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KEYWORDS Abstract We investigate the entanglement dynamics of maximum and partial entangled two-qubit
Entanglement; states, where each. qubit interacts locally with its .own noise environms?nt. In the presence of ¥oca1
T el el ’ non-correlated noise, the entangled system loses its entangled properties faster than that depicted
Capacity; for correlated noise. The capacity of the output channel decays gradually and smoothly in the pres-
Teleportation ence of non-correlated noise and hastily for the correlated one. We show that the local non-corre-

lated noise can improve the capacity of the output channel. The possibility of using the output state
to perform quantum teleportation is discussed and the effect of the noise parameter on the fidelity
of the teleported state is investigated.
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1. Introduction

A fundamental resource in the development of quantum infor-
mation tasks is the phenomenon of quantum entanglement.
The recent progresses of quantum information theory prove
that entanglement has some important practical applications,
where it can be used as a resource for communications via
quantum teleportation (Bennett et al., 1993; Bouwmeester,
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1997; Boschi et al., 1998), quantum coding (Bennett and Wies-
ner, 1992; Metwally, 2012), and cloning (Bennett et al., 1992;
Wootters and Zurek, 1982). Entanglement also can be viewed
as a source of quantum computation (Deutsch (1989)) and
quantum cryptography (Lo et al., 1998).

Quantum teleportation is an important process that could
be used to transmit quantum information between two separate
locations. To achieve this process one needs entangled pairs
which represent the quantum channel between the sender and
the receiver, local operations and measurements. Therefore,
quantum channel can be considered as a physical medium that
enables the transfer of quantum information from a sender to a
receiver. The general phenomenon of noise, which is present to
some extent in all information systems, is defined as the unde-
sirable transformations suffered by a quantum system during
the transfer from the sender to the receiver. The actual rate of
the transmitted information through a quantum channel is
lowered by the presence of the noise (Metwally, 2010, 2011).

Quantum teleportation in a noise environment is studied by
Scheel et al. (2001) and Banaszek (2001) where the fidelity of
quantum teleportation using non-maximally entangled states
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is investigated. Also Ishizaka (2001) studied the quantum tele-
portation in the presence of noisy channel. Teleportation using
Werner states (Werner, 1989) is studied by Lee and Kim (Lee
et al., 2000). On the other hand, it was proved by Badziag et al.
(2000) that local environment can enhance the fidelity of quan-
tum teleportation. Investigating, the quantum teleportation in
the presence of noise operation is carried out in (Ahmed et al.,
2012 and Metwally and Wahiddin, 2007).

In this contribution we discuss the problem of teleportation
using the generalized Werner state as quantum channels
(Englert and Metwally, 2000) in the presence of different types
of local noise. Assume that we have a source that supplies two
users Alice and Bob with entangled qubits. Each qubit inter-
acts locally with a noise environment. In Section 2, we investi-
gate the dynamics of the generalized Werner states in the
presence of local noise environments. Section 3 is devoted to
investigate the Peres—Horodecki criterion of separability
(Peres, 1996; Horodecki et al., 1996) and quantifying the sur-
vival of entanglement in the output states. The capacity of
the output state is discussed in Section 4. The possibility of
using the output states to perform quantum teleportation is
considered in Section 5. Finally we conclude the results in Sec-
tion 6.

2. The model

Assume that a source supplies two users Alice and Bob with
entangled two qubit state of the generalized Werner state
(Englert and Metwally, 2000) to achieve any quantum infor-
mation task. This class of states is described by zero Bloch vec-
tors and arbitrary cross dyadic as

1
pu(0) = 5 I+ 10T + 20,7, + c30:12) (1)

where o; and 1; are the Pauli matrices for Alice and Bob’s
qubits, respectively, i = x,y and z and [ is the identity matrix.
The numbers ¢;,j = 1,2,3 are called the characteristic values of
the cross dyadic C where| ¢l =1¢ > |ed = 0. Each qubit
interacts locally with its own noise environment. These noises
could be identical and their effect on the two different qubits
could be correlated or non-correlated. These types of noise
can be described by,

Z/h:%(1+az+ 1 —go.),

U, = \/7‘_1(03 +ia,), for Alice’s qubit and

Vlzé(l—i-rz—l— 1 —grt.),

V) = \/TZI(TX +it,), for Bob’s qubit. (2)

The dynamics of the generalized Werner state (1) in the pres-
ence of local identical correlated noise is given by

