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 تعزيز و تقييم و تنفيذ طريقة التنبؤ بالحمل الكهربائي

 
 2عيسى سلمان قمبر ،1محمد رضا قادر

 
 البحرينمملكة ، 22023ب .ص ،البحرين،  جامعة  هندسة،  كليه ال1الهندسة الكهربائية و الإلكترونية قسم

 البحرينمملكة ، 22023ب .جامعة البحرين، ص، 2عمادة البحث العلمي
 

 :الملخص
الاحتياطي  سعة تكون واضحة المعالم إذا كان بعض منالكهربائي توقعات الحمل لعدم اليقين  أثر

الاحتياطي المخزون  فان لتوفير حمولة زائدة عن الكمية المتوقعة و بالتاليالاستعانة بها يتم المخزون 
 .النموذج تم تطويره للحصول على الحمل المتوقع لمملكة البحرين. يخفض

المستخدم يستطيع أن النموذج . الحمل الكهربائيلنمذجة كارلو مونت  طريقةاستخدام تمت بطريقة الحساب 
. اسبوعا 25الى  يتنبأ بالحمل الكهربائي مع مرور الزمن خلال فترات سنوية بحيث تم تقسيم كل سنة

 لقدرة المخزونةالمتوسط  (MMSE) التربيعي يقوم بحساب الحد الأدنى لمتوسط الخطأ للتنبؤ  النموذج المعد
لعمل ذلك، .  المتوقعة الأحمال الكهربائيةمحددة للتنبؤ بفي كل فترة  المشروط والانحراف المعياري المشروط
 التوقعاتطبقت تكرار و  همن منظور تصفية خطيالتغاير نماذج  والمشروط المتوسط النتائج وضحت 

في  مناقشتها تمتقد تم استنباط النتائج و و . لكل فترة تنبؤ عند كل زمنالعودية  المعادلاتعلى  مشروطةال
  .هذه الدراسة

M.R. Qader, I. Qamber 
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Abstract The effect of load forecast uncertainty may be well-defined if some of the spinning reserve

capacity is needed to supply the load in excess of the amount predicted and, thereby the spinning

reserve is reduced. The model was developed for load estimation of Kingdom of Bahrain. The calcu-

lationmethod involves aMonte Carlo technique for the simulation of the load. Themodel enables the

predication of the load against the time during years, where each year is divided into 52 weeks. The

forecastingmodel, computes minimummean square error (MMSE) forecasts of the conditional mean

of reserve power and conditional standard deviation of the innovations in each period over a user-

specified forecast possibility. To do this, it views the conditional mean and variance models from a

linear filtering perspective, and applies iterated conditional expectations to the recursive equations,

one forecast period at a time. The results are obtained and discussed.
ª 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

The prediction method used in the present paper is based on
Monte-Carlo simulation in which it is well known that any
approach using the Monte Carlo simulation method does

not solve the equations describing the model. The Monte Carlo
simulation uses a random number generator. And this genera-
tor is needed to bring the stochastic element in the calculations.

The researcher could use a physical random-number generator
such as electrical load variation through a certain period.

The Monte-Carlo simulation requires the creation of ran-
dom numbers, in this paper, the generated numbers were cho-
sen to follow the normal distribution with average value and

standard deviation of the electrical load of Bahrain.
In Bordalo et al. (2006) they presented a probabilistic short-

circuit approach to generate the probability distributions of

the system average variation index. The methodology followed
is based on the combination of the Monte-Carlo simulation
and the admittance summation method.

In El-Khattam et al. (2006) they presented a novel algorithm

to evaluate the performance of electric distribution systems,
including distributed generation. Monte Carlo simulation is
employed to solve the system operation randomness problem.

The simulation is implemented to perform the analysis of all
possible operations of the system under study. The system load-
ing follows several typical load curves.

In Ionescu et al. (2006), the purpose of their study was to
obtain a performable tool based on generalized stochastic Petri
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Nets (GSPN). After description and implementation through
GSPN, each configuration has been evaluated, in order to
choose the most appropriate structure.

