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Abstract The purpose of this paper is to study the non-isothermal Poiseuille flow between two
heated parallel inclined plates using incompressible couple stress fluids. Reynold’s model is used
for temperature dependent viscosity. We have developed highly non-linear coupled ordinary differ-
ential equations from momentum and energy equations. The Perturbation technique is used to
obtain the approximate analytical expressions for velocity and temperature distributions. Expres-
sions for velocity field, temperature distribution, dynamic pressure, volume flow rate, average veloc-

ity and shear stress on the plates are obtained. The influence of various emerging parameters on the
flow problem is discussed and presented graphically.
© 2013 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

In recent years, scientists have shown their interest in non-New-
tonian fluids because of their applications in many natural,
industrial and technological problems. Several authors cited a
wide range of applications of non-Newtonian fluids that cover
the flow of polymer solutions, food stuffs, drilling oil and gas
wells, synthetic fibers and the extrusion of molten plastics. Tan
and Xu (2002), Tan and Masuoka (2005a,b), Farooq et al.
(2011, 2012), Shah et al. (2011), Chen et al. (2004) and Fetecau
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and Fetecau (2002, 2003, 2005) have discussed some of the inter-
esting fluid flow problems involving non-Newtonian fluids.

In order to explain the behavior of non-Newtonian fluids, dif-
ferent constitutive equations have been suggested. Among these,
the couple stress fluid model introduced by Stokes (1966) has dis-
tinct characteristics, such as the presence of couple stresses, non-
symmetric stress tensor and body couples. The couple stress fluid
theory presented by Stokes suggests models for those fluids
whose microstructure is mechanically momentous. The effect
of microstructure on a liquid can be felt, if the characteristic geo-
metric dimension of the problem considered is of the same order
of magnitude as the size of the microstructure (Srinivasacharya
and Kaladhar, 2011). To introduce a size dependent effect is one
of the main features of couple stresses. The subject of classical
continuum mechanics ignores the effect of size of material parti-
cles within the continua. This is unswerving with neglecting the
rotational interaction among the particles of the fluid, which re-
sults in a symmetry of the force—stress tensor. However, this

1815-3852 © 2013 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.
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Nomenclature

velocity vector

reference velocity

height of plate

body force

Cauchy stress tensor

unit tensor

first Rivlin-Ericksen tensor

gradient of V

specific heat

non-dimensional dynamic pressure
dimensional dynamic pressure
dimensional velocity in the x-direction
non-dimensional velocity in the x-direction
dimensional x-coordinate
non-dimensional x-coordinate
dimensional y-coordinate
non-dimensional y-coordinate
non-dimensional parameter

SURT I TR T RGO ol Sl Bl < N !

Brinkman number
viscosity index
constant number
viscosity parameter

Greek symbols

€ small parameter

n couple stress parameter

(0] dimensional temperature

c) non-dimensional temperature

(CH lower plate temperature

0, upper plate temperature

K thermal conductivity

u dimensional coefficient of viscosity
uw non-dimensional coefficient of viscosity
o reference viscosity

0 constant density of the fluid

T extra stress tensor

cannot be true and a size dependent couple-stress theory is
needed in some important cases for instance fluid flow with sus-
pended particles. The spin field due to microrotation of these
freely suspended particles set up an antisymetric stress, which
is known as couple-stress, and thus forming couple-stress fluid.
The couple stress fluids are proficient of describing different
types of lubricants, suspension fluids, blood etc. These fluids
have applications in various processes that take place in the
industry such as solidification of liquid crystals, extrusion of
polymer fluids, colloidal solutions and cooling of metallic plate
in a bath etc. Stokes has also written a review of couple stress
fluid dynamics (Stokes, 1984) which contains an extensive study
about these fluids. Basic ideas and techniques for both steady
and unsteady flow problems of Newtonian and non-Newtonian
fluids are given by Ellahi (Ellahi, 2009). The basic equations gov-
erning the flow of couple stress fluids are non-linear in nature
and even of higher order than the Navier Stokes equations. Thus
an exact solution of these equations is not easy to find. Different
perturbation techniques are commonly used for obtaining
approximate solutions of these equations.