2
oD =3 " {Uvip, (0)ViU}. (3)
i=1

I

In the computational basis 0 and 1, the density operator (3)
can be written as

P = 01]00)(00] + 02| 10)(10] + 0t3]01) (01| + 024 00) (1]
+ a5 11)(00] + o6 |01) (10] + 07| 10) (01| 4 oxg [ 11) (11, (4)

where the coefficients o;, i = 1, ... 8 are given by

1 1
o = 4_1(1 —q) (1+c), =0 :Z(l —q)’ (1 —c3)

—

(1 =g+ ),

Sl —

oy = s :Z(l —q)(c1 — ),

Og = 07 =

55 =3 (1= )1+ ). )

However, if we assume that the state (1) interacts locally with
identical non-correlated noise, then the output state is given
by,

2

pr(1{f)0r = Z{ulvlpab(o)vjuj} (6)

ij=1

In the computational basis, the density operator (6) takes the
form

Phtor = 11100){00] +7]10) (10] + 73]01){01] + 74]00) (1] + 75[11){00]
+76/01) (10[ + 7, [10) (01| + 7 [11)(11], ™

where the coefficients y; are,

=3P +e)

7= 1= 9)(1 = &) +a(l — )1 +e)} =7
n=g(-aa-a) =7 5=30-aa+e)=n
5= 10+ @)1+ )+ 2001 ). )

Since, we have obtained the output density operators, then one
can investigate some different properties of the output entan-
gled state. In the next section, we shed some light on the effect
of different types of noise channels on the entangled properties
of the output channels. The amount of survived entanglement
is quantified. Also, we quantify the capacity of the output
channel.

3. Separability and entanglement

Due to the effect of the noise, the output entangled channels
lose their quantum correlations and turn into separable chan-
nels. To investigate the dynamics of this behavior, we use
the Peres—Horodecki’s criterion for separability (Peres, 1996;
Horodecki et al., 1996), as known by positive partial transpose
criterion (PPT). This criterion states that: a two-qubit density
operator, p,, is separable if the partial transpose p“T,’; of the
density operator is non-negative, i.e., all the eigenvalues of
pfg should be positive. In this context, the density operator
(4) is entangled if it violates the Peres—Horodeck’ criterion
(PPT), namely,

ooy — OOy > 0, and 003 — 0lglls > 0. (9)

Also the state (7) is entangled if it violates the PPT criterion
which means

71vs — Ve¥7 >0, and  pyp5 — 475 > 0. (10)

In Fig. 1a, the dynamics of the PPT criterion for different clas-
ses of initial states: maximum (MES) and partial (PES) entan-
gled states is plotted. It is assumed that both qubits are
interacts with local noise environments. It is clear that, as
the channel parameter ¢ increases the output channel of a sys-
tem prepared initially in MES turns into a separable state for



Quantum communication in the presence of noise local environments 57

0.1+

-0.6 T T T T :

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1

-0.6 T T T T :
0.0 0.2 0.4 0.6 0.8 1.0

q

The PPT criterion for different initial entangled states of Werner type against the noise parameter q. The solid curve represents

PPT for a system prepared initially in MES with ¢; = ¢; = ¢3 = —1. The dot, dash, and dash dot curves for systems prepared initially in
PES with ¢; = —0.5,¢2 = ¢35 = 1,¢c; = 0,c5 = ¢c3 = l,and ¢; = ¢; = 0.9, ¢; = 0.7 respectively. For(a) correlated noise (b) non correlated

noise.

q = 1. However, starting from PES the output entangled state
turns into a separable state for smaller values of channel
parameter q.

Fig. 1(b) describes the dynamics of PPT for a system subject
to local identical non-correlated noise. Two classes of initial
states are considered as input states: maximum and partial
entangled state. The output state turns into a separable state
at ¢ = 1 for a system prepared initially in maximum entangled
state. However, starting from partial entangled class as an in-
put state, the PPT is violated for small values of g.

It is important to quantify the amount of entanglement
which is still survival on the traveling channels through the
local noise environment. For this purpose, we use the negativ-
ity as a measure of entanglement. This measure is introduced
by Zyczkowski et al. (1998), which depends on the eigenvalues
of the partial transpose of the output state.

4
=) |l -1, (11)

where ;i = 1...4 are the eigenvalues of the partial transpose
of the states (4) and (7).

In Fig. 2(a) the entanglement dynamics is displayed for dif-
ferent classes of initial states. It is clear that, for maximum
entangled state interacts locally with the noise channel (2),
the entanglement of the output state £ = 1 at ¢ = 0. As soon
as the interaction goes on, the entanglement decreases as the

1.0+
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0.2

00Ff-T=5=o— : D

Figure 2
correlated noise.

noise parameter increases. Starting from partial entangled
state, the entanglement of the output state vanishes much ear-
lier. This is clear for the class which is characterized by
¢1 = ¢, = 0.9 and ¢3 = 0.7, where the entangled vanishes at
¢ = 0.4 and at ¢ = 0.2 in the presence of identical non-corre-
lated noise

The dynamics of entanglement, £ is shown in Fig. 2(b). It is
clear that, in general £ decreases as one increases q. For a sys-
tem initially prepared in MES, the degree of entanglement &, is
maximum at q = 0, while it completely vanishes at q = 1.
However, for PES as initial state, the degree of entanglement
decreases faster and vanishes much earlier.

