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Abstract In this paper we find the solutions to the class equation x! = f in the alternating group
A, (i.e. find the solutions set X = {x € 4,/ x’ € A(f)}) and find the number of these solutions | X|
for each f € HN C* and n¢ 0, where H = {C* of S,/ n > 1, with all parts o of & different and
odd}. C*is conjugacy class of S, and form class C* depends on the cycle partition « of its elements.
If (14 > n¢ 0 U {9,11,13})) and f € HN C*in A, then F, contains C*, where F,, = {C* of S,] the
number of parts o, of « with the property o =3 (mod 4) is odd}. In this work we introduce several

theorems to solve the class equation x¢ = f in the alternating group 4, where f € HN C* and n ¢ 0
and we find the number of the solutions for n to be: (1) 14 > n¢ 0, (i) 14 > n¢Oand (n + 1) ¢ 0,
(iii) 14 > n¢ 0 and C*#[1,3,7], (iv) n = 9,11,13, (v) n > 14.

© 2011 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

The main purpose of this work is to solve and find the number of
solutions to the class equation x? = f in an alternating group,
where ff ranges over the conjugacy class A(ff) in 4,, and dis a po-
sitive integer. In this paper we solve the class equation x? = fin
Ay, where fe HN C*andn¢ 0 = {1,2,5,6,10, 14} and we find
the number of solutions when H = {C* of S,/ n > 1, with all
parts o, and « different and odd}. C* is conjugacy class of S,,.
If A€ C*and A ¢ HN C* then C” does not split into the two
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classes C** of 4,. The Frobenius equation x? = ¢ in finite
groups was introduced by Frobenius (1903), and studied by
many others, such as Ishihara et al. (2001), Takegahara
(2002), Chigira (1996), who dealt with some types of finite
groups, including finite cyclic groups, finite p-groups, and
Wreath products of finite groups. Choose any f§ € S,, and write
it as y17. . .yep). With y; disjoint cycles of length o; and ¢(f) are
the number of disjoint cycle factors including the 1-cycle of f.
Since disjoint cycles commute, we can assume that o; > o >
o+ = ayp (Rotman, 1995). Therefore o = (0,00, . .., 0ep)) 18
a partition of n and it is call cycle type of . Let C* < S, be the
set of all elements with cycle type o, then we can determine the
conjugate class of € S, by using cycle type of f5, since each pair
of Zand f in S, are conjugate if they have the same cycle type
(Zeindler, 2010). Therefore, the number of conjugacy classes
of S, is the number of partitions of n. However, this is not nec-
essarily true in an alternating group. Let f = (124)and 4 = (1
42) be two permutations in S, that belong to the same conjugacy
class C* = [1,3]in S, (i.e. C*(B) = C*(2)). Since a(f) = (1(p),
w(f) = (1,3) = (x1(4),22(4)) = a(A), they have the same cycle
type, but A and f are not conjugate in A4 Let
B =(123)(456)(789) and 1 = (537)(169)(248) in Sy where
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they belong to the same conjugacy class C* = [3%] in S since
o) = (3,3,3) = a(4). But here 4 and f§ are conjugate in Ao.
The first and second examples demonstrate that it is not neces-
sary for two permutations to have the same cycle structure in or-
der to be conjugate in A4,,. In this work we discuss the conjugacy
classes in an alternating group and we denote conjugacy class of

pin A, by A(f).

Definition 1.1. A partition « is a sequence of nonnegative
integers (oq,00,...) with oy > ap > --- and Y2, < co. The
length /(o)) and the size | ol of « are defined as /(x) = Max{i €
N;o; 20} and |o|=> 0. We set atn = {o partition;

= n} for n € N. An element of atn is called a partition of
n (Zeindler, 2010).

Remark 1.2. We only write the non zero components of a par-
tition. Choose any f € S, and write it as y72...7.p). With y;
disjoint cycles of length «; and ¢(f) are the number of disjoint
cycle factors including the 1-cycle of f. Since disjoint cycles
commute, we can assume that o«; > ar > ... > «.p). There-
fore o = (a1, 0, .., %.p) is a partition of n and each o; is called
part of o (see Zeindler, 2010).

Definition 1.3. We call the partition o = a(f) = (1(f), %a(f),
..., dqp)(P)) the cycle type of B (Zeindler, 2010).

Definition 1.4. Let o be a partition of n. We define C* c S, to
be the set of all elements with cycle type o (Zeindler, 2010).

Definition 1.5. Let €S, be given. We define ¢, = c\” =

¢ (B) to be the number of cycles of length m of f8 (Zeindler,
2010).

Lemma 1.6. C** of A, are ambivalent if and only if the number
of parts oy of o with the property o), =3 (mod 4) is even (James
etal., 1984).

Remark 1.7

(1) The relationship between partitions and c¢,, is as follows:
if p € C*is given then ¢\ (B) =| {i : o = m} | (see Zein-
dler (2010)).

(2) The cardinality of each C* can be found as follows:
| C* =2 with z, =[]_(c)! and ¢ =c"(f)=
| {i: 0y = r} | (see Bump (2004)).

(3) If x is a solution of x = B, d is a positive integer, and y
is a conjugate to x, then y is a solution of x4 = 7, where
A 1s conjugate to ff in an alternating group (or any finite
group). We call x? = f a class equation in A,, where 8
and x belong to conjugate classes in an alternating group
(see Taban (2007)).

Definition 1.8. Let f € C* where f is a permutation in an
alternating group. We define the A(ff) conjugacy class of f§ in
A, by:

A(B)={y€ A, |y=1tpr™"; for some ¢ € 4,}
[, (ifp¢H)
B { C*or C*, (if pe H)

where H = {C* of S,Jn > 1, with all parts «, of o different
and odd}.