Heat transfer flow has importance in different engineering
applications such as the design of thrust bearings and radial
diffusers’ transpiration cooling, drag reduction and thermal
recovery of oil. Heat transfer plays an important role in pro-
cessing and handling of non-Newtonian mixtures (Tsai et al.,
1988). The mechanics of nonlinear fluid flows is a challenge
to mathematicians, engineers and scientists since the nonlin-
earity can manifest itself in different ways as is the case in
the analysis of reactive variable viscosity flows in a slit with
wall injection or suction. In our case, one of the reasons of
the nonlinearity of the coupled ordinary differential equations
is the temperature dependent viscosity. Flows with tempera-
ture dependent viscosity are studied by various researchers.
(Yurusoy and Pakdemirli, 2002; Makinde, 2006, 2009, 2010).

In this paper, we study the heat transfer flow of incompress-
ible couple stress fluids with temperature dependent viscosity
between two parallel inclined plates kept at different tempera-
tures. The basic governing equations for couple stress fluids
are given in Section 2. In Section 3, the Poiseuille flow is

formulated and perturbation solutions are obtained for veloc-
ity field and temperature distribution. In Section 4, we com-
pute volume flux, average velocity and shear stress on the
plates. Section 5 is devoted to results and discussion and con-
clusion is provided in Section 6.

2. Basic equations

The basic equations governing the flow of an incompressible
couple stress fluid are (Siddiqui et al., 2006, 2008; Islam and
Zhou, 2007, 2009; El-Dabe and El-Mohandis, 1995; El-Dabe
et al., 2003)

divV = 0, (1)
DV

pE = divT — nV*V + pf, (2)
D

pc,,f? =kV'O+ T L, (3)

where V is the velocity vector, p is the constant density, f'is the
body force per unit mass, T is the Cauchy stress tensor, ® is
the temperature, « is the thermal conductivity, ¢, is the specific
heat, L is the gradient of V, 5 is the couple stress parameter
and the operator D% denotes the material derivative which is de-
fined as:

D 0

—((x)=(=+V-V .

2= (54v-7)e)

The Cauchy stress tensor T can be defined as:

T=-pl+1, 7=uA, 4)
where p is the dynamic pressure, I is the unit tensor, u is the

coefficient of viscosity and A; is the first Rivlin-Ericksen tensor
defined as:

A =L+L7 L7 is the transpose of L.

3. Formulation and solution of plane Poiseuille flow

Consider the steady flow of couple fluid between two infinite
parallel inclined plates which are placed at y = —H (lower
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Figure 1  Geometry of the problem.

plate) and y = H (upper plate). Plates are at rest and motion
of the fluid is maintained due to both constant pressure gradi-
ent and gravity. The temperatures of lower and upper plates
are kept at ®y and ®, respectively. The chosen coordinate sys-
tem is shown in Fig. 1. The angle made by the plates and the
horizontal direction is o. Viscosity of the fluid p, is assumed
to be a function of ®. Velocity and temperature fields are of

the form:
V=V(,0,0), u=u(y), and O =0(y). (5)

Using these assumptions, we observe that the continuity Eq.
(1) is identically satisfied and the momentum Eq. (2) reduces to

op 0 d'u .
0—7a+87y(f,vt‘)inw+pgsulm7 (6)
0= _Z—i— pgcosa, (7)

__op
0=—2F. (8)

The pressure p, is obtained from Eq. (7) as
p = pg[xsino — ycosa] + C, 9)
where C is a constant of integration and can be calculated by
applying the appropriate boundary condition. Eq. (8) implies
that p # p(z). Using Eq. (5) in Eq. (4), the non-zero compo-
nents of the extra stress tensor 7 are
du

oo, (10
Substituting Eq. (10) into Eq. (6) we obtain

d'u du dudu Op

— U —— —F+—— ina = 0. 11
ndy4 ,udy2 dy dy + P8 sin o (11)

