
 
 

 تأثير التباين على حقل الضبط لبلورة ثنائية تحت تاثير شبكة من الخلوع الحدودية

  

 رشيد بن بوته   رفيق مخلوفي،  مراد بريوة،

 

 ، الجزائر  جامعة باتنة قسم الهندسة الميكانيكية، كلية التكنولوجيا،

 

 :الملخص
عادة انتاج بعض المشاهدات  الهدف من هذا العمل هو نمذجة السلوك المتوقع عند العديد من القياسات وا 

هذه الأخيرة تسمح لنا . التجريبية وذلك بواسطة المحاكاة العددية التي تقوم على نظرية المرونة المتباينة
اليات فوريه، مما يؤدي إلى جملة بالتعبير عن كل العلاقات الضرورية لوصف حقل التشوه، و ذلك بنشر متت

من المعادلات الجبرية الخطية التي حلت عدديا للحصول على  معاملات فوريه المركبة والتي ثم استخدمت 
في هذا العمل ركزنا على تطوير برنامج رياضي لحساب حقل . لحساب الحقول المرنة للانتقال والجهود

ا بنمذجة بلورة ثنائية من رقائق النحاس والحديد الضبط المرن المتباين، وكتطبيق على ذلك قمن
Cu/(001)Fe. 

 

 

 

 

 

 

 

 

 

 

 

 M. Brioua et al. 
 



Journal of the Association of Arab Universities for Basic and Applied Sciences (2013) 13, 57–62
University of Bahrain

Journal of the Association of Arab Universities for

Basic and Applied Sciences
www.elsevier.com/locate/jaaubas

www.sciencedirect.com
Influence of anisotropy on the constraints field

of a bicrystal (layer/substrate) under the effect

of a network of interfacial dislocations
M. Brioua, R. Makhloufi, R. Benbouta *
University of Batna, Faculty of Technology, Mechanical Engineering Department, LRP Laboratory, Batna 05000, Algeria

Available online 21 July 2012
*

E

Pe

18

ht
KEYWORDS

Anisotropic elasticity;

Misfit;

Interface;

Dislocation network
Corresponding author. Tel.

-mail address: r_benbouta@

er review under responsibilit

Production an

15-3852 ª 2012 University o

tp://dx.doi.org/10.1016/j.jaub
/fax: +2

yahoo.fr

y of Univ

d hostin

f Bahrain

as.2012.0
Abstract The purpose of this work is to model the monoscale predictive behavior and to repro-

duce certain experimental observations by using numerical simulation based on the theory of aniso-

tropic elasticity. The latter allows us to express all the necessary expressions describing the strain

field. The Fourier series expansion of the strain field leads to a system of linear algebraic equations

which are solved numerically to obtain the complex Fourier coefficients which are used to calculate

the elastic fields of displacements and stresses. In this work we focused our effort towards the devel-

opment of a mathematical code that calculates the anisotropic elastic constraints field. As an appli-

cation, we have treated the case of a bicrystal Cu/(001) Fe.
ª 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Any default informs us about the potential presence of buried

dislocations. These dislocations can be interfacial. They are
grouped into different networks whose associated dislocation
is measurable by microscopic observations (Jesser and Mat-

thews, 1967); while theoretically obtaining the calculation of
elastic fields by Eshelby et al. (1953).

The structural understanding of networks of dislocations

by diffraction experiments or microscopy can be supplemented
by calculations of elasticity. Studies carried out on thin films
13 33 81 21 43.
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deposited on monocrystalline substrates reveal the existence
of networks of interfacial well organized dislocations, and
whose density, stability and character depend on the differ-

ences between parametric and angular crystals along the inter-
face as well as the temperature factor. It is when the networks
of interfacial dislocations become more regular that the inter-

faces become more stable (WP Wu et al., 2011).
These same elastic fields (constraints) are calculated using

another approach which is the finite elements method (FEM)
by Peralta et al. (1993) whose results were in accordance with

the predicted values for a predictive model.
From a mechanical point of view, one of most exciting is-

sues, both in its fundamental and applied aspects, is the

comprehension of the deformation mechanisms of these
nanomaterials by Fabien (2003). The miniaturization of prod-
ucts in the semiconductor industry poses in fact mechanical

constraint problems which engender problems of failure and
reliability. We take into account these constraint fields when
designing has become a critical element in the development

of new bilayer, trilayer (Brioua et al., 2005) or multilayer
ier B.V. All rights reserved.
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Figure 2 Schematic representation of the interfacial plane misfit

after cut along the interface. As a result, the relative displacement

to apply along the interface from the free stress state should be a

saw tooth curve.
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Figure 3 Boundary conditions in stresses.

