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A mathematical model which describes the quasistatic frictional contact between a pie-
zoelectric body and a deformable foundation is studied in this paper. A nonlinear electro-viscoelas-
tic constitutive law is used to model the piezoelectric material. The contact is described with the
normal compliance condition and a version of Coulomb’s law of friction. A variational formulation
of the model, in the form of a coupled system for the displacements and the electric potential, is

derived. The existence of a unique weak solution of the model is established under a smallness
assumption of the friction coefficient. The proof is based on arguments of evolutionary variational
inequalities and fixed points of operators.

© 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

In this work, we continue the research of Lerguet et al. (2007)
with a perfect insulator foundation and an other version of
Coulomb’s low friction. We formulate and analyze the varia-
tional formulation of the electro-viscoelastic problem. Situa-
tions of contact between deformable bodies are very common
in the industry and everyday life. Contact of braking pads with
wheels, tires with roads, pistons with skirts or complex metal
forming processes are just a few examples. Because of the
importance of contact processes in structural and mechanical
systems, a considerable effort has been made in its modeling
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and numerical simulations and so, the engineering literature
concerning this topic is rather extensive (Berdichevsky, 2009;
Muradova and Stavroulakis, 2007; Fisher-Cripps, 2000).

There is a considerable interest in frictional or frictionless
contact problems involving piezoelectric materials (Bisenga
et al., 2002; Sofonea and Essoufifi, 2004; Drabla and Zellagui,
2009, 2011). Indeed, many actuators and sensors in engineer-
ing controls are made of piezoelectric ceramics. However, there
exists virtually no mathematical results about contact prob-
lems for such materials and there is a need to expand the
MTCM (Mathematical Theory of Contact Mechanics) to in-
clude the coupling between the mechanical and electrical mate-
rial properties.

The piezoelectric effect is characterized by such a coupling
between the mechanical and electrical properties of the materi-
als. This coupling, leads to the appearance of electric field in
the presence of a mechanical stress, and conversely, mechani-
cal stress is generated when electric potential is applied. The
first effect is used in sensors, and the reverse effect is used in
actuators.

On a nano-scale, the piezoelectric phenomenon arises from
a nonuniform charge distribution within a crystal’s unit cell.

1815-3852 © 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.
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When such a crystal is deformed mechanically, the positive and
negative charges are displaced by a different amount causing
the appearance of electric polarization. So, while the overall
crystal remains electrically neutral, an electric polarization is
formed within the crystal. This electric polarization due to
mechanical stress is called piezoelectricity. A deformable mate-
rial which exhibits such a behavior is called a piezoelectric
material. Piezoelectric materials for which the mechanical
properties are elastic are also called electro-elastic materials
and piezoelectric materials for which the mechanical properties
are viscoelastic are also called electro-viscoelastic materials.

Only some materials exhibit sufficient piezoelectricity to be
useful in applications. These include quartz, Rochelle salt, lead
titanate zirconate ceramics, barium titanate, and polyvinyli-
dene fluoride (a polymer film), and are used extensively as
switches and actuators in many engineering systems, in radio-
electronics, electroacoustics and in measuring equipment. Gen-
eral models for electro-elastic materials can be found in
Mindlin (1968), Mindlin (1972) and, more recently, in Ikeda
(1990). A static and a slip-dependent frictional contact prob-
lems for electro-elastic materials were studied in Bisenga
et al. (2002). A contact problem with normal compliance for
electro-viscoelastic materials was investigated in Sofonea
et al. (2004). In the last two references the foundation was as-
sumed to be insulated. The variational formulations of the cor-
responding problems were derived and existence and
uniqueness of weak solutions were obtained.

We present in this work two logically connected aspects of
the theory of electro-viscoelastic materials: the constitutive the-
ory and the variational formulation of the related initial
boundary value problem.

The paper is structured as follows. In Section 2 we describe
the model of the frictional contact process between an electro-
viscoelastic body and a deformable foundation. In Section 3
we introduce some notation, list the assumptions on the prob-
lem’s data, and derive the variational formulation of the mod-
el. It consists of a variational inequality for the displacement
field coupled with a nonlinear time-dependent variational
equation for the electric potential. We state our main result,
the existence of a unique weak solution to the model in Theo-
rem 3.1. The proof of the theorem is provided in Section 4,
where it is carried out in several steps and is based on argu-
ments of evolutionary inequalities with monotone operators,
and a fixed point theorem.

