,4;)©S(n,,n5) > rand S
(m.n7) © 8 (ny,15) < s, by (LT2) of Definition 4.4, there ex-
ist Y = n;,n* < n;,8(n,n*) = rand S (n,n*) < s such that

nh ©/,8 ©g) = .8 ©&) Onh g &)
2 77(f1>g1)®7](f27g2)
=0 (fi,81) Omfr8) & L.

Hence Css(fi®fo,roOr,s®s)<g ®g. It is a
contradiction.

'h@fe ©&) <n(fi,e1®2)on(h e ©g)

<

< (f,8) ©n'(f,8)

<mitfng) @n(fh,g) < T.

(6) Suppose there exist ¥/ e LY, r € Lyand s € L, such that

Cg,s* (CS,S* (f, r, S), r, S) ﬁ CSAS‘ (f, r, S).
There exists Pg € LY with S(i,n*) = r, 8 (n,n°) < s, n(f,8)
£ L and n'(f,8) < T,

such that «Cgsgs (f.r,s)<g. On the other hand,
S(n,n*)&rand 8" (n, %) < s, « by (LT3) of Definition 4.4,
there exists ({, C*) € y such that

(GO (LO) = (), SE) 2 r and S T) <s.

Since (o ((f,g) ¢ L and ("o ((f.g) < T, here exists p € L¥
such that {(f.p) © U(p.g) # L and {'(f.p)® ' (p.g) < T. It
implies Css (f,r,s) < p,Css (p,r,s) < g Hence Css (Css
(fir,s),r,s) <g. Thus, Css(Css (f,r,s),r,s)<g. It is a
contradiction. [J

Definition 4.13. Let (X, S,8") be a double fuzzy syntopogen-
ous space. Define the maps 75,7 s : LY — L by

Ts(f)y=v{reLy:Css(f,r,s) <f},
Tsel()=nNseL :Css(ff,r,s) <f}

Then (T s, T ) is a double fuzzy topology on Xinduced by
(8,8").

Theorem 4.14. Let (X, 8y, S)) and (Y, S5, S5) be double fuzzy
syntopogenous space. A map ¢ :(X,8,,8]) — (¥, 85,8;) is
said to be syntopogenous continuous if for each ({,{") € y, here
exists (L,0°) € ywith n(9y (2), o (1) = U(g.f) and 0’ (¢ (g),
o () < (g, f)such that S(4, ) <81 ) and

S(00) = §1(L).

Theorem 4.15. Let (X,S,8))and(Y, S5, S;) be double fuzzy
syntopogenous space. Let ¢ : (X,8,,8]) — (Y, S5, 8;) be syn-
topogenous continuous. Then we have the following properties:

(1) ¢Z(CS|.ST (,f> r, S) g CSZ.S;(¢;U)7r7S)7
fel” rel, ands¢€L,.
(2) CS1‘ST(¢Z(g)7r7S) < ¢;(c$z.$;(g7rvs))7
gel’, rely, and s€ L.
(3) ¢: (X, Ts,, ’7'51) — (Y, 77'52,‘7';;) is fuzzy continuous.

Proof. (1) Suppose there exsit fe LY, r € Ly, and s € L, such
that

Yo, (Cs,s;(fir,8) £ Cs,8,(P, ():1,5).

There exists ({,(") € Ty with S,((, () = r, 8((, ) < s5,{(¢p)
(x),g) L and (¢, (x),g) < T such that Cs,s(d, (),
r,s) < g. On the other hand, ¢ is syntopogenous continuous,
for each ({, 4'*) €y, there exsits ((, C*) €y, with
W@ (6001 () > Loy (0.0 and (9 (8, (1),
61 () <L (b, (N.g) such that Sinm) > S(00)
> rand Si(n,n") < S({T) <.

It implies Cs, s:(f;7,5) < ¢; (g). It is a contradiction. [J
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