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In this work, we construct the travelling wave solutions by a new application of (G'/G)-
expansion method to Davey-Stewartson system by using the Maple package. Then new types of
exact travelling wave solutions are obtained for these equations.
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1. Introduction

The theory of nonlinear dispersive wave motion has recently
undergone much study. Phenomena in physics and other fields
are often described by nonlinear evolution equations and play a
crucial role in applied mathematics and physics. Recently,
searching for explicit solutions of nonlinear evolution equa-
tions by using various methods has become the main goal for
many authors, and many powerful methods to construct exact
solutions of nonlinear evolution equations have been estab-
lished and developed such as the tanh-function expansion and
its various extensions (Parkes and Duffy, 1996; Fan, 2000),
the Jacobi elliptic function expansion (Liu et al., 2001; Fu
et al., 2001). Very recently, Wang et al. (2008) introduced a
new method called the (G'/G)-expansion method to look for
travelling wave solutions of nonlinear evolution equations
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(Neirameh et al., 2011). The (G'/G)-expansion method is based
on the assumptions that the travelling wave solutions can be ex-
pressed by a polynomial in (G'/G), and that G = G(&) satisfies a
second order linear ordinary differential equation (ODE).

2. Description of (G'/G)-expansion method

Considering the nonlinear partial differential equation in the
form

P(H, u.\’:ut7u)'7un>u.\’l7ux.\’7~-~-) :0 (1)

where u = u(x,y,t) is an unknown function, P is a polynomial in
u = u(x,y,t)and its various partial derivatives, in which the high-
est order derivatives and nonlinear terms are involved. In the fol-
lowing we give the main steps of the (G'/G)-expansion method.

Stepl: Combining the independent variables x,y and ¢ of Eq.
(1) into one variable & = k(x + y — vt), we suppose
that

ulx,p,0) =u(8), &=k(x+y—vi) 2

The travelling wave variable (2) permits us to reduce Eq. (1) to

an ODE for G = G(¢), namely

P(u, kil , —kvid kead IV, —vd" ... ) =0 (3)
Step2: Suppose that the solution of ODE (3) can be

expressed by a polynomial in (£) as follows

u(&) = oy, (%) + .y (4)
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where G = G(¢) satisfies the second order LODE in the form
G"+AG' +uG =0 (5)

O - - - » 2 and u are constants to be determined later o, # 0, the
unwritten part in (4) is also a polynomial in (G'/G), but the
degree of which is generally equal to or less than m — 1, the
positive integer m can be determined by considering the
homogeneous balance between the highest order derivatives
and nonlinear terms appearing in ODE (3).

Step3: By substituting (4) into Eq. (3) and using the second
order linear ODE (5), collecting all terms with the
same order (G'/G) together, the left-hand side of Eq.
(3) is converted into another polynomial in (G'/G) .
Equating each coefficient of this polynomial to zero
yields a set of algebraic equations for a,,, ..., A and u.

Step4: Assuming that the constants a,,, ..., A and p can be
obtained by solving the algebraic equations in Step 3,
since the general solutions of the second order LODE
(5) have been well known to us, then substituting o,,,,
...,v and the general solutions of Eq. (5) into (4) we
have more travelling wave solutions of the nonlinear
evolution Eq. (1).

3. Application for Davey—Stewartson equations

In this section we consider the Davey—Stewartson equations in
the following form

ig, +50*(qy + 0%q,,) + Aa'q — dg =0
¢x,\' - 52¢'yy - 2;”(|q|2)v =0.

We may choose the following travelling wave transformation:

(6)

g= u(é’)ei(o(x+lf}'+yr)7
¢ — v(f)e[(a,\ch/})rJr”,rt),

{=k(x+y—a) (7
E=k(x+y—ar)
where o, f3, y are arbitrary constants. Equations above become
LOK (1 + 8" + k(1 + i0°0 + id* B)u
+ (i — %62052 — %i54ﬁ2)u + P —Vu=0
(1 =8 —24u?) = 0.

By integrating from the second equation of the system above
we have

Y =mnt (®)
V= /&2(127:52) fuzdf

And substituting (8) into first Eq. (6) we obtain

L&k = oM + 10 (1 = 8°) (1 + id° o+ i6* B)u o)

+i7 (1 = &%) (i — 1 802 = Lid* B u — > = 0

Suppose that the solution of ODE (9) can be expressed by a
polynomial in (G'/G) as follows:

u(é)zfx,,,(%,) ., (10)

Considering the homogeneous balance between u> and «” in

(9), we required that 3m =m + 2=m =1 . We may still
choose the solution of

Eq. (10) in the form:

(&) = o (%) + (11)