2. The model

We consider a body made of a piezoelectric material which
occupies the domain Q € R? (d = 2,3) with a smooth bound-
ary 0Q = I' and a unit outward normal v. The body is acted
upon by body forces of density f; and has volume free electric
charges of density ¢q. It is also constrained mechanically and
electrically on the boundary. To describe these conditions, we
assume a partition of I'into three open disjoint parts I'y, I'»
and I'3, on the one hand, and a partition of I'; U T, into two
open parts I', and I, on the other hand. We assume that
measI"; > 0 and measT", > 0; these conditions allow the use
of coercivity arguments which guarantee the uniqueness of
the solution for the model. The body is clamped on I'; and,
therefore, the displacement field u = (uy,. . ., u,) vanishes there.
Surface tractions of density f> act on I';. We also assume that

the electrical potential vanishes on I', and a surface free electri-
cal charge of density ¢, is prescribed on I',. In the reference con-
figuration the body may come in contact over I's with an
insulator obstacle, which is also called the foundation. The con-
tact is frictional and is modeled with the normal compliance
condition and a version of Coulomb’s law of friction. Also,
there may be electrical charges on the part of the body which
is in contact with the foundation and which vanish when
contact is lost. We are interested in the evolution of the defor-
mation of the body and of the electric potential on the time
interval [0,7]. The process is assumed to be isothermal,
electrically static, i.e., all radiation effects are neglected, and
mechanically quasistatic; i.e., the inertial terms in the momen-
tum balance equations are neglected. We denote by x e QU T’
and ¢ € [0, 7] the spatial and the time variables, respectively,
and, to simplify the notation, we do not indicate in what follows
the dependence of various functions on x and ¢. In this paper i, j,
k,l =1,...,d summation over two repeated indices is implied,
and the index that follows a comma represents the partial deriv-
ative with respect to the corresponding component of x. A dot
over a variable represents the time derivative. We use the
notation S for the space of second order symmetric tensors
on R and “* and | -|| represent the inner product and the
Euclidean norm on S? and R, respectively, thatisu v = wv;,
vl = (v-»)'* foru,y € R, and 6 - 7 = o1y |[1l| = (v~ 7)"* for
6,7 €S’ We also use the usual notation for the normal
components and the tangential parts of vectors and ten-
sors, respectively, by u, = u-v, u, = u—uyv, o, = a; vy,
and 6, = ov — o,v. The classical model for the process is as
follows.

Problem P. Find a displacement field u:Q x [0,T] — R?, a
stress field & : Q x [0,T) — S, an electric potential ¢ : Qx

0, 71— R  and an electric ~ displacement  field
D:Qx[0,7] — R? such that
o= Ag(it) + Ge(u) — E'E(p) in Qx (0,7), (2.1)
D = &¢(u) + BE(¢p) in Qx (0,7), (2.2)
Dive+fo=0 inQx (0,7), (2.3)
divD—-¢,=0 inQx(0,7), (2.4)
u=0 onTl, x(0,7), (2.5)
ov=f, onl,x(0,7), (2.6)
—0o,=p,(u,—g) onT; x(0,7), (2.7)

lo:|l < up,(u, —g); on T35 x(0,7),

HGIH < ,UPV(”\' —g) = i, =0; (2.8)

llo-|| = up,(u, —g) =  there exists 2 = 0

such that ¢, = —Ait,,

=0 onl,x(0,7), (2.9)
D-v=¢q, onT;x(0,7), (2.10)
D-v=0 onT;x(0,T), (2.11)
u(0) =uy in Q. (2.12)

We now describe problem (2.1)—(2.12) and provide explana-
tion of the equations and the boundary conditions.

First, Egs. (2.1) and (2.2) represent the nonlinear electro
viscoelastic constitutive law in which ¢ = (g;) is the stress
tensor, &(u) denotes the linearized strain tensor, A and G are
the viscosity and elasticity operators, respectively, & = (e;)
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represents the third-order piezoelectric tensor, £ is its trans-
pose, B = (b;) denotes the electric permittivity tensor, and
D = (Dy,...,Dy,) is the electric displacement vector. Since we
use the electrostatic approximation, the electric field satisfies
E(p) = —% ¢, where ¢ is the electric potential.