Batlle and Barquı́n (2004) in their paper (2004) present a

fuel prices scenario generator in the frame of a simulation tool
developed to support risk analysis in a competitive electricity
environment. A multivariate Generalized Autoregressive Con-

ditional Heteroskedastic model has been designed in order to
allow the generation of future fuel prices paths. The model
makes use of a decomposition method to simplify the consid-

eration of the multidimensional conditional covariance. An
example of its application with real data is also presented.

Gonos et al. (2003)present in their paper (2004), a method
which estimates the lightning performance of high voltage trans-

mission lines based on the Monte-Carlo simulation technique.
On several operatingGreek transmission lines, themethod is ap-
plied and showing good correlation between predicted and field
observation results. The proposed method can be used as a use-

ful tool in the design of electric power systems, aiding in the right
insulation dimensioning of a transmission line.

In Zhaohong and Xifan (2002) study (2002) they present a

new variance reduction technique of Monte Carlo simulation
– fission and roulette method. The proposed method reduces
the variance of simulation and speeds up the computation

dramatically.
Wehenkel et al. (1999), the authors deal with probabilistic

approach to the design of power-system special stability con-
trols. They used Monte-Carlo simulations, which take into ac-
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Figure 1 Load forecasts of one year in Kingdom of Bahrain (year of 2002).
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Figure 2 Translation of weekly power to weekly reserve.
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count all the potential causes of blackouts. The approach is
tested on a large-scale study on the South–Eastern part of the
extra-high-voltage system of Electricité de France.

2. Methodology

A wide variety of forecasting methods are available to the
management. The evaluation of soft computing techniques
has increased the understanding of various aspects of the

problem environment and consequently the predictability
of many events. The concept of a time series, an ordered
set of observations of a time-series correspond to time-

tagged indices, or observations, and correspond to sample
paths, independent realizations, or individual time series.
In any given column, the first row contains the oldest obser-

vation and the last row contains the most recent observa-
tion. In this representation, a time-series array is said to
be column-oriented.
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Figure 3 Application of Monte Carlo simulation.
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Figure 4 Graphical comparisons of the first realization of the approximate and the exact secondary conditional standard deviations.
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In the present model, it is assumed that time-series vectors
and matrices are time-tagged series of observations. If we have

a power series, the model lets you convert it to a reserve series
using either continuous compounding or periodic compound-
ing. If it denotes successive power observations made at times
t and t+ 1 as Pt andPt+1, respectively, continuous compound-

ing transforms a power series Pt into a reserve series yt as (Bol-
lerslev, 1987; Bollerslev, 1986; Box et al., 1994; Enders, 1995).

yt ¼ log
Ptþ1

Pt

Periodic compounding defines the transformation as:
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Figure 5 Compare the first forecast output, i.e., the conditional standard deviations of future innovations, with its counterpart derived

from the Monte Carlo simulation.
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Figure 6 Compare the second forecast output, the minimum mean square error forecasts of the conditional mean of the Kingdom of

Bahrain reserves power series, with its counterpart derived from the Monte Carlo simulation.
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yt ¼ log
Ptþ1

Pt

� 1

Our modeling is typically based on relatively high frequency
data (i.e. weekly observations). The models are designed to
capture certain characteristics that are commonly associated

with time series. Probability distributions for quality reserve
often exhibit fatter tails than the standard normal, or Gaussian
distribution. In addition, power time series usually exhibit a
characteristic known as volatility clustering, in which large

changes tend to follow large changes, and small changes tend
to follow small changes. In either case, the changes from one
period to the next are typically of unpredictable sign. Large

disturbances, positive or negative, become part of the informa-
tion set used to construct the variance forecast of the next per-
iod’s disturbance. In this manner, large shocks of either sign

are allowed to persist, and can influence the volatility forecasts
for several periods.