From Fig. 2a and b, one concludes that, the local identical
non-correlated noise turns the input entangled states to separa-
ble one faster than that depicted for the identical correlated
noise. However, the entanglement decays gradually in the pres-
ence of identical non-correlated noise, while in the presence of
the local identical correlated noise, the entanglement decays
hastily.

4. Channel Capacity

The channel capacity is one of the most important topics of the
quantum information. In fact all quantum information tasks
as quantum computation and sending information, depend
on the capacity of the channel. Therefore, it is important to
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The dynamic of entanglement &£ for different initial entangled states as defined in Fig. 1 (a) for correlated noise(b) for non-
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Figure 3 The dynamics of the capacity C, of the output channels. The solid curve for a system characterized by ¢; = ¢, = ¢3 = —1. The
dash and dot curves represent the capacity for a system prepared initially in PES characterized by ¢; = —0.5, ¢; = ¢ = 1 and
¢1 = 0,co = ¢3 = 1 respectively, for (a) correlated noise (b) non- correlated noise.

evaluate the transmission rate of information from a sender
(Alice) to a receiver (Bob). The capacity of the channel is given
by,

C, = log,D +8(p(,) = S(e)), (12)

where p, = tr,{p,}, D = 2 is the dimension of p, and S(-) is
the von Numann entropy.

Fig. 3(a) describes the behavior of the capacity C, of the
channel (4) for different classes of the initial input states. It
is shown that, for a class prepared initially in maximum entan-
gled states, the capacity C, of (4) decreases as the noise param-
eter ¢ increases. For a class prepared initially in a partial
entangled state, the rate of information transmission is smaller
compared with that due to use of maximum entangled state as
initial channels . Also, the capacity of (4) for a system prepared
initially in maximum entangled state decays faster while, start-
ing from a partial entangled state the capacity of the output
state (4), decays smoothly and gradually.

Fig. 3b describes the dynamics of the capacity C, of the out-
put (9) for different classes of initial states over local identical
non-correlated noise. It is clear that, starting from maximum
entangled state, the capacity decreases rapidly as ¢ increases,
while for partial entangled state the decay of the capacity is
smooth and gradual. However, for larger values of ¢, the capac-
ity (8) increases to reach its maximum value C, = 1. This shows
that the local noise can improve the capacity of the input chan-
nel. So we can conclude that initial partial entangled states are
more robust than that for the initial maximum entangled states.

5. Teleportation

In this section, we investigate the possibility of using the output
channels to perform the original quantum teleportation proto-
col (Bennett et al., 1993). Assume that the users Alice and Bob
share entangled state of Werner type, each qubit interacts
locally with its noise environment. This channel is given by
Eq. (4) for correlated noise and by Eq. (7) for non-correlated
noise. In this context, we assume that Alice is given unknown
information coded in the state

V., = BlO) + 1), (13)

where | B2 + | ol 2 = 1. Alice is asked to teleport this state to
Bob, who shares with Alice one of the entangled states given
by (4) or (7). The total state of the system is given by
ps = p, ® p) for correlated noise and p, = p, ® p\) for the

non-correlated noise. To implement this protocol, the partners
perform the following steps:

1. Alice performs CNOT gate on her qubit and the given state
(Corry, 1998). After this operation has been performed the
final state of the system is given by

() = CNOTp,CNOT. (14)

out

2. Alice applies Hadamard gate (Gershenfeld and Chuang,
1997; Corry, 1998) on her qubit and the given. The output
state of the system is defined by

S = Hp\)H. (15)

out

3. Alice performs Bell measurements on the given qubit and
her own qubit. Then she transmits her results to Bob via
classical channel.

4. As soon as Bob receives the classical data from Alice, he
performs suitable unitary operations on his own qubit,
depending on the results of Alice’s measurements, to get
the original state which Alice teleported.

In this treatment, we assume that the partners Alice and
Bob perform the local operations perfectly. However if Alice
measures the singlet state [_) = %(|01> — |10)), then the final
state in Bob’s hand is given by

Psop = B1[0)(0 + B2[0)|1) — B3[1){0] + Ba|1)(1] (16)
where

By =g (o (1B + BB+ Bt 182 ) +on (1828~ B~ B+ 1) )

Bo= Lo (1B + BB BB 1B 0 (18P — Bufs + i~ 1) .