We recall that e(u) = (g;(u)) and g;(u) = (u;; + u;,;)/2. The
tensors £ and & satisfy the equality
Eo-v=06-Ev Yo=(0,)cS" veR
and the components of the tensor £ are given by ¢}, = ey;.

A viscoelastic Kelvin—Voigt constitutive relation (Han and
Sofonea, 2002) is given in (2.1), in which the dependence of the
stress on the electric field is taken into account. Relation (2.2)
describes a linear dependence of the electric displacement field
D on the strain and electric fields; such a relation has been fre-
quently employed in the literature (Bisenga et al., 2002).

Next, Egs. (2.3) and (2.4) are the steady equations for the
stress and electric-displacement fields, respectively, in which
“Div” and “div”’ denote the divergence operator for tensor
and vector valued functions, i.e.,

Div e = (O',”)7 div D = (D”)

We use these equations since the process is assumed to be
mechanically quasistatic and electrically static.

Conditions (2.5) and (2.6) are the displacement and traction
boundary conditions, whereas (2.9) and (2.10) represent the
electric boundary conditions; the displacement field and the
electrical potential vanish on I'y and I',, respectively, while the
forces and free electric charges are prescribed on I'; and I,
respectively. Finally, the initial displacement uq in (2.12) is given.

We turn to the boundary conditions (2.7), (2.8), and (2.11)
which describe the contact on the surface I'; and in which our
main interest is. First, the normal compliance function p,, in
(2.7), is described below, and g represents the gap in the refer-
ence configuration between I'; and the foundation, measured
along the direction of v. When positive, u, — g represents the
interpenetration of the surface asperities into those of the
foundation. This condition was first used in a large number
of papers (Kikuchi and Oden, 1988; Han and Sofonea, 2002;
Klarbring et al., 1988). Condition (2.8) is the associated fric-
tion law where up, is a given function. According to (2.8) the
tangential shear cannot exceed the maximum frictional resis-
tance up,(u, — g), the so-called friction bound. Moreover,
when sliding commences, the tangential shear reaches the fric-
tion bound and opposes the motion. Frictional contact condi-
tions of the form (2.7) and (2.8) have been used in various
papers (Rochdi et al., 1998; Han and Sofonea, 2002).

Next, (2.11) is the electrical contact condition on I'; which
decouples the electrical and mechanical problems on the con-
tact surface. Condition (2.11) models the case when the obsta-
cle is a perfect insulator and was used in Bisenga et al., 2002
and Sofonea et al., (2004). Now, we derive in the next section
a variational formulation of the problem and investigate its
solvability. Moreover, variational formulations are also start-
ing points for the construction of finite element algorithms
for this type of problems.

3. Variational formulation and the main result

We use the standard notation for the L” and the Sobolev
spaces associated with Qand I and, for a function € H'(Q)

we still write i to denote its trace on I'. We recall that the sum-
mation convention applies to a repeated index.
For the electric displacement field we use two Hilbert spaces

W=LQ)" W, ={DeW:divDe L}Q)}

endowed with the inner products

(D7 E)W = /QDI'E‘,'d.X'7 (D7E)W1
= (D, E),, + (divD, divE) > o,

and the associated norms || - ||, and || - ||, , respectively. The
electric potential field is to be found in

W={ycHEQ:y=0 onTl,}.