Remark 1.9

(1) pe C*NH N A, = A(f) = C*, where HS is a comple-
ment set of H.
2) pe C*NH= € A, and C” splits into the two classes

C** of A4,
[ttt pectt

4 If nef = {1,2,5,6,10,14}, then for each i€ 4, we
have f§ conjugate to its inverse in An(ﬁf .

Definition 1.10. Let F,, = {C* of S,] the number of parts oy of
o with the property o, =3 (mod 4) is odd}. Then for each
pe HNC*NF,in §,, we define C** of 4, by:

C*"={lecA,|’=ypy"; forsome y € 4,} = A(B)
C~={ie€ A, | A=y for some y € 4,} = A(B")

Remark 1.11

(1) Suppose n¢ 0 & f€ HN C” in A, then we have:
(i) If(m+ 1)€0, then C*#[4] (since HN[4] = ¢).
(i) If(n + 1) €0, and C*#[n], then  does not conju-
gate to its inverse in A,,.
(iii) If m + 1)€ 0 and C* = [n], then n = (9 or 13),
and (f~$7"). So we define C** by:
=" = AP) and € = {fn] = AP)} or
{A(p"); for some ¥ € [n] do not conjugate to f}.
(2) Suppose ne€® and BfeHNC* in A, where
C* = [ki,ks,...,k;] and k; #1, (1 <i< L) then

we have:
(i) pe HN [, ki, ks, . ..
(i) (8 ~ B

“Finally, based on (1) and (2), we consider for all (14 > n ¢ 6)
and fe HNC*in4,,but f¢ HNC*N F,in 4, = C* = [9] or
[13] or [1,3,7]. So we define [1,3,7]F by [1,3,7]" = A(p)
and [1,3,7]" = A(f"), where % €[1,3,7] does not conjugate
to f3.

Theorem 1.12. Let A(f) be the conjugacy class of fp in A,,
pe[K L]NHand 14 > n¢ 0, where [K,L] is a class of S,.
If p is a positive integer such that ged (p,K) = 1 and ged
(p, L) =1, then the solutions of X" € A(B) in A, are:

7kL} in An+l-

(1) [K.L]™if f* = (B~ ory), where y is conjugate to .
(2) [K,L]" if B = (B ory), where y is conjugate to p.

Proof. Since € 4, N[K, L] N H, [K, L] splits into two classes
[K,L]" of A,. However, 14 > n¢ 0= [K,L] € F,= A(p) =
[K,L]" and A(f~") = [K,L]"". Also, since ged(p,K) = 1,
p does not divide K, and since ged(p, L) = 1, p does not divide
L. Then by Taban (2007, lemma 3.9) we have [K, L] as the solu-
tion set of X € [K, L] in S,,.
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(1) Assume 7 = (=" or y = bp~'p7"; for some b € A4,,),
and let A € [K, L]. Then either 1 € [K,L]", or 1 € [K,L]".

If Je[K L Jtcd,>i=p", »=1pt! =
B!
or , X EK LT = P ¢K LT = Ap).
b~ (tb) !

If JelK L™, ted, >r=1p'r 2 =1prr! =

1pr!
( or } »e[K LT = A(p).
hp(th) ™!

Then the solution set of x” € A(f) in is [K, L] .

(2) Assume f” = (B or y = bpb~'; for some b € 4,), and
let 2 € [K,L]. Then either 2 € [K,L]" or A€ [K,L].

If JLc[K L', FJtecd,>i=tp', =1t
1!
= or , e K LT =A(B) = ¥ ¢[K, L.
thp(th) ™!
Ifle[K L, 3tcd, 3=, ¥ =1prr" =
tﬁ—ll—l
or , e [K LT = X ¢ Ap).
b (1h) ™!
Then the solution set of x” € A(f) in A, is [K,L]".

Lemma 1.13. Let A(f) be the conjugacy class of ff in A,,
14>n¢0& (n+1)¢0,andp € [n] N H, where [n] is a class
of S,. If p and g are two different prime numbers, p| n and ql n,
then there is no solution of X’ € A(pB) in A,.

Proof. Since § € 4, N [1n] N H, [1] splits into two classes [n]* of
A,. However, 14 > n¢ 0 & (n + 1)¢ 0= [n] € F,= A(p) =
[7] ", then by Taban (2007, lemma 3.9) there is no solution
of x?? € [n] in S,,. So there is no solution of x*? € A(f) in A4,,.

Lemma 1.14. Let A(f}) be the conjugacy class of f in A,,
14>n¢0& (n+1)¢0,andf € [n] N H, where [n] is a class
of S,. If p and q are two different prime numbers, pl n and q does
not divide n, then there is no solution of X’ € A(p) in A,.

Proof. Since € 4, N [1] N H, [1] splits into two classes [#]* of
A,. However, 14 >n¢0 & m+ 1)¢0=[neF,=
A(P) = [n]", then by Taban (2007, lemma 3.4) there is no
solution of x”? € [n] in S,,. So there is no solution of x? € A(f)
inA4,.

Theorem 1.15. Let A(f) be the conjugacy class of f in A,
14>n¢0& (n+1)¢0,and e [n]NH, where [n] is a class
of S,.. If p and q are different prime numbers such that ged(p,n) = 1
and ged(q,n) = 1, then the solutions of X*7 € A(p) in A, are:

(1) [n]” if 7= (B~ ory), where y is conjugate to .
(2) [n] " if B9 = (B ory), where vy is conjugate to .