58 M. Brioua et al.
(Wang et al., 2007) products. Based on a double Fourier series

formulation of Bonnet (1981), we present in this work solu-
tions in anisotropic elasticity for an intrinsic unidirectional dis-
location network situated at the interface of a thin bicrystal.
We encounter in our calculations a sixth degree polynomial

equation that is solved numerically. The determination of
Fourier coefficients (Bonnet, 2003) leading to the calculation
of required elastic fields consists of the numerical resolution

of a linear system having 24 matrix of equations in 24 complex
unknowns.

And for a good exploitation of these fields we must take

into account the effect of elastic anisotropy, which significantly
affects the material behavior, this analysis is presented by
Peralta et al. (2001) for the treated case Cu/sapphire.

2. Presentation of the problem and boundary conditions

Fig. 1 shows the geometry of the problem for two spaces (+)
and (�) of thickness h+ and h�, anisotropy characterized by
the elastic constants Cijkl and separated by a plan interface
comprising an intrinsic unidirectional dislocation network with

a network period 1/g.
Modeling our case means giving explicit solution to the

elastic field of a unidirectional dislocation network. For that

we must take into consideration conditions at the limits
situated at the interface of this bicrystal in anisotropic elastic-
ity using an approach based on a double Fourier series

analysis.

2.1. Boundary conditions imposed in the displacement field

Fig. 2 shows the linearity of the displacement on the interface
and the schematic representation of the displacement associated
with a network of intrinsic dislocations described for each com-

ponent uk, which can be expressed by the following expression:
The linearity of the displacement on the interface can be ex-

pressed by:

uþk � u�k
� �

x2¼0
¼ � bk

p

X1
n¼1
ð1=nÞ: sinðn:x:x1Þ ð1Þ
2.2. Boundary conditions imposed in the stress field

Fig. 3 shows the boundary condition:
1/g x1 

h-

h+
C+

ijkl

C -ijkl

x2

Figure 1 Schematic drawing of a tow layer material +/�, with a

network of unidirectional dislocations at the interface; 1/g is the

period. The crystal stiffnesses are Cþijkl and C�ijkl, with thickness h+

and h�, respectively.
3. Mathematical formulation and solution in anisotropic

elasticity

Considering two spaces (+) and (�), Fig. 1, assumed to obey
Hooke’s law, both spaces (+) and (�) are separated by a plane

interface with a network of intrinsic dislocations.
As the strain is assumed to be periodic along the axis Ox1, it

can be expanded in Fourier series at every point of the two

spaces outside the areas of discontinuity:

eijðx1; x2Þ ¼
X
G

eðGÞij ðx2Þ: exp ð2:i:p:n:x1=LÞ ð2Þ

For|x2| tending to infinity, all the coefficients tend towards

zero (preservation of structural units).Using the Einstein sum-
mation convention on dumb indices, integration of Eq. (2)
gives the following displacement field:

uk ¼ U0
k þ V0

k1:x1 þ V0
k2:x2 þ

X
n0

U
ðnÞ
k ðx2Þ:exp ð2:ip:g:n:x1Þ

k ¼ 1; 2; 3 ð3Þ

With 1=g ¼ KðK is the periodÞ
In the case of intrinsic dislocations V0

k1 and V0
k2 must be

equal to zero to avoid the stresses at long distance. So the
expression of the displacement field is written as follows:

uk ¼
X
n00

U
ðnÞ
k ðx2Þ:expð2:ip:g:n:x1Þ k ¼ 1; 2; 3 ð4Þ

This displacement field uk must satisfy the generalized Hooke’s
law, connecting constraints and strains:

rij ¼ Cijkl:ekl ð5Þ

where

rkl ¼
1

2
ðuk;l þ ul;kÞ ði; j; k; l ¼ 1; 2; 3Þ ð6Þ
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Substituting (5) in to (4), we get:

rij ¼ 1=2ðCijkl:uk;lÞ þ 1=2ðCijkl:ul;kÞ ð7Þ

As the 3rd and 4th index of elastic constants can be inter-
changed, so that we have:

rij ¼ 1=2ðCijkl:uk;lÞ þ 1=2ðCijlk:ul;kÞ ð8Þ

Since that the dumb indices k and take the same values, so

both terms on the right are equal.

rij ¼ Cijkl:uk;l ð9Þ

Steady-state constraints in the distortion region are written:

@rij

@xj

¼ 0 ð10Þ

) Cijkl

@2uk
@xj@xl

¼ 0 ð11Þ

By substituting (4) into (11), we obtain three differential equa-
tions which can be written as follows:

Cj1k1ð�4p2g2n2ÞUðnÞk þðCj1k2þCj2k1Þð2ipngÞUðnÞk;2þCj2k2U
ðnÞ
k;22¼0

ð12Þ

The general solution of these equations is given by:

U
ðnÞ
k ðx2Þ ¼ k0ak:expð2:i:p:g:n:pa:x2Þ ð13Þ

where k0ak and pa are complex constants.
Eq. (12) can be put in the following matrix form:
C11 þ ðC16 þ C61Þpa þ C66p
2
a C16 þ ðC12 þ C66Þpa þ C62p

2
a C15 þ ðC14 þ C65Þpa þ C64p

2
a

C61 þ ðC66 þ C21Þpa þ C26p
2
a C66 þ ðC62 þ C26Þpa þ C22p

2
a C65 þ ðC64 þ C25Þpa þ C24p

2
a

C51 þ ðC56 þ C41Þpa þ C46p
2
a C56 þ ðC52 þ C46Þpa þ C42p

2
a C55 þ ðC54 þ C45Þpa þ C44p

2
a

0
B@

1
CA

k0a1
k0a2
k0a3

0
B@

1
CA ¼ 0
This system is similar to that obtained by Eshelby et al. (1953)
in the case of a straight dislocation placed in homogeneous

spaces in anisotropic elasticity. It has for each pa, k
0
ak nontrivial

solutions if the determinant of Ajk is zero:

detðAjkÞ ¼ Cj1k1 þ ðCj1k2 þ Cj2k1Þ:pa þ Cj2k2:P
2
a

�� �� ¼ 0 ð14Þ

These yielda sixth degree equation in pa (a = 1. . ., 6) as

follows,

K0 þ K1:pþ K2:p
2 þ K3:p

3 þ K4:p
4 þ K5:p

5 þ K6:p
6 ¼ 0 ð15Þ

where: K0, K1, K2, K3, K4, K5 and K6 are functions of elastic
constants Cij.

So to solve the problem, it is necessary to calculate the six
roots of the polynomial Eq. (15). These roots are complex
(Eshelby et al., 1953) since the energy density must always be

positive. Since the coefficients of the polynomial are real, the
roots occur in complex conjugate pairs: pa (a = 1, 3), only
the roots with positive imaginary part are chosen. These roots

are written as:

pðnÞa ¼ praðnÞ � ipiaðnÞ

With:

a ¼ 1; 2; 3 and piaðnÞ > 0 ð16Þ
For each of the six roots pa given in (16), we solve the follow-

ing system to determine the complex solutions k0ak.

F11 F12 F13

F21 F22 F23

F31 F32 F33

0
BB@

1
CCA

k0a1

k0a2

k0a3

0
BB@

1
CCA ¼ 0 ð17Þ

where:

F11 ¼ C11 þ 2C16pþ C66p
2

F22 ¼ C66 þ 2C26pþ C22p
2

F33 ¼ C55 þ 2C45pþ C44p
2

F12 ¼ F21 ¼ C61 þ ðC66 þ C12Þpþ C26p
2

F13 ¼ F31 ¼ C51 þ ðC14 þ C56Þpþ C46p
2

F23 ¼ F32 ¼ C56 þ ðC25 þ C46Þpþ C42p
2

The k0ak thus obtained depend on the Cij and are complex.
They are of the form:

k0ðnÞak ¼ kr0
akðnÞ � iki0

akðnÞ ð18Þ

The theory states that the displacements and constraints de-
pend only on the relative values of k0ðnÞak withðk ¼ 1; 3Þ.

Therefore, the general solution of each of Eq. (12) is given

by:

U
ðnÞ
k ðx2Þ ¼

X6
a¼1

CðnÞa :kak: expð2:i:p:g:n:pa:x2Þ ð19Þ
where CðnÞa are complex constants that can be determined using

the boundary conditions.Substituting the expression of
U
ðnÞ
k ðx2Þ thus obtained in Eq. (19), we get:

U
ðnÞ
k ðx2Þ ¼

X3
a¼1

XðnÞa :kak

2:i:p:n
:expð2:i:p:g:n:pa:x2Þ

þ YðnÞa :�kak

2:i:p:n
:expð2:i:p:g:n�pa:x2Þ ð20Þ

Combining (2) with (20) we can rewrite the displacement field
as follows:

uk ¼
X
n10

X3
a¼1

XðnÞa :kak

2:i:p:n
:exp½ð2:i:p:g:n:ðx1 þ pa:x2Þ�

þ YðnÞa :�kak

2:i:p:n
:exp½ð2:i:p:g:n:ðx1 þ �pa:x2Þ� ð21Þ

where the complex constants XðnÞa etYðnÞa are determined using
boundary conditions relative to the problem. To get better
numerical performances only positive integer values of n are

used in the summation in (21).