Since measT', > 0, the Friedrichs—Poincaré inequality holds,
thus,

NVl = cellYllime V¥ €W, (3.1

where ¢ > 0 is a constant which depends only on Q and I,
On W, we use the inner product

(@) = (Vo, Vi),

and let || - || be the associated norm. It follows from (3.1) that
| - Il 1) and || - [ are equivalent norms on W and therefore
) ~i|W) is a real Hilbert space. Moreover, by the Sobolev
trace theorem, there exists a constant ¢y, depending only on
Q. I', and I'3, such that

Wl 2y < colllly VY € W. (3.2)

We recall that when D € W, is a sufficiently regular function,
the Green type formula holds:

(D, V) 2y + (div D, ¥),, = /r D-wda Yy
€ H'(Q). (3.3)

For the stress and strain variables, we use the real Hilbert
spaces

0={r=(1): y=1€ Q) =LQ% 0 ={o
— (U,‘j) S Q dive= (Uij.j) c W}

endowed with the respective inner products
(6,7)p = / ojtydx, (6,1)y = (06,17)y + (div 6,div 1),
Q

and the associated norms |- [lo and || - ||, . For the displace-
ment variable we use the real Hilbert space

H ={u=(u)eW:¢u) cQ}

endowed with the inner product

(,9) y, = (u,v)yy + (8(w), (v))

and the norm || - || ;..
When o6 is a regular function, the following Green’s type
formula holds,

(6,8(v))o + (Div 6,) g = / ov-vda YveH,. (3.4)
r
Next, we define the space

V={veH :v=0 onI}
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Since measT'; > 0, Korn’s inequality holds and

leMllo = exll¥lly, VreV, (3.5)

where c¢x > 0 is a constant which depends only on Q and I';.
On the space 7 we use the inner product

(u,v), = (&(u), 2(v))g

and let || - ||, be the associated norm. It follows from (3.5) that
the norms || - ||, and [| - ||, are equivalent on ¥ and, therefore,
the space (V,(,")y) is a real Hilbert space. Moreover, by the
Sobolev trace theorem, there exists a constant ¢, depending
only on Q, I'; and I'3, such that
¥l e < @ll¥ll, Wy e V. (3.6)
Finally, for a real Banach space (X, -|lx) we use the usual
notation for the spaces LP(0,T:X) and W*P(0, T:X) where
I1<p< >, k=1, 2,...; we also denote by C([0,7]; X) and
C'([0, T]; X) the spaces of continuous and continuously differ-
entiable functions on [0, 7] with values in X, with the respective
norms

X0l

”XHC([O.T];X) = 21[(?% Hx||c1([o.r];x)

= max || x(t ma
max|lx(1)ll + max

X(0)]1y-

Recall that the dot represents the time derivative.

We now list the assumptions on the problem’s data. The
viscosity operator A and the elasticity operator G are assumed
to satisfy the conditions:

(a) A:QxS'— s

(b) There exists L4 > 0 such that
A(x, &) — A(x, &)l < Lallé) = &l
ViELE e Sd,a.e. x e Q.

(c) There exists m4 > 0 such that

(3.7)
(A(x, &) — A(x, &) - (& - &) =
mul& — &)’ VE & € S%ae x Q.
(d) The mapping x—A(x, £) is Lebesgue
measurable on Q, for any & € S*.
(e) The mapping x—.A(x,0) belongs to Q.
(a) G:QxSs’—s"
(b) There exists Lg > 0 such that
[G(x,81) = G(x, &)1l < Lllé, = &l
VELEeS! ae xeQ. (3.8)

(¢) The mapping x—G(x, &) is measurable on Q,

for any & € S*.

(d) The mapping x—G(x,0) belongs to Q.

The piezoelectric tensor € and the electric permittivity tensor B
satisfy

(a) £:QxS"— R
(b)  E(x,7) = (e (¥)ti) Vr= (1) € S ae xeQ.

(©) e = e € L™(Q).
(3.9)
(a) B:QxR!— R
(b) B(x,E) = (by(x)E;) VE=(E)€cR’ ae. xcQ.
(c) by =bieL™(Q).
(d)  There exists mg > 0 such that b;(x)EE; = mg||E|’

VE = (E;) €R% ae xcQ.
(3.10)

In linearized electro viscoelasticity, the constitutive laws (2.1)
and (2.2) read

oy = Qe (0) + gen() — ey, Di = ey (u) 4 B0,

where @i, gxs» Py are the components of the tensors A, Gand
B, respectively, and ¢,; = d¢/0x;. Clearly, assumption (3.7) is
satisfied if all the components a;;, belong to L°(Q2) and satisfy
the usual properties of symmetry and ellipticity:

Ajjkl = Ajikl = Aklij
and

il = mo”C”z

for my > 0 and all symmetric tensors {. Assumption (3.8) is
satisfied if g;, belong to L>(Q2) and satisfies the same symme-
try properties.