Proof. Since € 4, N [1] N H, [1] splits into two classes [1]™ of
A,. However, 14 > n¢ 0& (n + 1)¢ 0= [n] € F,= A(p) = [n]”

and A(~") = [n]". Also, since, ged(p,n) = 1, p does not divide
n, and gcd(g,n) = 1, ¢ does not divide n. Then by Taban
(2007, lemma 3.4) we have [n] as the solution set of x”/ € [n]
in S,

(1) Assume % = (=" or y = b~ 'b~"; for some b € 4,,),
and let . € [n]. Then either /. € [n]" or A € [n]".

!
If A€n]’, Fted, o i=tpt™", 1 =tpr+ ' = or ,
(tb/f"(tb)‘]
e n]” = 2 ¢n]" = A(p).
If Jen, 3tecd, >i=p"'c", ="' =

tpt!
or ]|, 2 € [n]" = A(B). Then the solution set of
thp(th)™!

X’ e A(f) in A4, is [n]".
(2) Assume "7 = (B or y = bpb~"); for some b € A,), and
let / € [n]. Then either /. € [n]" or A€ [n]".

B!
If 2c[n)™, 3tcd, s i=tht™, M =tpt ' = ( lir ] ,
thp(th)™"
e n]m =A(p) = ¢ n]”.
If Jen, €A, 3i=ef'rt, T =1pP =

!
or , M eln] = ¢ A(f). Then the solu-
b~ (th)™!

tion set of X"/ € A(f) in A4, is [n] ™.

Lemma 1.16. Let A(f) be the conjugacy class of ff in A,,
14>n¢0&(n+1)¢0,andp € [n] N H, where [n] is a class
of S,,. If p is prime number such that pl n, then there is no solution
of X" € A(PB) in A,.

Proof. Since € 4, N[K, LN H, [K, L] splits into two classes
[K,L]* of A, However, 14 >n¢0=[KL]€eF,=
A(f) = [K,L]", then by Taban (2007, lemma 3.8) we have
there is no solution of x” € [K, L] in S,,. So there is no solution
of x* € A(f) in A,,.

Theorem 1.17. Let A(f) be the conjugacy class of
in A, 14>n¢0, and p € [K,L] N H where [K,L] is a class
of S,. If pl K and pl L, then there is no solution of X" € A(p)
in A,.

Proof. Since ff € 4, N[K,L]N H, [K, L] splits into two classes
[K,L]" of A, However, 14 > n¢0=[K L€ F,= A(f) =
[K,L]", then by Taban (2007, lemma 3.8) we have there is
no solution of x” € [K,L] in S,. So there is no solution of
X’ € A(P) in A,

Theorem 1.18. Let A(f3) be the conjugacy class of f in A,,
peln]NH, 14 >n¢0 & (n+ 1)¢0, where [n] is a class
of S,.. If p is a prime number such that ged(n,p) = 1, then the
solutions of x” € A(B) in A, are:

(1) [n]” if B¥ = (B~ ory), where vy is conjugate to p~.
(2) [n]T if B* = (B ory), where y is conjugate to p.
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Proof. Since € 4, N [1] N H, [1] splits into two classes [#]* of
A,. However, 14 > n¢0 & n + 1)¢0=[nl€ F,= Ap) =
[n]* and A(B~") = [n]". Also, since ged(n,p) = 1, p does not
divide n. Then by Taban (2007, lemma 3.2) we have
[n] =[n]" U[n]~ as a solution of x”€[n] in S, But,
[n] = A(B) U[n]~" then the solution set of x” € A(f) in A, is
either [1]” or [n] .

(1) Assume 7 = (f~' or y = b~ 'p7"; for some b€ 4,,),
and let /. € [n]. Then either /. € [n]" or A & [n]".

Ifien™, Jted,>i=tpr",
!
»=prr = or L e = e =Ap),
b~ (1h) ™"
Iflen, Fted,s>ri=t"r",
tpr!
W=t = or |, #epn=Ap).
thp(th)™"

Then the solution set of x” € A(f) in A4, is [n] .
(2) Assume 7 = (fory = bpb~"; for some b € A4,), and let
J. € [n]. Then either A€ [n]* or e [n] .

Ifien®, 3ted,2i=1pr",

tpt!
W=t = or |, et =Ap)= F¢n,
thB(1h)™"
If e, Jted,s>i=1p"r",
B!
W=t = or L e = EAP).
b~ (1h) !

Then the solution set of x” € A(f) in 4, is [n] .
Example 1.19. Find the solutions of x° € A(1 3 2) in A45.

Solution:

Since (14 > 3¢0), (132)€[3]NH, ged(3,5) = 1,and (13
2)° = (123) = (132)7", then the solution of x’ € A(1 3 2) in
Asis [3]7 = {(123)}.

Lemma 1.20. Let A(f3) be the conjugacy class of f in A, and
pe[n]NH whereld > n¢0& (n+ 1)¢0,and [n] is a class
of S,. If pl n, then there is no solution of X € A(f) in A,.

Proof. Since € A, N [n] N H, [n] splits into two classes [#]* of
A,. However, 14 > n¢0 & (n+ 1)¢0=[nl€F,= Ap) =
[7] ", then by Taban (2007, lemma 3.12) we have there is no
solution of X" €[n] in S,. So there is no solution of
Xpm S A(/;) in An-

Lemma 1.21. Let A(f3) be the conjugacy class of f in A, and
pe[n]NH whereld > n¢0& (n+ 1)¢0,and [n] is a class
of S,. If p and q are different prime numbers, pl n and gl n then
there is no solution of X" € A(p) in A,.