uk ¼
X
n10

X3
a¼1

C
ðnÞ
ak :exp½2:i:p:g:nðx1 þ ra:x2Þ� ) C

ð�nÞ
ak ¼ C

ðnÞ
ak ð22Þ
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So the double sum (22) becomes:

2
X
n�0

X3
a¼1

ReðCn
akÞ: cos½2:p:g:nðx1 þ ra:x2Þ�

þ Reði:Cn
akÞ: sin½2:p:g:nðx1 þ ra:x2Þ� ð23Þ

Setting x = 2.p.g, we obtained the final expression of uk:

Uk¼
X
n�0

1

p:n

� �X3
a¼1

cos½n:xfx1þ ra:x2Þ�f½

� ½ð�i:XðnÞa :kakÞ:expð�n:x:sa:x2Þ
þ �i:YðnÞa :�kakÞ:expðn:x:sa:x2Þ�gþfsin½n:xsi1þ ra:x2Þ�
�
�Re½ðXðnÞa :kakÞ:expð�n:x:sa:x2ÞþðYðnÞa :�kakÞ:expðn:x:sa:x2Þ

��
ðk¼ 1;2;3Þ ð24Þ

From Eq. (24) and the Hooke’s:

rkl ¼ Cklij:eij ð25Þ

We get the constraint field

rkl ¼ Cklij:ui;j ¼ Ckli1:ui;1 þ Ckli2:ui;2 þ Ckli3:ui;3 ð26Þ
Since ui, in our case does not depend on x3, Eq. (26) can be re-
duced to:

rkl ¼ Ckli1:ui;1 þ Ckli2:ui;2 ð27Þ
where:

rkl ¼ Ckl11:u1;1 þ Ckl21:u2;1 þ Ckl12:u1;2 þ Ckl22:u2;2 ð28Þ
We finally obtain the following expression:

rij ¼ 2:g
X
n�0

X3
a¼1
½fcos½n:xðx1 þ rax2Þ�

þ Re½XðnÞa :Laij:expð�n:x:sa:x2Þ þ YðnÞa :Laij:expðn:x:sa:x2Þg
þ fsin½n:xðx1 þ rax2Þ� þ �Re½i:XðnÞa :Laij:expð�n:x:sa:x2Þ
þ i:YðnÞa :Laij: expðn:x:sa:x2Þg avec Lakl

¼ kaj½Cklj1 þ paCklj2� i; j ¼ 1; 2; 3; l ¼ 1; 2 ð29Þ
Table 1 Data of thin bicrystal Cu/(001) Fe.

Designation Cu Fe

Lattice parameters a (nm) 0.361 0.355

Burgers vector b (nm) of network 0.253

Period of dislocation network 1/g (nm) 15.10

Anisotropic elastic constants (Gpa) C11 = 168.4 C11 = 232

C12 = 121.4 C12 = 136

C44 = 75.4 C44 = 117

x2 (nm)

σ11 [Gpa] 

Figure 4 Diagram illustrating the evolution of stresses r11 and r22

g = 15.10 nm, n= 1000, x1 = 1/2.g, b//Ox1, h
+ = 8 nm and h�= 16
4. Application

Thematrix Cu/Fe, Table 1, was recently the subject of intense re-

search in the field of physics by Hyeok Shim and Whan Cho
(2007) to fully exploit the electronic and magnetic properties as
well as the structural and chemical characterization of the inter-
face between layers of copper and iron (Myagkov et al., 2009).

The Burgers vector b = (aCu + aFe)/2.2
1/2 and the period

of the network 1/g = (aCu.aFe)/(aCu�aFe)21/2 are respectively
calculated according to Bonnet (2000). The anisotropic elastic

constants and lattice parameters are given by Myagkov et al.
(2009) and Charles (2005).

Firstly we present in Fig. 4 the evolution of stresses r11 and

r22 with respect to x2 within the material Cu/(001) Fe under
the effect of a corners interfacial dislocation network whose
Burgers vector is parallel to the Ox1axis, for a value of

x1 = 1/2 g and an overall thickness of the bicrystal equal to
24 nm (h+ = 8 nm and h�= 16 nm) and the number of har-
monics equal to 1000.