A second example is provided by the nonlinear electro vis-
coelastic constitutive law,

o = Ag(0) + o(e(u) — P(e(w)) — EE(9),

D; = ey (u) + By,

Here A is a nonlinear fourth-order viscosity tensor that satis-
fies (3.7), a is a positive coefficient, K is a closed convex subset
of §¥ such that 0 € K and Py : S — K denotes the projection
operator. Since the projection operator is nonexpansive, the
elasticity operator G(x, &) = o(e — Pxe) satisfies the condition
(3.8).

The normal compliance function p, satisfies

(@) pTyxR—R,

(b) 3L, > 0 such that [p (x,u;) — p,(x,u2)| < Lyjuy — us|

Yu,uy €R, ae xels.
(¢) x> p,(x,u) is measurable on I';, for all u € R.
(d) x+—p,(x,u) =0, forall u<O0.
(3.11)

An example of a normal compliance function p, which satisfies
conditions (3.11) is p,(u) = c,u; where ¢, € L*°(I'3) is a posi-
tive surface stiffness coefficient, and #, = max {0,u}.

The forces, tractions, volume and surface free charge densi-
ties satisfy

fo€ W0, T; L2(Q)%), (3.12)
f2Ee W0, T; LA(I,)Y, (3.13)
q, € W'(0, T; L*(Q)), (3.14)
g, € W0, T; L*(Ty)). (3.15)
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Here, 1 < p < . Finally, we assume that the gap function, the
friction coefficient and the initial displacement satisfy

gel’T;), g=0 ae onTy, (3.16)
ue L>*(T;), u(x) >0 ae onljy (3.17)
u € V. (3.18)
Next, we define the three mappings j,: VxV —R,

f:]0,7T] — Vand ¢ : [0, T] - W, respectively, by
i) = [ o g das [ o= g)llda, (319)

(flr),v), = /Qfo(t) - vdx + A f2(2) - vda, (3.20)

(a(0), ) = / gol1) e — / 4s(0)da (3.21)

foralluyy eV, ¢, € Wand ¢ € [0, T]. We note that the defi-
nitions of, fand ¢ are based on the Riesz representation theo-
rem, moreover, it follows from assumptions (3.11)—(3.15) that
the integrals in (3.19)—(3.21) are well-defined.

Using Green’s formulas (3.3) and (3.4), it is easy to see that
if (w,06,¢,D) are sufficiently regular functions which satisfy
(2.3)—~(2.10) then

(a(2),8(v) — &(i(1)))g + Jjj (u(1), v)

—Jp(u(2),a(2)) = (fl1),v —a(1))y, (3.22)
(D(1), V), + (q(1), Y1)y, = 0 (3.23)
forallv € V,y € Wand ¢ € [0, T]. We substitute (2.1) in (3.22),
(2.2) in (3.23), note that E(¢) = —S$¢, use the initial condition

(2.12) and derive a variational formulation of Problem P. It is
in the terms of displacement and electric potential fields.

Problem Py. Find a displacement field u :
electric potential ¢ : [0, 7] — W such that

(Ae(in(1)), e(v) — &(i(2))) o + (Ge(u(1)), &(v) — &(a(1)),
+(EV(1), 8(v) — &(in(1) o + g (1), v) — s (u(), (1))
= (flr),v— il([))l/

[0,7] > V and an

(3.24)
for all ve Vand t €[0,T],
(BV (1), Vip)yy, — (Ee(u(1)), V), = (9(0), ) (3.25)
for all y € W and ¢ € [0, T], and
u(0) = up. (3.26)

Next, we use (3.19) and (3.11)(b), keeping in mind (3.6), we
obtain

Jp (s vi) = jip (uy, v2) + jip (2, v1) — i (2, 2)

< QLlpll ol = o]l o1 = w2l - (3.27)

now, by using (3.11)(b) and (3.17), it follows that the integral
in (3.19) is well defined. Moreover, we have

Jp(u,v) < QL] oyl A1 (3.28)

The inequalities (3.27) and (3.28) will be used in various places
in the rest of the paper.