Proof. Since € A, N [1] N H, [n] splits into two classes [1]™ of
A,. However, 14 > n¢ 0 & n+ 1)¢0=[nl € F,= Ap) =
[n] ", then by Taban (2007, lemma 3.14) we have there is no
solution of x”"¢' & [n] in S,. So there is no solution of
¥ € Ay in A,

Lemma 1.22. Let A(f}) be the conjugacy class of  in A,, If p
and q are two different prime numbers such that p| n, q does
not divide n, and pe[n]JNH where 14>n¢0 &
(n+ 1)¢0, and [n] is a class of S, then there is no solution

md

of X" € A(P) in A,.

Proof. Sincef € 4, N [n] N H, [1] splits into two classes [1]™ of
A,. However, 14 > n¢ & n+ 1)¢0=[nl € F,= Ap) =
[7]", then by Taban (2007, lemma 3.15) we have there is no
solution of x”"¢ € [n] in S,. So there is no solution of
X1 € A(p) in A,

Lemma 1.23. Let A(f) be the conjugacy class of f in A,
14>n¢0 & (n+ 1)¢0, where [n] is a class of S,. If p and
q are different prime numbers such that ged(p,n) = 1 and gcd
(q.n) = 1, then the solutions of X" € A(B) in A, are:

(1) [n]” if/iP':’ttlz (B~" or y), where vy is conjugate to .
(2) [n] " if BT = (B ory), where y is conjugate to .

Proof. f € A, N[n]N H, [n] splits into two classes [n]™ of A,,.
However, 14 > n¢0& n+ )¢ 0=[n] € F,= AP) = [n] ",
and since gcd(p,n) = 1, p does not divide n and gcd(q,n) =
1 = ¢ does not divide n. Then by Taban (2007, lemma 3.2)
we have [n] = [n]" U[n]” as a solution set of x"¢' € [n] in
S,. But, [n] = A(P)U[n]” then the solution set of
X" € A(p) in A, is either [n]” or [n]".

(1) Assume 77 = (B~ or y = bB~'b~"; for some b € A,),
and let / € [n]. Then either /. € [n]" or A e [n] .

If2en, 3ted,>i=1p",
1!
Pl ﬂ(p’”q")l—l _ or 7
b~ (1)
e = 2 ¢ ] = A(B),

Ifien]”, Ited,si=1tp"'r",
tpr!

d (g ady o
q:t[f<’”’)t1: or ,

thp(th) ™"
Then the solution set of x”"¢' € A(f) in A, is [n]".

(2) Assume ﬁ”qu = (Bory=bpb"; for some b € A4,), and
let /. € [n]. Then either /. € [n]" or A& [n]".

d

m

p% e )" = A(p).

If2en*, Jtecd,>i=1p",
tpr!
A= = o |,
thp(th)”"!
P )t = AB) = 2 ¢ D]
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Ificn, 3tcd,>i=1p"1",
B!
Pl tﬂ*(zf’”q") = or ’
b (1b) !
e ] = " ¢ AB).

n d

Then the solution set of X" € A(f) in 4, is [1] .

Lemma 1.24. Let A(f}) be the conjugacy class of f in A,
14>n¢0& (n+1)¢0,andf € [n] N H, where [n] is a class
of S, If pr.pa2, - - -, DPm are different prime numbers such that, p;,
|n, Vi= 1,...,m, then there is no solution for

dy dy dy

X e A(B) in A

Proof. Since e 4, N [n] N H, [n] splits into two classes [1]™ of
A,. However, 14 > n¢0 & (n + 1)¢0=[nle F,= A(f) =
[7] ", then by Taban (2007, lemma 3.17) we have there is no

b dm

. dp . . .
solution of X172 +#n"¢[n] in S,. So there is no solution of

dy dm

d
P e A(B) in A,

Lemma 1.25. Let A(f) be the conjugacy class of p in A,,
pe[n]NH and 14 > n¢ 0 & (n+ 1)¢0, where is [n] is a
class of S,. If p1,p2, - .., pm are different pr({lmg nﬁzmbers and pl n
for some i, then there is no solution for x1 7" """ ¢ A(B) in A,.

Proof. Since e A, N H, [n] splits into two classes of [1]™ of
A,. However, 14 > n¢0 & (n+ 1)¢0=[nle F,= Ap) =
[n]", then by Iaban (2007, lemma 3.19) we have there is no

e

. 1 . . .
solution of x"172" “me[n] in S,. So there is no solution of
A1 02 pdm

xPr Pt e 4(B) in A,

Lemma 1.26. Let A(f) be the conjugacy class of ff in A,,
14 > né¢0,and e[k, ks ... .kJ]NH, where [k; ks, ... k] #
[1,3,7] is a class of S,. If p is a prime number such that
ged(p, ki) = 1, for each i, then the solutions of x” € A(f3)are:

(1) [kpko ...,k if B = p~! or vy, where vy is conjugate
to .
(2) [k ks, ... k] " if 7 = B ory, where y is conjugate to .

Proof. Since fe A, NHNI[ky,ky, ... k], [ki,ks,...,k;] splits
into two classes [ki,ka,...,k]" of A, However, 14 > n¢0

and [k],kz,. . .,k/] # [1,3,7] = [kl,kg,. . .,k/] e = A(ﬁ) = [kla
ks,....k]", and A(/)’fl) = ki, ky,..., k). Also, since
gcd(p,ki) = 1 for each ),[kl,kQ, P ,k]] =4 ;Lp[kl,kz, A ,k/]. Then
by Taban (2007, lemma 2.8) we have for each

;L&[kl,kz, “e ,k[] = Me [k],kz, . .,k/].