3. Forecasting of power time series

If we treat a financial time series as a sequence of random

observations, this random sequence, or stochastic process,
may exhibit some degree of correlation from one observation
to the next. This correlation structure can be used to predict
future values of the process based on the past history of obser-

vations (Engle, 1982; Engle et al., 1987; Glosten et al., 1993;
Hamilton, 1994). The following equation uses these compo-
nents to represent a model of an observed time series yt.

yt ¼ fðt� 1;XÞ þ et

where
f(t � 1,X) represents the forecast, of the current reserve as a

function of any information known at time t + 1 , including

past innovations. The variable et is the random component.

The autoregressive (AR) models include past observation of
the dependent variable in the forecast of future variances, and

for the conditional mean apply to all variance models:

yt ¼ Cþ
XR

i¼1
/iyt�1 þ et þ

XM

j¼1
hjet�j þ

XNx

k¼1
bkXðt; kÞ

With autoregressive coefficients /i, moving average coefficients
hj, regression coefficients bk, innovations et, and reserve yt, C
represents the constant. X is an explanatory regression matrix
in which each column is a time series and X(t,k) denotes the t-

th row and k th column. Where, R and M represent the order
of the conditional mean model.

4. Probability estimation

Given models for the conditional mean and variance, and an

observed reserve series, the estimation concludes the innova-
tions (i.e., residuals) from the reserve series, and estimates,
by maximum probability, the parameters needed to fit the

specified models to the reserve series (Nelson, 1991).
Given the vector of current parameter values and the ob-

served data series, the log-probability functions conclude the

process innovations by inverse filtering (Engle, 1982; Engle
et al., 1987; Glosten et al., 1993). This inference, or inverse fil-
tering, operation rearranges the conditional mean equation to
solve for the current innovation et:

yt ¼ �Cþ yt �
XR

i¼1
/iyt�1 �

XM

j¼1
hjet�j �

XNx

k¼1
bkXðt; kÞ

This equation is a whitening filter, transforming a correlated

process into an uncorrelated white noise process. The log-
probability function then uses the inferred innovations et to in-
fer the corresponding conditional variances r2

t via recursive
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Figure 7 Compare the third forecast output, cumulative holding period power reserves, with its counterpart derived from the Monte

Carlo simulation.
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substitution into the model-dependent conditional variance
equations. Finally, the function uses the inferred innovations
and conditional variances to evaluate the appropriate log-

probability objective function. If the Gaussian, the log-proba-
bility function is:

LLF ¼ T

2
logð2pÞ � 1

2

XT

t¼1
log r2

t �
1

2

XT

t¼1

e2t
r2
t

where, T is the sample size, i.e., the number of rows in the ser-
ies yt.

5. Minimum mean squire error volatility forecasts of reserve

This is designed to minimize the variance of the estimation or

forecast error. The volatility forecasts of reserve over multi
period holding intervals. That it contains the expected stan-
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Figure 9 Histogram illustrates the distribution of the cumulative holding period reserve obtained if a quality was held for the full 52-

week forecast possibility. Notice that this histogram is directly related to the final of the root mean square error.

0 5 10 15 20 25 30 35 40 45 50
0.071

0.072

0.073

0.074

0.075

0.076

0.077

0.078

Standard Error of Forecast

Forecast Period

S
ta

nd
ar

d 
D

ev
ia

tio
n

forecast results
simulation results

Figure 8 Compare the fourth forecast output, the root mean square errors of the forecasted power reserves, with its counterpart derived

from the Monte Carlo simulation.
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dard deviation of reserve for assets held for one period for each
realization of series. It also contains the standard deviation of
reserve for assets held for two periods as shown in the results

obtained during the present study. Thus, last contains the fore-
cast of the standard deviation of the cumulative reserve ob-
tained if an asset was held for the entire forecast horizon.
Therefore it computes the elements of r by taking the square

root of:

vart
Xs

i¼1
ytþ1

" #
¼
Xs

i¼1
1þ

Xs¼1

j¼1
wj

 !2

Eðr2
tþiÞ

2

4

3

5

where s is the forecast horizon of interest, and wj is the coeffi-
cient of the jth lag of the innovations process in an infinite-or-
der representation of the conditional mean model.