Our main existence and uniqueness result that we state now
and prove in the next section is the following.

Theorem 3.1. Assume that 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13,
3.14, 3.15, 3.16, 3.17, 3.18, hold. Then, there exists 1y > 0
depending only on Q. I'1,I's, A, and p, such that, if
|l (ry) < Mo, then Problem Py has a unique solution (u,@).
Moreover, the solution satisfies

uc W0, T, V),
o c W0, T, V).

(3.29)
(3.30)

It is easy to check that ¢ and D the function given by (2.1)
and (2.2) respectively, satisfy:

e c W'(0,T;0,), (3.31)
D c W0, T; W,). (3.32)
We conclude that the weak solution (u,0,¢,D) of the piezoelec-

tric contact Problem P has the regularity implied in (3.29)—
(3.31) and (3.32).

4. Proof of Theorem 3.1

The proof of Theorem 3.1 is carried out in several steps and is
based on the following abstract result for evolutionary varia-
tional inequalities.

Let X be a real Hilbert space with the inner product (-,")y
and the associated norm || - ||y, and consider the problem of
finding u : [0, 7] — X such that

{ (Ai(r), v — (1)) y + (Bu(t), v — (1)) + j(u(t),v)
—j(u(r),u(r)) = (f1),v —u(r))y VveX, t€0,T],
(4.1)

u(0) = up. (4.2)

To study problem (4.1) and (4.2) we need the following
assumptions: The operator 4 : X — X is strongly monotone
and Lipschitz continuous, i.e.,

(a) There exists m, > 0 such that
(Auy — Auz,uy —up) y = myljuy — MzHig
Yup,uy € X. (43)
(b) There exists L, > 0 such that
||Au1 — AquX < LA”le — 142||X Vul,uz cX.
The nonlinear operator B : X — X is Lipschitz continuous, i.e.,
there exists Ly > 0 such that
HBUI —Bl/leXgLB ||l/l1 —L{z“X Vul,l/lz cX. (44)
The functional j : X x X — R satisfies:

(a) Jj(u,-) is convex and l.s.c. on X for all u € X.
(b) There exists m > 0 such that

Jlur, v2) = jur, vi) + juz, vi) = juz, v2)

<m luy — |y v — wvally Yur,uz,vi, v € X.

(4.5)
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Finally, we assume that

f€ ([0, T]; X) (4.6)
and
Uy € X. (47)

The following existence, uniqueness and regularity result was
proved in Han and Sofonea (2000) and may be found in
Han and Sofonea (2002).

Theorem 4.1. Let (4.3)-(4.7), hold. Then:

(1) There exists a unique solution u € C'([0, T]; X) of prob-
lem (4.1) and (4.2).

(2) If u; and u, are two solutions of (4.1) and (4.2) corre-
sponding to the data f, f> € C([0, T]; X), then there exists
¢ > 0 such that

[l (£) — 2 (D)1 < e(llfi (1) = /2Dl ) + [l (2)
—wu(0)|ly Vtel0,7]. (4.8)

(3) If, moreover, f € W'"P(0, T: X), for some p € [1,00], then
the solution satisfies u € W>7(0, T; X).

We turn now to the proof of Theorem 3.1. To that end we
assume in what follows that (3.7)—(3.18) hold and, everywhere
below, we denote by ¢ various positive constants which are
independent of time and whose value may change from line
to line.

Let n € C([0, T]; Q) be given, and in the first step consider
the following intermediate mechanical problem in which
n =& Vo is known.

Problem 73,',. Find a displacement field u,, : [0, 7] — V" such that

(Aeit, (1)),8(v) —&(iy (1)) o + (Ge(uy (1)), 8(v) — (i, (1)) o

+(11(2),8(v) —&(iy () o+ (0 (1), ¥) — s (0 (2) 10 (1)) (4.9)
= (f(t),v—i, (1)), YveV,1€[0,7],
u,(0) = up. (4.10)

We have the following result for P}].

Lemma 4.2. There exists iy > 0 depending only on Q, '), T3, A,
and p, such that, if ||l ) < po, Then:

(1) There exists a unique solution u, € C'([0,T1; V) to the
problem (4.9) and (4.10).