Therefore

a\’ G\’ G
u otf(g) +3o¢fo¢0(6> —0—30(10(5(6)4-(13

By using (5) it is derived that

(O (€

u = —o G o G o u

) G 3 G 2 G

u/ = 20(1 (6) + 30(11(6) + (OC]),2 + 20(1/,6) (E) + O(lﬂ,ﬂ

By substituting relations above into Eq. (9) and collecting all
terms with the same power of (G'/G) together, the left-hand
side of Eq. (9) is converted into another polynomial in (G'/
(). Equating each coefficient of this polynomial to zero yields
a set of simultaneous algebraic equations for a1, o, v, 4, u and
¢ as follows:

Ok (1 — 6Hoy — D =0
%521&(1 — Mok — k(1 + i +i6* Yoy — 300209 = 0
%521«4(1 — ) (o A% + 200 p0) — k(1 + i6%6® + i6* 7)o 2

1 1
552052 — 554[32> o — 3),05105(2) =0

+ K1 =% (ioc -
1
0K (1= a2 — k(1 + i + i6* )

+ (1 = 6%) (ioc - %5208 - %5‘%2)% —Jog =0
Solving algebraic equations above by the Maple package we
have

—(=14 6"k
=t

P
Ll k(30°K3 0. — 38°K3 )42 + 20070 + 2id* %)
oy = T—
6 NSy
1 ) .
" (4 + 8i% o + 8id* B + 240K iet®

Tk (—1+ 0%
—240%163 diol + 240°K3 2ip* — 248" k3 2ip* + 36* k0 22 — 120% 1 in
+ 120K i+ 128* Kk io — 120%k* ior + 812 0% B> + 240%13 4
—245°K 1 — 60°Kk° 2% + 36" K527 + 65k o? — 60°k* o* + 60°k* 2
— 60"k B — 65°K a? + 65" °k*a? — 60°Kk* B + 657k B + 4 5%t + 4170 BY).

/. 18 an arbitrary constant. By substituting oy, o into Eq. (10)
we obtain

M1+ NS (o 1
u(é) = if (E) ig
y k(3070 — 30K A+ 2 + 2i6%e? + 2i5* )

k(=149
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Substituting the general solutions of Eq. (5) as follows

C, sinh1 \/)‘74 6+Czcosh‘\/}2 4ué
Cy cosh! V2 — 5+Czs1nh‘\/}2 4ué

Into (12) we have three types of travelling wave solutions of
the (3+ 1)-dimensional Burgers system (6) as follows:
When 22 — 4u 0

,w

Q
C1 smhI\/ 4ué 4+ Cycoshiv/i 2 _4ue
ClcoshI\/A - §+C2smh1\/ 4ué

1 32
igkoak

A
.

)

38%K3 5+ 2+ 215%2 + 2154/3 ) A
S (1 1 642 2

So

4+ V=2 —ap) (— 1461k % Cy sinhdn/ 7% —4pé+C; coshiy/ 22 —4p¢
B A C cosh} 5V 4 —4;Lg+(a sinh \/ —4ué
i] k(392K =3k It 242i0% 2 +2i5* )
V= (—146%)7

q:

_ % ei(a(x+ﬁy+}‘/)

where Cy, and C,, are arbitrary constants. So from (8) we
obtain v as

2 LA =222 = 4) (=1 + 8K
y=— / 41
R(1-8) 2 7

<C, sinh} /2% — ,uc+Cvcosh'\//1274y§>

Cycoshi/2* —dpé+ Cysinhdy/i7 —4pé

2

ilk(3()2k3 —30%K° 424 2i0% 2 +21a“/12) i

6 V-RR (1402 E

21n (lgh(%\/ 72 74,uf) + 1)
V2 —4u

dﬁ:%(f —4p)(1 4+ S)ES (

2In (tgh (5\/12 74u5) - 1)
- NG
24/C = Clarcig (_u:h(% }'/72;:5—,);' +Q)
VA2 —4uC,
32C,1gh (% Nz 4/15) e
— ) (C. 1gh (%\/f —4/16)2 £ +2Co1gh (i pa 4,;5))

16C3 tgh(3\/2” — 4pé)
) (C. 1gh (j;\/f 74,15)2 +C +2Co1gh (5 ZZ 4#5))

160gh(; /7> — 4ué) G
- 2
4\/;?74u(c$7c§><c.zgh(%\/1274ué) +c,+2c21gh(g ,1274,15))
ah (1n/ 72 —4pe) O +Cy ah (372 —4pe) €1 +Cy
3zclcgarctg<’*(47 Vw;()z*) 16cfm,g('*(47 V\/U%)* )
HC - (Z =4 (G- C)  4(Cr =)/ (P —4p)(Cr - C3)

1 6C3m‘clg (4@(% ,7/7;4,‘?1@ +F2>
1~

4C1(CT = G/ (A2 —4p)(C1 - G)

+

+

472 —dp(C?