Egs. (4), (5) and (10) transforms the energy Eq. (3) to the form

PO fdu\® o (du\

b ol e (==} =o. 12
e (dy) Tk (dy2> 0 (12
The associated boundary conditions are

u(—H) =u(H) =0, (13)
u'(—H) = u"(H) =0, (14)
O(-H)=0,, O(H)=0,. (15)

Eq. (13) is the usual no-slip boundary conditions. Eq. (14) im-
plies that couple stresses are zero at the plates. We introduce
the following non-dimensional parameters:

el Y s X g _©9-0@ . u PR
vt T YT 0,-0, " 1o’ tU/H'
2) 2 2 175
o U e wH L BHOp r)gH“SiM
k(0 —6y) n mU 0x U

where U is the reference velocity, g is the reference viscosity
and B, is the Brinkman number. Using these dimensionless
parameters, Eqs. (11) and (12) take the form (dropping
asterisks)

S - BEZ G-y, (16)

PRo) d\> B, (du\
e () + 5 (E) =0 an

and the corresponding boundary conditions (13)—(15) become

u(—=1) =0, u(l)=0, (18)
W'(—1) =0, u'(1)=0, (19)
O(-1)=0, O()=1. (20)

Assume that the temperature dependent fluid viscosity u is gi-
ven by Reynold’s model (Aksoy and Pakdemirli, 2010; Farooq
et al., 2011, 2012; Massoudi and Christie, 1995; Chinyoka and
Makinde, 2011; Reynolds, 1886; Szeri and Rajagopal, 1985).
The dimensionless form of this model is

1= exp(~M®), (21)

where M = n(®; — ). Let M = € m, where € is a small per-
turbation parameter. Using the Taylor series expansion, Eq.
(21) reduces to

du _ de
— = —c

~] - ® —_.
u e mO®, & mdy

(22)

Substituting Eq. (22) in the governing Eqgs. (16) and (17), the
following coupled system is obtained:

d'u du d® du
——B(l—-em®)—+Becm———-G=0 23
dy* (I-em )dy2+ My dy ’ )
o) du\> B, (du :
—+ B,(1 — — —Z(=1) =o. 24
e 8 €m®)(d}’) B (dyz) 0 24

In order to solve these coupled ordinary differential equations
with associated boundary conditions (18)—(20), we use the per-
turbation technique. Taking the approximate velocity and tem-
perature profiles as

u= ieiu; and © = ie’@i. (25)
=0 =0

Inserting Eq. (25) into Egs. (23), (24), (18), (19) and (20) and
then separating at each order of approximation, we obtain
the following systems of equations along with the correspond-
ing boundary conditions.

Zeroth order equations:
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d &
Ch_pfh_g=o, (26)
dy dy
2
IO, (du0)2 B, (d2u0>
S4B () 2 (222) =o, 27
dy* dy B\ dy* @7)
&
=0 “R=0, ©=0 at y=-I (28)
dy
d2
=0, -0, @=1 at y=1 (29)
dy
Ist order equations:
d'uy 2d2u] > &y o (duy (dOy\
W_B e +B Wl@oﬁ"'B m(d_y> <W> =0, (30)
40, duy\ { duy dup\® 2B, (duy\ (du)
() () -som () () 2) 0
2
=0, LU0 ©,=0, at y=—1 (32)
dy”
2
=0, TN _0 ©,=0 at y=1. (33)

The second order equations have not been considered be-
cause of lengthy calculations. Solving Egs. (26) and (27)
with the corresponding boundary conditions (28) and (29)
we have
uy(y) =Ty —T»* + T cosh[By], (34)
®y(y) =Yy — Y13* = Yo»* — Y3cosh[By] — Yscosh[2By] + Ysysinh[By]. (35)
Substituting Egs. (34) and (35) into Egs. (30) and (31) and then
solving with respect to the boundary conditions (32) and (33),
we obtain
u1(y) = (s — T4 cosh[By] + I's cosh[2By] + [ cosh[3By]))°

+ (I sinh[By] — T'g sinh[2By])y

+ (T'y — T'jg cosh[By])y* + ('}, sinh[By])y*

+ (FIZ — F13 COSh[ByDy4 + (F14 smh[ByDys

+Ts)°,

(36)

0, (y) = (Ys+ Y;cosh[By] + Yscosh[2By] — Yo cosh[3By] — Yo cosh[4By]))°

+ (=Yyy sinh[By] + Y12 sinh[2By] + Y13 sinh[3By])y

+ (=14 + Yyscosh[By] — Yiscosh[2By])y?