(2) If u; and u, are two solutions of (4.9) and (4.10) corre-
sponding to the data ny, n, € C([0,T];Q), then there
exists ¢ > 0 such that

lliey (1) = i (D[], < e([f , (1) =S 0, (Dl g + lln () = w2 (D)]])

Vie0,T]. (4.11)
The function f, : [0, 7] = V'is defined by
Fn(0),9)y = (), v), — (n(0),8(v)) (4.12)

for all u, ve V and ¢t € [0, T].
(3) Moreover, if € W"#([0, T]; Q) for some p € [1,00], then
the solution satisfies u, € W20, T; V).

Proof of Lemma 4.2. We apply Theorem 4.1 where X = V,
with the inner product (-,);- and the associated norm | - |-
We use the Riesz representation theorem to define the opera-
tors A: V—->V,G:V—Vby

(Au,v), = (As(u),&(v)),, (4.13)
(Gu,v), = (gs(u),s(v))Q (4.14)

for all u, v € V. Assumptions (3.7) and (3.8) imply that the
operators A4 and G satisfy conditions (4.3) and (4.4),
respectively.

It follows from (3.6) that the functional jj, given by (3.19),
satisfies condition (4.5)(a). We use again (3.11) and (3.6) to
find

Jp(ur, vi) = jip (u, v2) 4 i (w2, v1) — jip (2, v2)
< EgLv||MHL>C(r3)H”1 —wlyllvi — vl

for all uy, u», vy, v» € V, which show that the functional jj satis-
fies the condition (4.5)(b) on X = V. Moreover, using (3.12) and
(3.13)itiseasy to see that the function f'defined by (3.20) satisfies
fe W0, T: V) and, keeping in mind that 5 € C([0, T]; Q), we
deduce from (4.14) that £, € C([0, T]; V), i.e., f, satisfies (4.6). Fi-
nally, we note that (3.18) shows that condition (4.7) is satisfied,
too, and (4.14) shows that if 5e W'(0,7;0) then
fh € W0, T; V). Using now (4.12)—(4.14) we find that Lemma
4.2 is a direct consequence of Theorem 4.1. [

In the next step we use the solution u, € c'([0, 11, V), ob-
tained in Lemma 4.2, to construct the following variational
problem for the electrical potential.

Problem P;. Find an electrical potential ¢, : [0, 7] — W such
that

(BV @, (1), V), — (Ee(uy (1)), Vi), = (q(1), )y
for all y € W, t €0, T].

(4.15)

The well-posedness of problem P is as follows.

Lemma 4.3. There exists a unique solution ¢, € W]"’( 0,7;: W)
which satisfies (4.15). Moreover, if @, and ¢,, are the solutions
of (4.15) corresponding to n;n,€ C([0,T]; Q) then, there
exists ¢ > 0, such that

102, (1) = @, (Dl < clluy, (1) —my, (D], V2 €[0,T]. (4.16)

Proof of Lemma 4.3. Let ¢ € [0, T]. We use the Riesz represen-
tation theorem to define the operator 4,(7) : W — W by

(Ay (Do, ¥)y = (BY@, V), — (Ee(uy (1)), V),

for all @, Y € W. Let ¢y, ¢, € W, then assumptions (3.10)
imply

(4, ()
On the other hand, using again (3.9) and (3.10), we have

(Ay(Dp) = Ay(D)@2¥)y < celloy — pally el Vb € W,
(4.19)

(4.17)

— 4,002, 01 — @2)y = msllo) — @iy (4.18)
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where c¢ is a positive constant which depends on £. Thus,
4y (D)1 — Ay(D)@ally < cellor — @ally- (4.20)

Inequalities (4.18) and (4.19) show that the operator 4,(7) is a
strongly monotone Lipschitz continuous operator on W and,
therefore, there exists a unique element ¢,(¢) € W such that

Ay(D) o, (1) = q(1). (4.21)