Regarding the constraints field, Fig. 4 shows that:

1. For the chosen value of x1, we obtain a discontinuity of
constraints r(( across the interface.

2. Constraints r(( are continuous across the interface and null
at the free surfaces in accordance with the boundary
conditions.

3. The distortion is much greater near the center of the dislo-
cation than far from it. To better see the effect of the het-
erogeneity of the material on the evolution of the
constraints, we present on the same Fig. 5 curves of con-

straints r(( and r((. Different applications are presented
for the thin homogeneous crystals Cu/(001) Cu and Fe/
(001) Fe, where the total thickness of the bicrystal is kept

constant (h+ = 8 nm and h�= 16 nm) for a value of
x1 = 1/2 g.

It is noteworthy that the stress values r11 and r22 are more
important for material Fe/(001) Fe than for the heterogeneous
system Cu/(001) Fe.

To highlight the effect of anisotropy, we plot, on the same
Fig. 6 the results of our present study and those of early studies
based on the assumption of isotropy for the core of Cu (001) Fe.

Fig. 6 shows that for the chosen value of x 1 we obtain a

discontinuity of stresses r11 through the interface. These con-
straints r11 evolve in the same crystal from positive values to
σ22 [Gpa] 

x2 (nm)

of the composite materials Cu/(001) Fe, Cij anisotropic, period 1/

nm.



X2 (nm) 

σ11 [Gpa] 

Cu/Fe     
Cu/Cu 
Fe/Fe 

σ22 [Gpa] 

X2 (nm)

Cu/Fe      
Cu/Cu 
Fe/Fe  

Figure 5 Superposition of constraints fields r11 and r22, of the composite materials Cu/(001) Cu, Fe/(001) Fe and Cu/(001) Fe, x1 = b

nm and x1 = 1/2 g nm, b//Ox1, h
+ = 8 and16 nm.

σ11 [Gpa] 

Anisotropic
Isotropic 

x2 (nm)

σ22 [Gpa] 

x2 (nm)

Anisotropic
Isotropic 

Figure 6 Superimposing of constraints fields r11 and r22, Cij anisotropic and isotropic Cij of the composite materials Cu/(001) Fe,

x1 = 1/2 g, and b//Ox1, h
+ = 8 nm and h�= 16 nm.
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negative values and vice versa depending on whether there is a
tension or compression of the crystal. This explains that in the
case of dislocation network, the state of stress changes its sign

whether it is near the center of the dislocation or along the per-
iod away from it. Note also that the stresses r22 are continuous
across the interface and null at the layer’s boundary in accor-
dance with the boundary conditions.

The invalidity constraints r11 and r22 very far from the dis-
location (x1 = 1/2 g) for a period of that can catch the misfit
explain the limitation of the deformation field at the free

surfaces.
Our Mathematical code based on the Fourier series in the

case of isotropic elasticity gives results that show the difference

between the anisotropic and isotropic. It is clear that the dis-
persions of constraints r11 and r22 in the bicrystal Cu/(001)
Fe go through maxima whose values indicate.

The values of the Zener anisotropy factor are (Zener, 1984):

A ¼ 2:C44

C11 � C12

¼ 3:20 for Cu and 2:43 for Fe
5. Conclusion

By studying the effect of anisotropy on the constraints field
created by an intrinsic unidirectional dislocation network with

a network period, and knowing that the monocrystals of cop-
per and iron are very anisotropic and whose values of Zener
anisotropy factor are high, the results obtained concerning
these constraints fields depend on several essential factors
which are the orientation of the Burgers vector b (oriented
according to Ox1 in our case), the period of the network, the

elastic constants Cij and the thickness of the selected layer.
For the constraints distribution r11 and r22, note that the

constraint r11 changes its sign in layers and that it is important
when calculated near the heart of the dislocation (b= x1). We

also noted that the r11 constraints discontinuity and the r22

constraints continuity along the interface as well as the values
of r22 become null at the level of the free surfaces at a distance

equal to some nanometers away from the heart leaving room
to a perfect relaxation in accordance with boundary limits
which are verified. It is worth noting that the deformation is

much bigger near the heart of the dislocation than far from
it and the amplitude of the r22 constraints is greater when
the thickness is small.

Aiming to compare the elastic behavior, a comparison of
the results obtained in isotropic elasticity for the same bicrystal
under the same conditions is done. A clear difference is visible
between the anisotropic and isotropic cases for the thin bicrys-

tal Cu/(001)Fe leading to conclude that the anisotropy effect is
essential for the chosen bicrystal.
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