(1) Assume 7 = (=" or y = bp~'p7"; for some b € A4,,),
and let 1 € [ky, ks, ..., kj. Then either /€ [k, ko, ... . k]"
or e [k],kz,. . .,k/]i.

If Jelky, kay ... k)™, Fted, > 7= 1pr !,
B!
I =1pr! = or ,
b~ (th) ™!
Welky kyy ... k)] = 2 ¢ ki ko, ... ,k]]+ =A(p),

If Jelki,ky, ... ki)™, 3ted, 32 =1p"1",
tpt!
P =1prr! = or ,
thp(th)™!
Pelky, k.. k)t = A().

Then the solution set of x” € A(f) in A,,is [k, k»,. ... ki]".
(2) Assume f* = (f or y = bpb~" for some b € A,)), and let

Jelkiks,....ki]. Then either A€k ks, ...,k]" or
;»E[kl,kz,...,kl]i.
If Jelky, kay ... k)™, 3ted, > 4= 1pr !,
B!
W =1pt = or ,
thp(th)™"
;f’G[kl,kz, .. .7k1}+ = A(ﬁ) = ;»p ¢ [kl,kz, e 7k/]i,
If Jelki ke, ... k), Fted, 3 A=t~
!

=1t = or ,

thfp ' (1b) !
Nelky kyy ... k)] = 2 ¢ A(B).
Then the solution set of x"eA(f) in A, is
(ki k.. k] "

Remark 1.27. If there is no solution for x” €[k;], for some
1 <i <[ then there exists no solution for x” € [ky,k», ..., kj].

Lemma 1.28. Let A(f}) be the conjugacy class of  in A,,
14 >n¢0, and fe [k ks, ... k] OH, where [k, ks, ... k] #
[1,3,7] is a class of S,. If p is a prime number such that p| ki,

for some i, then no solution of x" € A(f) in A,.

Proof. Since fe A, NHN[ky,ky, ... k], [ki,ks,...,kj] splits
into two classes [kj,ko,....,k]" of A, Since A(f) =
lki.ks,....k]" and plk, then by Taban (2007, lemma 3.1)
we have no solution for x” € [k;] in S,. Then no solution for
X € [ky,ky,. .., kj] in. So no solution for x” e A(f) in 4,,.

Lemma 1.29. Let A(f) be the conjugacy class of ff in A,,
14 > né¢0,and pe [k ks, ... k]NH, where [k ks, ... k] #
[1,3,7] is a class of S, P is a prime number, is a positive integer.
If for some 1 < i< 1 such that pl k;, then we have no solution of
X" eAp) in A,

Proof. Since fe A, N HN[ky,ky, ... k], [ki,ks, ... k] splits
into two classes [ki,ka,...,k]T of A, Since A(f) =
lky, ks, ... k] and p| k;, then by Taban (2007, lemma 3.12)
we have no solution for x"¢[k;] in S,. So no solution for
X" ek, ka, ... ki) in S,. Then no solution for x’"e¢A(f) in A,,.

Definition 1.30. Let fe[9] of Sy, where = (ay,as,as,a4,as,
ag, as,ds,ay). We define class [9]" of 49 by A(p) = [9]" =
{ue9 u = tpr~"; for some ¢ € Ao}.
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Remark 1.31
() (917" = [9] — A(B) = {uwe 9] u#tp 1"; for all t edo}.
(11) L_Ct ﬂ € [9] Of Sg where [f = ((11, a%, as,dy,ds,dg,d7, dg, (19),

B = (a1, a2, a3,a4,as,a,a7,a3) = (ar,as,a, ay,as, as,
as,as,as) and d is a positive integer we have:

1) p'=p < d=1 (mod 9)
Q) pl=p < d=2(mod9)
(3) p'=p < d=4mod9)
4) p'=p"' < d=5 (mod9)
(5) pl=p" < d=7 (mod 9)
(6) pl=p! <= d=8 (mod 9)

(i) (1) AB)=AB"), AB) = AB"), AB)=A(F")
[Since for each 4 € [9]™ in Ao, where A = (b}, b»,
b3,b4,bs,be, b7, b, bo), 3u = (b1,by) (b2, b7)
(b3, bg) (ba,bs) € Ay such that piu~' = 27

(2) A(B) = A(P) since It = (a3, ag) (ay.as, az, s, s, az)
€ Ao such that 1! = p.

34" = A(P) since 3t = (0%309) (ay,ag,a7,az,as,
as) € Ay such that ¢! /f_

Theorem 1.32. Let € [9] of So. If d is a positive integer such
that ged(d,9) = 1, then the solutions of xeA(B) in Ay are A(p).

Proof. Since f € [9] N H N Ay, [9] splits into two classes A(f) &
[9]" of 4y and ged(d,9) = 1, then d does not divide 9. Then by
Taban (2007, lemma 3.2), the solution set of x?€[9] in S,
is [9]. For each Z2€[9] we have o€ A(f) or o ¢ A(B). If,
o€ A(f) we have A’:ﬁ(/{ conjugate to f§ in Ay) = /1”:[)’”.

How-ever, ﬁ"%ﬁ = /ld"&'ﬁ = e A(p). If o ¢ A(p), assume

ite Ap) :>)f’;/3 But b’ = i p' = i =, (which
isa contradlctlon) Then the solution of in Ag 1s A(p).