+(=Y7sinh[By] + Ygsinh[2By]))?

+ (Y19 + Ya9cosh[By] — Y2 cosh[2By])y*

— Yy sinh[By] + Ya3 sinh[2By])y° + (Y4 + Yas cosh[By])y°

—Yae)®.

37)

Inserting Eqgs. (34)-(37) into Eq. (25), the perturbation solu-
tions upto order one are:
u(y) =Ty — y’T'y + cosh[By|T',

+ €{(I'y — I’y cosh[By] + I's cosh[2By] + I's cosh[3By])»’

+(T'y sinh[By] — T sinh[2By])y + (T'y — I'jg cosh[By])y>

+(Ty; sinh[By])y* + (T}, — I'y3 cosh[By])y*

+(T14 sinh[By])y® + F15y6}7 (38)

O(y) =Yy —»*Y; —»*Y, —cosh[By| Y5 — cosh[2By] Y, + ysinh[By] Y's
+€{(Y6+ Y, cosh[By] + Y5 cosh[2By] — Y cosh[3By] — Yy cosh[4By]))°
+ (=Y sinh[By] + Y1, sinh[2By] + Y3 sinh[3By])y
+ (=14 + Yy5cosh[By] — Yiscosh[2By])y* 4+ (— Y7 sinh[By] + Y5 sinh[2By])y*
4+ (Y19 + Yagcosh[By] — Y5 cosh[2By])y* — (Y2 sinh[By] + Ya3 sinh[2By])y”
+ (Yo4 + Yas cosh[By])y* — Yoer* },
(39)

where I'; and Y; are constants which are given in appendix.

4. Volume flux, average velocity and shear stress on the plates

The volume flux in the non-dimensional form is given by

0= 1 1 u(y)dy. (40)

Using Eq. (38) in Eq. (40) we obtain
1
2= 2105
+420Becosh[B](B'T; +2B°T1g+ B(6+ B*) (BT +4T13) + (1204 208” + B*)T'y,)
—420sinh([B](— BT + Be(B*Ty + BT + B(2+ B*)(BT 1o +3T'y;)
+(24+ 128+ B)I3) +5(24+ 128> + BY)el'4)
+4B°(7(15T — ST +€(15T + 5Ty +3T)) + 15¢15) ). (41)

{140 8" esinh[3B]T, — 210B°ccosh[2B|T + 105B*esinh[2B](2BTs + I'y)

The average velocity, u, of the couple stress fluid is:

__ 0

_Z 42
=, (42)
which in the non-dimensional form coincides with flow rate gi-
ven in Eq. (41). The dimensionless shear stress 7,, on the sur-
face of the upper plate is given by the formula

du
Ty = =Tyl = —p—| - (43)
P ly=1 dy =1

The minus sign accounts for the upper plate facing the negative
y-direction of the coordinate system as shown in Fig. 1 (Papa-
nastasiou et al., 2000). Using Eq. (38) in Eq. (43) we have,

7, = u{2I'} — Bsinh[B|I'; 4 ¢(—3Bsinh[3B|I's +2Bcosh[2B|I's
+sinh[2B])(—2BIs + ) +sinh[B](—[; =30+ B(Ls+ Lo +T13) —5T14)
—cosh[B](=2(Tjp+2I3) + B(I'; + Ty + 1)) —2(Te + 212 +315)) b

(44)

Similarly, shear stress on the lower plate can be calculated.
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Figure 2 Effect of parameter G on velocity field, u(y), for

B.=1,m=3and e = 0.1.
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5. Results and discussion

In this work, we have studied the heat transfer flow of couple
stress fluids between two heated parallel inclined plates. The
approximate analytical solutions of velocity field and temper-
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Figure 3  Effect of parameter m on velocity field, u(y), for

