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  :الملخص

لقد   .لقد تم في هذة الدراسة استخدام طريقة اضطراب هوموتوبي المعدلة لحل نظام من المعادلات الخطية
ن الطريقة إكما   .ن هذه الطريقة تمكننا من ايجاد الحل المؤكد لنظام من المعادلات الخطيةأبينت الدراسة ب

المستخدمة في هذه الدراسة لاتعتمد على المتغير الوسيط المساعد والمؤثر المساعد والنتائج التي تعطيها 
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Abstract In this paper, we use the modified homotopy perturbation method to solving the system

of linear equations. We show that this technique enables us to find the exact solution of the system

of linear equations. This technique is independent of the auxiliary parameter and auxiliary operator.

Our results can be viewed as a novel improvement and an extension of the previously known results.
ª 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Consider the system of linear equations

AU ¼ b; ð1:1Þ

where

A ¼ ½aij�; U ¼ ½uj� and b ¼ ½bj�; i ¼ 1; 2; . . . ; n;

j ¼ 1; 2; . . . ; n:

It is well-known that a wide class of problems, which arise

in several branches of pure and applied sciences can be studied
in the unified and general framework of the system of linear
Eq. (1.1), see Burden and Faires (2001). Several methods and

techniques have been developed for solving system of linear
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Eq. (1.1). Liu (2011) and Karamati (2009) used homotopy

perturbation method to suggest some iterative methods for
solving a system of linear equations. We would like to mention
that the Homotopy perturbation method was developed by He
(1999) and has been used for solving a wide class of problems

arising in various branches of pure and applied sciences. It has
been shown that homotopy perturbation method is very reli-
able and efficient. Noor (2010a, 2010b) introduced a modified

homotopy perturbation method by combining elegantly the
homotopy analysis method Liao (2004) and homotopy pertur-
bation technique of He (1999, 2000, 2003, 2004, 2005). Noor

(2010a, 2010b) used this modified homotopy perturbation
technique to develop various iterative methods for solving
nonlinear equations. In this paper, we again use this modified

homotopy perturbation technique for solving system of linear
Eq. (1.1). It has been shown that the modified homotopy per-
turbation method provides us the exact solution of the system
of linear equations as compared to the series of solution

obtained by using homotopy perturbation in Liu (2011).
Yusufoglu (2009) has also considered the similar technique
with different auxiliary parameter and has obtained the exact

solution of the linear system of equations. Our technique is
more general and flexible than the technique of Yusufoglu
(2009). Our technique is quite effective in finding the exact
ier B.V. All rights reserved.
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solutions of the system of linear equations. It is an interesting

problem to consider this technique for finding the exact
solutions of the system of nonlinear equations and its variant
forms.

2. Modified homotopy perturbation method

To convey the basic idea of the modified homotopy perturba-

tion method, we assume that

LðUÞ ¼ AU� b; ð2:1Þ

and for any splitting matrix Q

FðUÞ ¼ QU�W0: ð2:2Þ

We define a new homotopy H(U,p,T):Rn · [0,1] · Rn fi Rn

as:

HðU; p;TÞ ¼ ð1� pÞFðUÞ þ ðqHÞpLðUÞ � p2ð1� pÞT ¼ 0;

ð2:3Þ

where p 2 [0,1] is an embedding parameter, q „ 0 an auxiliary
parameter, H is the auxiliary matrix, W0 is the initial approxi-

mation andT 2 Rn is an arbitrary operator. This modified hom-
potopy perturbation method is mainly due to Noor (2010a,.

By using (2.1) and (2.2) in (2.3), we have

HðU; p;TÞ ¼ QU�W0 � pðQU�W0Þ þ ðqHÞpðAU� bÞ
� p2ð1� pÞT ¼ 0; ð2:4Þ

From (2.3) and (2.4), it is clear that

HðU; 0;TÞ ¼ FðUÞ ¼ QU�W0 ¼ 0: ð2:5Þ
HðU; 1;TÞ ¼ LðUÞ ¼ AU� b ¼ 0: ð2:6Þ

The embedding parameter p increases monotonically from
zero to unity as trivial problem H(U, 0,T) = F(U) is continu-

ously deformed to original problem H(U, 1,T) = L(U). The
changing process of p from zero to unity is called deformation.
H(U, 0,T) = F(U) and H(U, 1,T) = L(U) are holomorphic.