Definition 1.33. Let f =1941¢€[1,3,7] of S;;, where
y = (b1,bs,b3), 4 = (ay,a»,a3,a4,as,a6,a7). We define classes
[1,3,7]F of 4, by:

APB) = (13,77 = {nell.3, 7 u=1tpt";
teAn}wdA$)=D3JT={u€UJJHM=I?”Lﬁr

# _ _
some t € Ay} where =y and A = (a1, a4, a7, a3, as, az,as).

for some

Remark 1.34

(i) Let B=74€[l,3,7] of Sy where y = (by,bs,b3),
i = (a17a25a37a47a57a67a7)7 j':(al7a4>a77a37a67aZ7a5)7
A= (ay,as,as,a7,a,a4,a5), and d is a positive integer
number. We have:

(1) p'=p < d=1 (mod 21)

®) ﬂd = y-u <= d =2 (mod 21)
3) B =i~ <= d =4 (mod 21)
) B =917 = d=5 (mod 21)
5) Bl =7y = d=8 (mod 21)
(6) B =yl <= d =10 (mod 21)
) B =97"17"1 <= d=11 (mod 21)
®) d = 9)! = d=13 (mod 21)
©) B! =92 < d=16 (mod 21)
(10) B! =971l < d=17 (mod 21)
1) B =i~ < d =19 (mod 21)
(12) = p' —= d=20 (mod 21)

(i) () A(B) = A(F), A7) = AGE), AGE) =
AG13), AG 3 = AG), AG'2) = AGE), AG7) =
A(y~'271) [Since for each § = y4 €[1,3,7] in A, where
y = (b1,b2,b3), 4 = (ay,as,a3,a4,as,a¢,a7), Ip = (b1, b3)
(a2, a7) (a3, a6) (as,as) € Ayy such that piu=' = i7"].

(2) A(B) = A(y7'2) [since 3t = (hy,b3) (a1,a4,as,a3,az,
ag) € Ay such that ¢! =y~1))].

(3) A(p) = A(yA) [since 3 t = (ay,a3,a4) (a7,a6,a2) € Ay
such that #8t! = 7).

(4) A(pA~") = A(y7) [since 31 =
Ay, such that tyi~ lt* =]

(5) A(y27") = A(y") [since 3t =
Ay such that 27 " = y171].

(a1, a4,a5) (as,as,ae) €

(a1, a¢,as) (az, a3, a7) €

Theorem 1.35. Let L={m e N|m=gq (mod 21); for some
qg=1,4,516,17,20}. If d is a positive integer such that
ged(d,3) =1 & ged(d,7) =1 and p€ [1,3,7] of Sy, then
the solutions of x! € A(B) in A;; are:

(1) A(B) ifde L.

#
(2) AB) if d ¢ L.

Proof. Since [LE [1,3,71Nn HN Ay, [1,3,7] splits into two clas-
ses A(f) & A(P) of Ay, ged(d,3) = 1 and ged(d,7) = 1, then d
does not divide 3 and d does not divide 7. ”l;%hen by Taban
(2007, lemma 2.8) we have [1, 3, Q A(B) U A(P) as a solution
set#of x1€[1,3,7] = A(B) U A(p) in S” However, A(B)N
Ap) = ¢, S0 for each ne[1,3,7] = (ne€ A(p) & n ¢ A(p))
or (€ A(B) & n ¢ A()).

(1) Assume de L. If e A(f), then we have (= ff) n

An

~ 7 (since

” An

=1l~ p=nlc Ap) & nl¢ A(P). If

# An #

ne A(f), we have (m=~p).
A, An

deL)=n

# B
~ =l d(p) &nl ¢ A()
solution set of x?e A(f) in A1, is A(S).

However, =¢

conjugate to f in Aj.
del)
But 79~ m (since
Then the
(2) Assume d¢ L If mwe A(f), then we have
(m~p) = i~ [3 However, ¢ ~ 7 (since d ¢ L)=
An An 4 An 4
fﬁ:Mr eA(ﬁ) & nf ¢A(/3) If nedlf)=
11
#
~f)=>n~ But 7~ d¢ L) =
(nA”ﬁ) nA”ﬁ ut « A”n (since d¢ L) =n A”
B=n?c A(p) & n?’ ¢ . Then the solution set of
#
x? € A() in Ay, is A(B).
Definition 1.36. Let 5 € [13] of Sy3, where § = (a1, a2, a3, aq, as,
ag, ar, as, g, dio, A1, dia, di3). We define classes [13]F of 4,5 by:

APB) = [13]" = {ue[13]u = tpr’

ABF) =[13]" ={pe13]|n=

#
where 7 = (a1,a3,as,a;,a9,a11, 013,02, a4, a6, A3, 10, A1)

; for some t € A3} and

1p* 1" for some 1 € Az}

Remark 1.37. (i) Let p € [13] of S|3 where, ff; =
as, ag, @z, ag, dy, 10, a1, d12,d13)

(a1, a2, a3, a4,
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ay, as, ds, d, dy, dyy, d13, dy, A4, de, dg, dio, d12

ay, dg, dg, dyo, d13,ds, de, dy, d12, dy, ds, dg, dj|

(6117057 Ay, 13, Ay, dg, d12, A3, d7, A1y, Ay, dg, alo)
(a Qg, d11,ds, dg, d13, ds, Ao, 2, d7, d12, d4, 9)

ﬁs (017077013706751127“5,611170!476110761%,0!9702708

and d is a positive integer number we have:

O B! =p < d=1 (mod 13)
©)) ﬁd = f; <= d=2 (mod 13)
3) B = B, < d=3 (mod 13)
4) B’ = B3 < d=4 (mod 13)
5) B! = Py < d=5 (mod 13)
(6) B! = ps < d=6 (mod 13)
(7 B =ps' = d=7 (mod 13)
(©) B =p,! = d=8 (mod 13)
© B =B < d=9 (mod 13)
(10) B =p! <= d=10 (mod 13)
(11) B =B <= d=11 (mod 13)
(12) B! =p"' <= d=12 (mod 13)
(i) (1) A(B) = A(B™), A(By) = AB"), A(B,) = A(B"),

A(B3) = A(BS"), A(Bs) = A(By"), and A(ps) = A(S5") [Since
for each A = (b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13) €
[13]7 in Ay3, 3u = (b1,b12) (szbll) (b3,b10) (b4, Do) (bs,bs)
(bg,b7) € Ao such that piu~' = 17"

(2) A(B) = A(P>) [Since It = (a2, a4,a10) (ag, a3, a7) (ay1,as,
as) (s, ag, ay>) € Ays such that (g™ = Bs.