B, =1,G=4ande = 0.1.
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Figure 4 Effect of the Brinkman number, B,, on temperature

distribution, ©(y), for G = 2, m = 3 and € = 0.1.
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Figure 5 Effect of parameter G on temperature distribution,
O(y), for B, =1, m = 3 and € = 0.1.

ature distribution are obtained by using the perturbation tech-
nique. The effect of various non-dimensional parameters on
velocity field, temperature distribution, volumetric flow rate
and shear stress is investigated graphically as shown below.
In Figs. 2 and 3, velocity, u, of the fluid is plotted against
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Figure 6 Effect of parameter m on

O(y), for B, =2,G=4and e = 0.1.
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Figure 7  Effect of the Brinkman number, B,, on flow rate, Q, for

G=4,m=3and e = 0.1.
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Figure 10 Effect of the Brinkman number, B,, on shear stress, 7,
for G =4, m=3and e = 0.1.

the independent variable y. Both these profiles are parabolic
and satisfy the given boundary conditions. These graphs show
an increasing behavior of velocity of the fluid by increasing the
non-dimensional parameters G and m, respectively.

Figs. 4-6 are plotted to visualize the effect of different
parameters on thermal profiles ®(y). It can be seen in Fig. 4
that, an increase in B, increases the temperature of the fluid
while Figs. 5 and 6 also depict a direct relation between the
temperature distribution ®(y) and the dimensionless quantities
G and m, respectively. The volume flow rate of the fluid is
investigated in Figs. 7-9 and effects of the Brinkman number
B, and parameters G and m can be observed in these figures.
In order to observe the behavior of the shear stress 7, in the
Poiseuille flow while changing the values of three parameters
B,, G and m, we have sketched 7, against the viscosity u in
Figs. 10-12. Again B, shows a direct relation with 7, in
Fig. 10. Figs. 11 and 12 report that the shear stress is strongly
dependent on the physical quantities G and m, respectively. It
is clear from the figures that as these parameters increase the
shear stress also increases on the plates.

m = 3 and € = 0.1.
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Figure 12 Effect of parameter m on shear stress, 1, for B, = 1,
G =4and e = 0.1.

6. Conclusion

In this paper, we have studied the heat transfer flow of couple
stress fluids between two heated parallel inclined plates for
Reynold’s viscosity model. The strongly nonlinear and coupled
differential equations are solved with the help of the perturba-
tion technique for fluid velocity and temperature distribution.
Analytical expressions for velocity field, temperature distribu-
tion, dynamic pressure, volumetric flow rate, average velocity
of fluid and shear stress on the plates are obtained. It is shown
graphically that velocity, temperature, volume flow rate and
shear stress on the plates are strongly dependent on the dimen-
sionless parameters B,, G and m.
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Appendix A.
G G Gsech[B]
ly=-5(-2+8), Ti=—y3, Lh=—_—
0 2B4 ( + )7 1 2B2 ) 2 B4 ’

I; = TlBﬁm(Bzrz(f%B sinh[B](B>Y, + 2(6 + B*)Y,) + 4B* cosh[3B] Y,

=+ 12 COSh[B] (48Y2 + 32(4(Y1 —+ 6Y2) — B2(2Y0 — 2(Y1 —+ Yz) —+ Y4)))
+ 6B (=2 + B)Ys — 6B* sinh[2B]Y's + 3B cosh[2B](2BY; + Ys)) + 4T, (14407,
+ BX(72Y, + B(B(6(—2 + B*) Yo + 3(4cosh[B]Ys + cosh[2B]Ys) — B(B(3Y +2Y5)

+ 12sinh[B](Y5 + cosh[B]Y4))) + 12((2 + B*) cosh[B] — 2Bsinh[B])Y5)))),

r 1
I, = %(—Yow +6(B*Y| +20Y2)) — £ By Ys,
mIl’ 1
I :2_B;(Y132+20Y2), Ts =3m0i,
msech(B] , , ;
1= og (BT2(=360B'(2cosh[B] + Bsinh[B]) Y, + 1355 cosh[35] 4

+ 12Bsinh[B](5B*(=3 + 2B°)Y; + (—45 + 6B*(=5 + B*)) Y, — 15B*Y,)