The basic assumption is that the solution of (2.3) can be ex-
pressed as a power series in p:

U ¼ U0 þU1pþU2p
2 þ � � � : ð2:7Þ

The approximate solution of (1.1) can be obtained as

V ¼ lim
p!1

U ¼ U0 þU1 þU2 þ � � � ¼
X1
k¼1

Uk: ð2:8Þ

By substituting (2.7) in (2.4), we have

Q½U0 þU1pþU2p
2 þ � � �� �W0

� pðQ½U0 þU1pþU2p
2 þ � � �� �W0Þ

þ ðqHÞpðA½U0 þU1pþU2p
2 þ � � �� � bÞ � p2ð1� pÞT ¼ 0:

ð2:9Þ

Equating the coefficients of identical powers of p, we get

p0 : QU0 �W0 ¼ 0;

p1 : QU1 þ ðqHA�QÞU0 þW0 � qHb ¼ 0;

p2 : QU2 þ ðqHA�QÞU1 � T ¼ 0;

p3 : QU3 þ ðqHA�QÞU2 þ T ¼ 0;

pk : QUk þ ðqHA�QÞUk�1 ¼ 0; k ¼ 4; 5; � � � :

8>>>>>>><
>>>>>>>:

ð2:10Þ

Thus, from (2.10) we have the following iterative scheme:
U0 ¼ Q�1W0;

U1 ¼ ðI� qQ�1HAÞU0 þQ�1ðqHb�W0Þ;
U2 ¼ ðI� qQ�1HAÞU1 þQ�1T;

U3 ¼ ðI� qQ�1HAÞU2 �Q�1T;

Uk ¼ ðI� qQ�1HAÞUk�1; k ¼ 4; 5; � � � :

8>>>><
>>>>:

ð2:11Þ

Taking the initial approximation W0 = qHb, we have

U0 ¼ qðQ�1HÞb;
U1 ¼ ðI� qQ�1HAÞU0;

U2 ¼ ðI� qQ�1HAÞU1 þQ�1T;

U3 ¼ ðI� qQ�1HAÞU2 �Q�1T;

Uk ¼ ðI� qQ�1HAÞUk�1; k ¼ 4; 5; � � � :

8>>>><
>>>>:

ð2:12Þ

To find the operator T, we may take either U2 = 0 or U3 = 0.

We remark that, if U2 = 0, then we obtain the same series of
solution derived by Liu (2011). Here, we consider the case
U3 = 0. From (2.12), we have

U3 ¼ ðI� qQ�1HAÞU2 �Q�1T ¼ 0: ð2:13Þ

Using the value of U2 from (2.12) in (2.13), we have

ðI� qQ�1HAÞ½ðI� qQ�1HAÞU1 þQ�1T� �Q�1T ¼ 0:

From which, we have

Q�1T ¼ ½qQ�1HA��1ðI� qQ�1HAÞ2U1: ð2:14Þ

Thus by using (2.14) in (2.12), we obtain the new iterative

scheme

U0 ¼ qðQ�1HÞb;
U1 ¼ ðI� qQ�1HAÞU0 ¼ ðI� qQ�1HAÞqðQ�1HÞb;
U2 ¼ ð½qQ�1HA��1 � IÞðI� qQ�1HAÞqðQ�1HÞb;
Uk ¼ 0; k ¼ 3; 4; . . . :

8>>><
>>>:

ð2:15Þ

Thus, the solution U is obtained as:

U ¼ U0 þU1pþU2p
2 þ � � � ;

¼ qðQ�1HÞbþ pðI� qQ�1HAÞqðQ�1HÞb
þ p2ð½qQ�1HA��1�IÞðI� qQ�1HAÞqðQ�1HÞbþ 0þ 0 � � � :

ð2:16Þ

Hence by setting p = 1, we have the following solution V as in
(2.8):

V ¼
X1
k¼1

Uk

¼ qðQ�1HÞbþ ðI� qQ�1HAÞqðQ�1HÞb
þ ð½qQ�1HA��1 � IÞðI� qQ�1HAÞqðQ�1HÞb: ð2:17Þ

Thus, by simplifying (2.17), we obtain

V ¼ ½qQ�1HA��1qðQ�1HÞb ¼ A�1b; ð2:18Þ

which is the exact solution of (1.1).

Remark 2.1. For the convergence analysis of the modified

homotopy perturbation method, see He (2003, 2004).
3. Conclusion

In this paper, we have used the modified homotopy perturba-

tion technique to find the exact solution of the system of linear
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equations. It has been shown that with suitable modification of

the homotopy perturbation technique, one can find the exact
solutions of the nonlinear equations. This technique may stim-
ulate further research.
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