By=g Lo (18P — 31554 BB 1B 2 (18 + 3o — B~ 1)

Bo= (s (1B P+ 015+ BB+ 18.5) +os (1B~ B~ Bifet 1B5) ). (17)

and o, i = 1...4 are given by (5).

To evaluate the quality of the teleported state, we calculate
the fidelity, which provides a quantitative measure of the dis-
tinguishability of the unknown state (13), and Bob’s state
(16). The fidelity, F., of the teleported state is given by,

Feo = BilBs)* = BofiBs — Bspofb; + Bl . (18)

However, if the partners Alice and Bob share the state (7),
where the noise is assumed to be non-correlated, then the
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Figure 4 The fidelity F of the teleported state via a quantum channel subject to local identical noise. The solid curve for a system

prepared initially in MES with ¢; =
c;p = 0,62 = C3 = 1, c = 0.5,62 =

initial state of the system is p, = p, ® p!)) . To achieve the
quantum teleportation protocol, Alice and Bob perform the
original protocol as described above. If Alice measures | _),

then the final state at Bob’s hand is given by,

Py = Arl0)0] + A 0)[1) + Az 1){0] + Ag[ 1)(1] (19)
where,

A= (18P + 8B+ BB 18.5) s (1825~ BB B3+ 182 ),

o= (s (188 B~ BB VB 92 (18P~ Bufs + i~ 1) .

A= s (18P~ 31354 B 18,) +oa (1828 4B~ B = B )

A= {r (1824 BB+ BB 1BE) 0 (18— i3~ Bifa +18P) ). (20)

and y; are given by (8). In this case, the fidelity of the teleported
state (13) by using the channel (7) is given by,

Fp = AllBal” = Aoy By — Aspoffy + Adly [ (1)

The fidelity of the teleported state (13) by using the channels
(5) and (7) is plotted in Fig. 4. In general, it is clear that the
fidelity of the teleported state depends on the initial channel.
For g = 0 the fidelity F5, = 1, if the system is prepared in
MES. However, the maximum value of FY, decreases as the
entanglement of the initial channel decreases as shown in
Fig. 4a. On the other hand, F%,, decreases slowly as the noise
parameter ¢ increases. The decay of F%, over channels pre-
pared initially in MES is much larger than those transmitted
over partial entangled state PES.

Fig. 4b shows the dynamics of the fidelity of the teleported
state in the presence of non-correlated noise. It is clear that the
fidelity F7,, at ¢ = O for the initial channel in MES, and this
value decreases as the entanglement decreases. We can see that
the fidelity decreases as the channels parameter g increases.
The decay of F, is more rapid over channels prepared ini-
tially in MES than in Fig. 4b.

6. Conclusion

In this contribution, we investigate the dynamics of the two-qu-
bit system prepared initially in maximum or partial entangled
states. It is assumed that, these states are subject to two differ-
ent types of noise at the users locations: correlated and non-cor-
related noise. The entangled channels turn into classical
channels as the noise parameter increases. The entangled chan-

—1,c0 = ¢3 = 1, the dash and dot curves for a system prepared initially in PES with
¢3 = 1, and with f = 0.2 for all cases. (a) correlated noise and (b) non-correlated noise.

nel loses its entangled properties faster for correlated noise.
However for non-correlated noise, the entangled channels lose
their entangled properties gradually and smoothly. This behav-
ior reflects on the dynamics of the survival entanglement, where
the entanglement decreases faster in the presence of correlated
noise and decreases gradually for non-correlated noise.

The efficiency of the output channel is investigated by
means of its capacity. It is clear that, starting from the maxi-
mum entangled state, the capacity is maximum (C, = 2) at
q = 0. However as ¢ increases the capacity decreases to reach
its minimum value. In the presence of the non-correlated noise,
the capacity decreases faster than that depicted for correlated
noise. Starting from a class with a lesser degree of entangle-
ment the noise parameter improves the capacity of the quan-
tum channel.

The possibility of using the output channel to perform
quantum teleportation is investigated. We show that the fidel-
ity of the teleported state decreases as the noise parameter
increases. In the presence of the local correlated noise, the
fidelity decreases gradually and smoothly, while it decreases
quickly for non-correlated noise.

In conclusion the robustness of the traveling channel over a
noise channel depends on the degree of entanglement of initial
state and the type of the noise. If the effect of the noise in
Alice’s lab is independent from that in Bob’s lab., the entan-
gled channel loses its entanglement properties faster than those
if the noise in both labs are dependent. The output channels
could be used for quantum teleportation and its efficiency is
larger in the presence of correlated noise.
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