6. Simulation results

To compute the load forecasts for the Kingdom of Bahrain re-
serve the power for 52 weeks for expecting the power in the fu-
ture. First setting the forecast possibility to 52 weeks (i.e., one
year), then the forecasting engine, with the estimated model

parameters, coefficient, the Kingdom of Bahrain reserve, and
the forecast possibility. Possibility = 52% which define the
forecast possibility.

This will simulate reserve forecasts of conditional standard
deviations of the residuals forecasts of the Bahrain reserve
power. Forecasts of the standard deviations of the cumulative

holding period reserve power and standard errors associated
with forecasts of reserve power.

Monte Carlo simulation uses the same estimated model
coefficient which is used in the forecast part of the data simu-

lated, forecasting, to simulate 20,000 realizations for the same
52 week period. In this context, referred to as dependent-path
simulation, all simulated sample paths share a common condi-

tioning set and evolve from the same set of initial conditions,
thus enabling Monte Carlo simulation of forecasts and fore-
cast error distributions. For this application of Monte Carlo

simulation, the simulation generates a relatively large number
of realizations, or sample paths, so that it can aggregate across
realizations. The following code simulates 20,000 paths as a re-
sult; each time-series output that reserves are an array of size

possibility, 52-by-20,000.
In the present paper, we will compare data of the King-

dom of Bahrain reserve power graphically. It compares the

forecasts results with their counterparts derived from the
Monte Carlo trial described above. Fig. 1 shows the load
forecasts of one year (year of 2002) in the Kingdom of Bah-

rain which clearly shows that power consumption is high be-
tween weeks 20 and 40 of high season. Fig. 2 is the
translation of weekly power to weekly reserve. To segment
the data in an effort to compare estimation results obtained

from a relatively stable period to those from a period of rel-
atively high instability. By examining the reserve power, it
can be seen there is a distinct increase in instability starting.

Fig. 3 shows application of Monte Carlo simulation, the fig-
ures show the production of a relatively large number of sam-
ple paths, so that it can aggregate across realizations. Because

each understanding corresponds to a time-series output, the
outputs are large. The model simulates 20,000 paths. Fig. 4
is a graphical comparison of the first realization of the

approximate and the exact secondary conditional standard
deviations reveal the distinction between automatically gener-
ated and user-specified pre sample data. Notice that the
approximate and exact standard deviations are asymptoti-

cally identical. The only difference between the two curves
is attributable to the transients induced by the default initial
conditions. Although the figure highlights the first realization

of conditional standard deviations, the comparison holds for
any realization and for the inferred residuals as well.
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Figure 10 Histogram illustrates the distribution of the single-period power reserve at the forecast possibility. Notice that this histogram

is directly related to the final of the minimum mean square error and root mean square errors.
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7. Comparing forecasts with simulation results

Figs. 5–8 directly compare each of the forecast outputs, in

turn, with the corresponding statistical result obtained from
simulation. Figs. 9 and 10 illustrate histograms from which
approximate probability density functions and empirical confi-
dence bounds can be computed.

This illustration merely highlights the range of possibilities,
and provides a deeper understanding of the interaction be-
tween the simulation, forecasting, and estimation model.

Fig. 5 shows the convergence of standard deviation with re-
spect to the forecast period. For developing the forecasting
models, the load demand data for 52 week period was tested

from the first day of January to the last day of the year 2002
which is the end of December in the Kingdom of Bahrain.

8. Conclusion

The paper presents estimation of the load of the Kingdom of

Bahrain using the Monte Carlo simulation. Satisfactory results
for one year of Bahrain network was presented and verifying
the accuracy of the method used. The presented method can
be easily used for any electric power utilities in order to predict

the electric load. The result consists of the MMSE forecasts of
the conditional standard deviations and the conditional mean
of the reserve power is modeled and illustrated. Note that the

calculation of the standard deviation is strictly correct for con-
tinuously compounded reserve. Therefore, it is clear that the
used technique is useful tool for electric power system for load

estimation.
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