472 —dp(C —

+

1 23
o (30K A= 38K A+ 2+ 2i8% 0 +2i8 )+
(= )=o) 0+ 20 BNt S

20
3(1-8%)

D % 92 4
+Czsmh§\/4 74;16)?@ — A" —4p)(—140%)0
In(Cy coshi/i7 —4pé+ Cysinh /4 — 4p¢)

V2E—4u
12(352/(3/17356/c3/1+2+2i520c2+2i54ﬁ2)é
330(1 = 6%)4/ (1= 0%)2

¢

+

6135 (29 1 p
(30%K3 2 = 38%K7 4+ 2+ 2i6%0% 4 2i6* %) x In(C, coshiw/iz —dué

‘b — V(é)ei(%‘ﬂf’ﬂ"),

In particular, if C; 20, C; = 0, 1 < 0, u = 0, u, become

1 1
u(@) = 54/ —A(-1 +54)k25tgh§/1€
1 k(0°K 4= 38K 7+ 2 4 2i0°2 + 2i5* ) 4
6 —8kH (=1 + 6% 2
Hence

g= (i%\ [—A(—1+ 54)k251gh%/1§

LV KGOK A= 30°K 042+ 2i0%% +2i6" ) 7
—52](4(—1—‘—54)/1 2

ei(ax+ﬁ}'+)!t) .

6

and

2 Y v
_k2(1752)/(i2’/ § 146 bigh ¢

KGR =360+ 24 282 + 205 f7) 7 d
6 — K (—1+ 0% 2

:Ak252(1+52)( - tgh( 5))

+i(352k3i—36"k3}.+2+2i52a2+2i64/32) . 2

18 Sk (1= (1+6%) 263 (1—067)

2713 673 2.2 4
L (30K =30k /1+2+2215 o?+2i5* B )1 (Cosh (l;vg))
6k(1—6%) 2
2264/ 2(1 =6
#ln (cosh (125))
(1-67) 2
JE(36%K3 1= 30813 A4 24217 425 ) :
30k (1—6%)4/ (1 -0 4

¢

:F

In this case and the following cases v is calculated as above.
When 2> —4u < 0
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1\/ (2 74u)(71+54)k25

3
—C sm—\/4,u g+C2cos—\/4y J2é
lcos—\/4,u—) §+C2s1n—\/4/4—) £

k(36K 2

u =

—38°%K 0424 2i8° + 2i5' ) A
_PK (=1 + 5M2 2

So we have v as

21 1
—— +-
! k2(152)./( 2

Cysind/4p— }7Q+Czcos—\/4u ¢

Cycosiv/4pu— Af+C7Sln2\/4y PR

—J(2—dp)(— 1+

2

ilk@azku—35"k3/1+2+2i52a2+2i54ﬁ2)J p
6 —OKH(—1+0% 2
Ko (22 —4p)(1+5%)
VA rc, (- ) (Cugh (a—7¢) + €+ 2Catgh (1A 7€)

s 1/ .
X <4c~1 In <tgh (Z 4y7).2g) - 1) G

(30%K3 4= 38K+ 2+ 2i0% 0 +2i5* 1),
1852k (1—-6%)*(14-6%)

PEl
A

P

+——a
2% (1—6%)"

a k 7 (30%13 A =30k A+ 2+ 2167 4 2i5* )

) (21n(tgh<% 4,1—),25)+1)c1
(C\ = C)Vau—12
21n(tgh(l 4,17125) 1)c2
(Cr—Co)Vau=77
2ln<C tgh(1y/An— /1:) +C.+2C2tgh(% 4,4—;.25)>c2
(€ - C)Wan—7
2ln<C tgh(1\/Au— Azg) +C1+2C7tgh( \/Wg))
(C=CO)Vau=-7?

2ln(t ( du— ﬁf)—l)cl+2ln(zglz( mg)—l)c>

+

-+

(C1+Co)VAu—1* (C1+Co)Vau—1*

2072 —ap) (1 - o) (2In (1gn(}v/a=7¢) +1)Cy
i (1-6 (Cr—Co)/au—72

21n (tgh(l 4,1—135) + l)c2

—C)A4u—72
21n<C 1gh(4/au—7 ) +C1+2C3zgh(i\/4uf;.25)>ci
(C—C)au—7?
21n<C igh(1 AZ“) +cl+2czzgh(g 4,1—;,25)>c§
(C—C)au— 22
2ln<t ( du— Ae)fl)cl 21n(tgh( Vau—7 5)71)
(C1+C)VAu—27 (C1+C)VAu— 217
J2(38%K3 2 —30%K3 42 4-2i0% +2z‘54ﬁ2)5
335(1-0%),/(1— 62 )

When 2> —4pu =0
— A1+ 8¢,
u(lé) ==+ . ’
() ACy + Cy8)
-2
= (1+ 8K
So
) 4,2
- —A(=1+ )k 0C, el
MCy + C¢)
o= 20O iy
(C] + CZCf)

Where C; and C, are arbitrary constants.

4. Conclusion

In this paper, we explore a new application of the (G'/G)
expansion method and obtain new types of exact travelling
wave solutions to the Davey—Stewartson equations. This paper
presents a wider applicability for handling nonlinear evolution
equations using the (G'/G) expansion method. The new type of
exact travelling wave solution obtained in this paper might
have a significant impact on future researches.
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