(3) A(B) = A(Bs) [Since It = (as, as, a3, ag,az,a12) (@10, a11,
az,aS,a4,a13) S A13 such that lﬁ[_l = ﬂ3]

(4) A(B) = A(B4) [Since = (ar, a3, a6) (as,ay1,a13)
(ag, as,ai2) (s, az,a10) € Ay3 such that 17" = Ba].

(5 A(p) = A(s) [Since 3t = (aZaaéllaaIO) (ag, az, az)
(ary,as,a;3) (as,ag,a12) € A3 such that 1t = fs].
Theorem 1.38. Let L = {me Nlm=q(modi3); for some

q = 1.34.9.10.12}. If d is a positive integer number such that
ged(d 13 =1) and Be[13] of Sy,
xe A(B) in Az are:
(1) if A(B) if de L.
#
(2) if A(B) if d ¢ L.
Proof. Singe f€[13]N H N A3, [13] splits into two classes

A(p) & A(P) of A3 and since ged(d,13) = 1, d, does not
divide 13. Then by Taban (2007, lemma 3.2) we have

[13] = 4(B) UA(%) is a solution set of x?¢€ [13] = A(B)U
A(z) in Sps. A(B) N A([#i) =¢, so for each
ne[l3]= (ne A(f) & n ¢ A(}t’)) or (¢ A(B) & n € A(j[i’))

However,

(1) Assume d € L. If & € A(f), then we have A~ ﬁ (7 conju-
gate to i in A4;3). However, ndNn (smce del)=

A*l;[ié ! € A(B)&n? ¢ A(P). If neA(ﬁ), we I;éave

(nf;ﬁ'# ¥ (deL):>n~/3:>

n! € A(B) & n? ¢ A(B). Then the

x?e A(p) in A5 is A(P). . %

(2) Assume d ¢ L, if = € A(f5), then we have A p :#> T ;I; p.

|}
nd?% (since dé¢L) :>n”}?ﬁ:>n”€
13

13

But n¢~m (since
A

solution set of

However,

then the solutions of

A(E)&nd ¢Ap). If e A([#?), (n ~ [f) = n ~2 [)’ Eiut
n 7 (since d ¢ L) = ! /3:>77: eA(ﬁ)&@ e Ap).
Then the solution set of x" e A(B) in A1z is A(B).

Lemma 1.39. Let A(ff) be the conjugacy class of p in, A,,
n>14,and € [k, ks, ..., k] N H, where [k; ks, ... k] €F,
is a class of S,. If p is a prime number such that ged(p,k;) = 1,
for each i, then the solutions of x” € A(f}) are:

(1) [k ks ... k)] if pf = ([3” ory), where y is conjugate
to .
(2) [kpko .. k)]t if B = (B or y), where y is conjugate
to f5.
Proof. B € A,N HN [k, ks ....k], [ki,ks, ... k], splits into
two classes [ki,ko,....k]" of A, [kiks ... k]EF=

AP) = ki ko, k)", and  A(BY) = [ky, ks, k). So,
since ged(p,k;) = 1 for each i. Then by Taban (2007, lemma
2.8) we have for each A € [ki,k»,.... k]| = 7 €[ki, ks, ..., k].

(1) Assume 7 = (=" or 2 = bp~'b7"; for some b € A,,),
and let. A€ [ky,ks,..., k). Then either 1€ [k, ko,...,
k/]Jr or 1€ [kl,kz,. . .,k/]i.

If A€ ki, ko, . k)T, 3t d,32=1tpr!

tﬁ—l —
W =1pt = or ,
b~ (1)
P ki, kay oo ki)T = A kK, KT = A(B),
If )€k kay. .. k)", Fted,>i=1tp"r",
tpr!
=1t = or ,
thp(1h)™"
ek ka, .. k)T = A(B).
Then the solution set of x"e€ A(f) in A, is
[k, ko K.

(2) Assume f¥ = (ff ork = bPb~" for some b € A4,), and let
J.€lki,ka,....kj]. Then either €[k, ko,....k]" or
AE [kl,kz, L. ,k/]i.

If A€ ki, ko, .. ki)™, €A, >i=1tpt,

Bt
I =1pr! = or ,
thB(th)™"
ek k.. k) = AB) = X ¢ [k k. k)
If )€k koy. .. k)", Fted,>i=tp"r",
!

W =1prr! = or ,

b~ (tb) ™!
2o ki ka,. .. k] = ¢ A(B).

Then the solution set of X’ € A(f) in A4,, is [k, ko, ..., k] ™.
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Example 1.40. Let § = u/, where p = (1234 5)and 2 = (67
8910 11 12 13 14 15 16). Find the solutions of x'> € A(B) in
A](,.

Solution:

sincen = 16 > 14, f €[5, 111N H, [5,11] € F,,, ged(13,5) =
1, ged(13,11) = 1 and, 3n € A, > 17! = pwhere g3 = (1
4253)(681012141679 111315 andz = (3542) (7129
131516 11 14 10 8). Then the solution set of x'* € A(f) in 44
is [5,1177.