+ 180 cosh[B](B*(8 + B)Y| + (96 + 3B* + B Y, — 2B*Yy) — 360B°Ys

— 240B* sinh[2B]Y's + 40 B’ cosh[2B](6BY5 + 5Y'5)) + 401, (4320, + B*(216(Y; + 10Y>)
+ B(B(—36(Yy — 3Y; — 5Y3) — 9((—4 + B*) cosh[B] + Bsinh[B])Y;

+ 4(5cosh[2B] — 6Bsinh[2B])Y,) + 3(3(8 + B*) cosh[B] + B(—3 + 2B%) sinh[B])Y5s)))),

m

iy

3
(3T2(B™Y) + 15Y2) + 28T (BY; +315)), [y = mloT,
Ty = % (T2(=2B*Yy + TBY; + 93Y, — B'Y,) + 2BT (3BY; + 7Ys)),

1
r, = %(1}(3% +2103) +2B00Ys), Tip = 15 Bl Y,

m m 1
F13 = W(44FIY4 + BF2(6BY3 + 111‘5))7 F14 = ﬁ(4F1Y4 + Bl—‘zY‘5)7 F15 = @mFZY}
1
Yo = DR (6B* + B,.(4(6 + B*)T? + 48(cosh[B] — Bsinh[B])T'\T'; + 3B cosh[2B]T3)),
2B,I72 1 4B, T, 1 1 4B,
le_ Bz 17 Y2:_§Brr%u Y‘3:_ Bz ’ Y4:_ZB;‘F§7 Y5:§+ B )
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J— Br
604808’
+ 4T, (18B*T's — 3BT g + 4ml' Yy) + BmI5(3BY; + 2Y5)) — 16808° sinh[3B](8T, (6T

+ Iﬂr2Y4) + BF2(24r8 + Inr2Y5)) + 151208 Slnh[B](SFl (2640F14 + 2B(216F13
+ B(6(7F11 + 30F14) + B(lOFm + 2815 + B(2F7 +4I' + 654 + B(Fm + I3

s (945B" cosh[4B]T5 (48T s + mI',Y4) 4 560B° cosh[3B](—336T" T

+mIyY0)) — (18 + B))mI, X)) — (600 4 60B> + B)mI,Y5) + B mI,Yy)

— 16B*mI} (4BY5 + (18 + B*)Ys) + BT»(16B'Ty + 32B%(6 + B*)I ),

+48(120 4+ 20B% + BY)T'y5 + 3B°mI',Y'5)) + 15120B° sinh[2B](T, (— 15T 4

— B(6T13 + B(3T}; 4 10T 4 4+ B(2T o + 4T3 — 2B(T; + Ty + Tyy) +mIL YY)
—2B(3 + B*)mI'yY,) — 8BmIi Yy — 2B°T (4BT's — 2Tg + m»(BY; + 2Y5)))

+ 72B(—4T,(140(6 + B*)Ty + 840(I"y, + I'j5) + B*(112T, + 90T 5

+mI (70X, — 28X, — 15Y3))) + 7B*mI2(30Y, — 5Y; — 2, + 15Y3)

+ 70BT,(48B,I"\ 4T’y + B(—12(Tg 4 I'j3) + B(6T; + 3Ty, + 2Ty — 2mI Ys))))

— 37808 cosh[2B] (8B (4B°T's — 4(B + B)[y — (3 4+ 2B)mI') Yy) + BmI5(—15Y,
+ B (=3(Y, +6Y,) + 2B (Yo — Xy — Yo + Yy))) + 2T (4B*Ty(B 4 8B, T'y) — 15T,
— B(6T'13 + B(3(T'yy + 10T14) + 2B(Tyo + 65 + B(6BT g + 7 + 3Ty,

—2B(Tyo + T'13) 4 501) 4 2m Y3) +2(3 + 2B%)mI Y5))))