We combine now (4.17) and (4.21) and find that ¢,(1) € W is
the unique solution of the nonlinear variational Eq. (4.15).
We show next that ¢, € Wl"’(O, T; W). To this end, let f,
t, € [0, T] and, for the sake of simplicity, we write ¢, (1) = ¢,
uy(t) = u;, q(t;) = g, fori = 1, 2. Using 4.15, 3.9 and 3.10 we
find
msl| oy = @allyy < csllm — w9 = @ally + llay
= gllwller — el (4.22)

where ¢¢ is a positive constant which depends on the piezoelec-
tric tensor £.
Inserting the last inequality in (4.22) yields

mgl|or — ol < ce lluy —wlly + g — gl (4.23)
It follows from inequality (4.23) that
o1 = @ally < cllwr —wally + llgr — gall)- (4.24)

We also note that assumptions (3.14) and (3.15), combined
with definition (3.21) imply that ¢ e W0, T:W). Since
u, € C'([0,T};X),  inequality  (4.24)  implies  that
oy € W0, T, W).

Let 1, n2 € C([0, 7], Q) and let ¢, = @;, uy, = w;, fori = 1,
2. We use (4.15) and arguments similar to those used in the
proof of (4.23) to obtain

mg|pi (1) = 2Dl < cellm () —m (D)),

for all ¢ €[0,T]. This inequality, leads to (4.16), which con-
cludes the proof. [

We now consider the operator A : C([0, 71;0) — C([0, T]; Q)
defined by
An(t) =EVe,(1) Vqec(0,T;0), 10,7 (4.25)

We show that A has a unique fixed point.

Lemma 4.4. There exists a unique § € W'(0, T; Q) such that
Ay =1.

Proof of Lemma 4.4. Let 1y, #, € C([0, T]; Q) and denote by u;
and ¢; the functions u,, and ¢, obtained in Lemmas 4.2 and
4.3, fori = 1,2. Let t € [0, T]. Using (4.25) and (3.9) we obtain

[[Am, (1) = Ay ()l < ¢ Ml (1) = @2 (D)l
and, keeping in mind (4.17), we find
1A, (£) = Ana (D)l < ¢ [lur (1) = wa (D) (4.26)

On the other hand, since u;(¢) = up + fot u;(s) ds, we have
t
1 (1) = w2 (2], < /0 a1 (s) — ina(s) || dls (4.27)

and using this inequality in (4.11) yields

t
llinr (1) = iex (1)]] ) < C(Ilm(f) *’Iz(t)HQJF/O [[a1 (s) *itz(S)Hya’S>-
It follows now from a Gronwall-type argument that
t l
/0 ity () — itz (s)],, s < C/O [, (2) = my (1) s

Combining (4.26)—(4.28) leads to

(4.28)

1AM (0) — Ans(0)]p < ¢ / 10 (2) — 12(6)] .

Reiterating this inequality » times results in

n n C”
[A"ny (1) = A"y (1) < ol 1, (8) = 12() | o, 71:0) -

This inequality shows that for a sufficiently large » the opera-
tor A” is a contraction on the Banach space C([0,T]; Q) and,
therefore, there exists a unique element 5 € C([0, 7]; Q) such
that A =#. The regularity § € W'7(0, T; Q) follows from
the fact that ¢, € W'”(0, T; W), obtained in Lemma 4.3, com-
bined with the definition (4.25) of the operator A. [

We have now all the ingredients to prove the Theorem 3.1
which we complete now.

Existence. Let 77 € W'”(0, T; Q) be the fixed point of the
operator A, and let u;, ¢; be the solutions of problems ’P;
and Pﬁ, respectively, for n = 5. It follows from (4.25) that
E'Ve; =1 and, therefore, 4.9, 4.10 and 4.15 imply that
(us, ;) is a solution of problem Py. Properties (3.29) and
(3.30) follows from Lemma 4.2 (3) and Lemma 4.3.

Uniqueness. The uniqueness of the solution follows from the
uniqueness of the fixed point of the operator A. It can also be
obtained by using arguments similar as those used in Rochdi
et al. (1998).

5. Conclusion

This paper deals with a mathematical model which describes
the quasistatic frictional contact between a piezoelectric body
and a deformable foundation. The contact is described with
the normal compliance condition and a version of Coulomb’s
law of friction. The connection between the problem with the
Signorini’s contact condition and the normal compliance con-
dition that were studied is new and has both theoretical and
applied interest. Other results are new, and are reported here
for the first time.
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