Lemma 1.41. Let A(f) be the conjugacy class of f in A,
n> 14, and, p € [k, ks, ..., k;] 0 H where [k;,ks,... k] €F,
is a class of. If p is a prime number such that pl k;, for some i,
then no solution of x” € A(B) in A,.

Proof. Since € 4, N HN [k, ks, ...k, [ki,ks, ..., k], splits
into two classes [ky,ka,....k]" of A, and [ky,k»,....k] € F=
A(P) = [ki,ka, ..., kj]. Also, since, then by Taban (2007, lemma
3.1) we have no solution for x”€[k;] in S,,. Then no solution for
in S,,. So no solution for x” € A(f) in 4,,.

Lemma 1.42. Let A(f) be the conjugacy class of [ in A,,
n>14,and € [k, ks, ... . k)] O H, where [k;,k,... k] €F,
is a class of S,, p is a prime number, m is a positive integer. If
for some (1<i<l) such that plk; then no solution of

m

X" e A(P) in A,

Proof. Since ﬁ S A,, NHN [kl,kz, .. .,k]], [kl,kz, S ,k]] SplitS
into two classes [ky,k»,...,k]" of A, and [k, ks, ... k] € F=
AB) = [ki,ka,....k]". Also, since plk; then by Taban
(2007, lemma 3.12) we have no solution for x*" € [k;] in S,,.
Then no solution for ¥’ € [ky, ks, ...,k in S,, so no solution
for " € A(P) in A,.

The number of solution

If B is an even permutation and f§ € C*(f) N H, where C*(f}) is a
class of fin S, we have C*(f) splits into two classes C*()* of
equal order = A(f) = C*(B)" or C*(B)~, where A(f) is a class
of Bin A,. If C*(f)" or C*(f)” is a solution in A4,, of any class
equation in 4,,, then the number of solutions is the number of
all the elements that belong to the class C*(f)* or C*(f) .
However, | C*(f)" |=| C*(f)” |= M. So the number of the
solutions for the class equation x? = § in 4,, is only %

Example 1.43. Find the solutions of x” € 4(234) in A, and the
number of the solutions

(1) if p = 13.
i) if p = 17.
Solution:

n=4=p4=2 3 4) €[1,3].
[1,3]c H= p €[1,3]n H. Now we show that:

However,

(1) If p = 13, then we have gcd(13,3) = 1, ged(13,1) = 1,
and (2 3 4)'* = (2 3 4). Then by (1.12) the solution of
x13 € A(234)in A4is[1,3]" and the number of the solu-

fon g 31— 4 ati - _
tion is 5+ = i = 4 permutations, where [1,3]” = {(1 3

2),(234),(143),(124)}.

(ii) If p = 17, then we have gcd(17,3) = 1, ged(17,1) = 1,
and 23 4)'7 = (4 32) =(234)"". Then by (1.12) the
solution of x'" € € 4(2 3 4)in A4is[1,3]” and the num-

ber of the solution is H12—3” = % = 4 permutations, where

[1,3]7 = {(123),(243),(1 34),(1 42)}.

Example 1.44. Find the solutions of x'° € 4(f) in 4, and the
number of the solutions where f = (2413 576).

Solution:

n=T7=f=2 4 1 3 5 7 6)e[7. However,
[McH=pc[7]N H. Assume p = 3, and ¢ = 5, we have
gcd(3,7) = 1 ged(5,7) = 1, and p'° = . Then by (1.15) the
solution set of x'° € A(f) in 47 is [7]" = A(p) and the number
of the solutions is 27—;7 = 360 permutations.

Example 1.45. Find the solutions of x'* € A((4 13) (2675 8))
in Ag and the number of the solutions.

Solution:

n=8=f=413)26758)ec3,5]. However, [3,5]c
H= pec[3,5]N H. Let p = 14, then we have ged(11,3) = 1,
ged(11,5) =1, and ' = (143)85762) = p~'. Then by
(1.12) the solution of x'* € 4((413)(26758))in Agis[3, 5] and

8!

the number of the solution is 57 =

= 1344 permutations.

2. Conclusions

By the Cayley’s theorem: Every finite group G is isomorphic to
a subgroup of the symmetric group S,, for some n > 1. Then
we can discuss these propositions. Let x? = g be class equa-
tion in finite group G and assume that f:G = A4,, for some
n¢ 0 and f(g) € HN C”. The first question we are concerned
with is: what is the possible value of d provided that there is
no solution for x* = g in G? The second question we are con-
cerned with is: what is the possible value of d provided that
there is a solution for x? = g in G? and then we can find the
solution and the number of the solution for x? = g in G by
using Cayley’s theorem and our theorems in this paper.
In another direction, let G be a finite group, and
7{G) = {g € Gli the least positive integer number satisfying
g =1} If | n(G) = k;, then we write 7,(G) = {g,1,8n,- -,
gu.}» and [[ = {m(G)},5,. For each g€ G and g; € n(G) we
have (ggi/gfl)[ = 1. By the Cayley’s theorem we can suppose
that (f: G=S,) or (f: G = 4,,). Also the questions can be sum-
marized as follows:

(1) Is [T = {m:(G)},, collection set of conjugacy classes of
G?

(2) Is there some i > 1, such that /~'(C*) = n(G), for each
C*of A4, where (f: G= A4,)?

(3) Is there some i > 1, such that /~'(C*) = n(G), for each
C%f S, where (f: G=S,)?

(4) If (G=S,) and p(n) is the number of partitions of n, is
[T |= p(n)?

(5) If (G=4,) and A, has m ambivalent conjugacy classes.
It is true that is also necessarily G has m ambivalent con-
jugacy classes?
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