— 15120 cosh[B](16T(B°T4 + B*(4 + B*)T; + 1440T 4 + B(3B*(4 + BTy

+ B(48 + 18B> + B)I'y; + 24015 + 96B°T '3 + 5B*T'j; 4+ 600BT 4 + 40B°T

+ BTy + 2B*mI, Y — 24B°mI, Y, — 6B*mI, Y, — 720mI, Y, — 240B°mI, Y,
—10B*mT, Y, + B*mI,)Y,)) — 16B*mI? (B(6 + B*) Y3 + 6(4 4 B*)Ys)

+ BT5(5760T 5 + B*(192(T'j; + 15Ty5) + B*(16(Ty 4 615 + 15T5)

+ B(—8BT's — 4Ts + mIy(BY; + 6Y5))))))),

— B"
- 4B
+ mTy(2B* Yy — 24B°Y, — 7207, + B*Yy))) — 96 B mI3 (BY; + 4Ys)

Y, (16T (B°T'y + 4B*T"; + 1440114 + B(12B°T"y + 488}, +240T 3

+ BTy (—8B°T's — 4B°Ts + 16B*Ty + 192B°T |, + 57601 ;5 4+ BmI> Y5 + 6 B°mI, Y's)),
J— Br
168

+ 2F2(4BSF4 - 15F14 — B(6F13 + B(3F|] + 2B(B(6Br(, + F7) + FIO + 2mF] Y;)

+6mI'Y5)))),

Y (BmT5(2B*Yy — 3B*Y, — 15Y, + 2B*Y,) + 8B, (4B°T's — 4BTs — 3mI'| Y)

Y9 = 102’32 (73361—‘11—‘6 + 4F2(1832r5 - 3Brg + 4"1F1Y4) + er‘%(}BYg -+ 2Y5))7

B.I
64

YIO = (48F6 +mF2Y4),

B,

Y = T (8T1(2640T 4 + 2B(B*T, + 216113 + B(42T'}; 4+ B(2BT; + 10T,
+mDay(B Yy — 18Y}))) — 600mI5Y5) + BmI»Yy) — 32B°mI (2BY5 + 9Ys)
+ BTy(—8B°Ts 4 16B'Ty + 192B°T}, + 5760T ;5 + 3B°mI’, X)),

B,
Y, = i (T5(=2B*T; + 15T 4 + B(6T'j3 + B(2BTyy + 3T} + BmI,Y,) 4 6mI, Y5))

+ 8BmI3 Y, + 2B°T | (4BT's — 2Ty + mIy(BY; + 2Y5))),
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Y5 = 31;9 (8T, (6T + mTsYy) + B> (24T + mTsYs)),

Y= % (=321, Ty + BT, (4BT; — 8Ty + B2 mI,(2Y, + Yy4))),

Y5 = 4;" (6B, (BTy5 + 30T 5) 4+ ' (60014 + B(B’T; 4 965
+3B(BT g + 6Ty — 2BmI,Y) — 240mI,Y,)) — B*mIj(BY3 + 6Y5)),

Y6 = % (Ty(—4B°T 1 4 30T 14 + B(6BT |, + 1215 + mI(B*Y| +97Y5)))
+ 8BmIIY, + 48T (4T + mI,Ys)),

Y, = % (2BT, (BT, 4 30T}5) + T (BT} 4 180T 4 + B(4BT}, + 28T 3
— mDy(B2Y| +60Y,))) — B2mI3Ys),

Yy = 2";2 (5T14 + B(—BTy; + 2T )5 + mIsY3)),

Yy = 251;2 (8B*mI3Y, + BTy (—6BT; 4 24T 3 + B*mI, X))
+ 4T (4B°Ty + 24T, + B*mI,Ys)),

Yy = % (15BT:T s + Ty (40T 14 + B(BLy; + 5(T'i3 — 2mI»Y5)))),

Y, = Bg"gz (—4BT 5 + 10Ty, + BmI,Y,),

Yy = ‘;E; (3BI,Iys + I (BT )5 + 614 — B, Y5)), Yo = %B,.FZFM,

B
Y24 = —(16F1(2BZF12 + 15F15) — 8an1FfY1 + B3F2(—10F14 + BmF2Y2)),

60B>

4B.I' T 1
i Yy = — B, (615 +mI' Ys).

Ls=—%—> 14
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