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Abstract Hoerl and Kennard (1970a) introduced the ridge regression estimator as an alternative to
the ordinary least squares (OLS) estimator in the presence of multicollinearity. In ridge regression,
ridge parameter plays an important role in parameter estimation. In this article, a new method for
estimating ridge parameters in both situations of ordinary ridge regression (ORR) and generalized

ridge regression (GRR) is proposed. The simulation study evaluates the performance of the pro-
posed estimator based on the mean squared error (MSE) criterion and indicates that under certain
conditions the proposed estimators perform well compared to OLS and other well-known estima-

tors reviewed in this article.

© 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

In the presence of multicollinearity OLS estimator yields regres-
sion coefficients whose absolute values are too large and whose
signs may actually reverse with negligible changes in the data
(Buonaccorsi, 1996). Whenever the multicollinearity presents
in the data, the OLS estimator performs ‘poorly’. The method
of ridge regression, proposed by Hoerl and Kennard (1970a) is
one of the most widely used tools to the problem of multicollin-
earity. In a ridge regression an additional parameter, the ridge
parameter (k) plays an vital role to control the bias of the regres-
sion toward the mean of the response variable. In addition, they
proposed the generalized ridge regression (GRR) procedure that
allows separate ridge parameter for each regressor. Using GRR,
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it is easier to find optimal values of ridge parameter, i.e., values
for which the MSE of the ridge estimator is minimum. In addi-
tion, if the optimal values for biasing constants differ signifi-
cantly from each other then this estimator has the potential to
save a greater amount of MSE than the OLS estimator (Stephen
and Christopher, 2001). In both ORR and GRR as ‘K’ increases
from zero and continues up to infinity, the regression estimates
tend toward zero. Though these estimators result in biased, for
certain value of k, they yield a minimum mean squared error
(MMSE) compared to the OLS estimator (see Hoerl and Ken-
nard, 1970a). Ridge parameter ‘k’ proposed by Hoerl et al.
(1975) performs fairly well.

Much of the discussions on ridge regression concern the
problem of finding good empirical value of k. Recently, many
researchers have suggested various methods for choosing ridge
parameter in ridge regression. These methods have been sug-
gested by Hoerl and Kennard (1970a), Hoerl et al. (1975),
McDonald and Galarneau (1975), Hocking et al. (1976), Law-
less and Wang (1976), Gunst and Mason (1977), Lawless
(1978), Nomura (1988), Heath and co-workers (1979), Nord-
berg (1982), Saleh and Kibria (1993), Haq and Kibria
(1996), Kibria (2003), Pasha and Shah (2004), Khalaf and
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Shukur (2005), Norliza et al. (2006), Alkhamisi and Shukur
(2007), Mardikyan and Cetin (2008), Dorugade and Kashid
(2010) and Al-Hassan (2010) to mention a few. The objective
of the article is to investigate some of the existing popular tech-
niques that are available in the literature and to make a com-
parison among them based on mean square properties.
Moreover, we suggested some methods for estimating ridge
parameters in ORR and GRR which produce ridge estimators
that yield minimum MSE than other estimators. The organiza-
tion of the article is as follows.

In this article, we introduce alternative ordinary and gener-
alized ridge estimators and study their performance by means
of simulation techniques. Comparisons are made with other
ridge-type estimators evaluated elsewhere, and the estimators
to be included in this study are described in Section 2. In Sec-
tion 3, we propose some new methods for estimating the ridge
parameter. In Section 4, we illustrate the simulation technique
that we have adopted in the study and related results of the
simulations appear in the tables and figures. In Section 5, we
give a brief summary and conclusion.

2. Model and estimators

Consider, a widely used linear regression model
Y= XB+s, (1)

where Y is a nx 1 vector of observations on a response vari-
able. f is a px 1 vector of unknown regression coefficients,
X is a matrix of order (n X p) of observations on ‘p’ predictor
(or regressor) variables and ¢ is an n X 1 vector of errors with
E(g) = 0 and V(s) = o *I,,. For the sake of convenience, we as-
sume that the matrix X and response variable Y are standard-
ized in such a way that X’X is a non-singular correlation
matrix and X' Y is the correlation between X and Y. The paper
is concerned with data exhibited with multicollinearity leading
to a high MSE for f meaning that i? is an unreliable estimator
of f.

Let A and T be the matrices of eigen values and eigen vec-
tors of X'X, respectively, satisfying T"X'XT = A = diagonal
(A1, 42 ,...,4,), where Ai being the ith eigen value of X'X and
T'T =TT = I, we obtain the equivalent model

Y =Zo+e, (2)

where Z = XT, it implies that Z’Z = A, and o = T'f (see
Montogomery et al. (2006)) Then OLS estimator of o is given by

bors = (Z22)'ZYy=nN"12'Y. (3)
Therefore, OLS estimator of f is given by

Bors = Thors.
2.1. Generalized ridge estimator (GRR)

The GRR estimator of « is defined by
: )&OLS7 (4)

where K = diagonal(k,k,...kp), k; > 0,1 = 12,...,p be the
different ridge parameters for different regressors and
A=A+ K

Hence GRR estimator for f§ is ZZGR = Togr.

and mean square error of dgg 18

fgr = (I — KA~

2

MSE(éGr) = Variance(dgr) + [Bias(dGr)]

:5Z/u/) + ki) +Zk

In case of GRR, various methods are available in the literature
to determine the separate ridge parameter for each regressor.
Among these, well known methods for determination of ridge
parameter which are used in the further study are given below.

(i + k) (5)

(1) Hoerl and Kennard (1970a) have proposed the following
ridge parameter

BN\ ,

k:(HK) = i=1,2,....p (6)
(2) Nomura (1988) proposed a ridge parameter and it is
given by

k;(HMO) = 5

%{1+[1+ﬂ( 2/) |} =120 ()

(3) Troskie and Chalton (1996) proposed a ridge parameter
and it is given by
ki(TC) = 4,6°/(L&F +6%), i=1,2,....p (8)
(4) Firinguetti (1999) proposed a ridge parameter and it is
given by
kI(F):/1162/[;“1&;2+(”7p)6-2}7 l:172777p (9)
(5) Batah et al. (2008) proposed a ridge parameter and it is
given by

k(FG) = 2{ (32 /46%) + (63 1/5%)]

@) YE =12 1)

where, &; is the ith element of dp;g5,i = 1,2, ...

OLS estimator of ¢°, i.e. 62 = %’

, p and 67 is the

2.2. Ordinary ridge estimator (ORR)

Settingk; =k, = ... =k, =kandk >
regression (ORR) estimator of f is

> 0, the Ordinary ridge

Pre = Tigg = T[T — k4;')a, where Ay = (A+ kL) (1)

and mean square error of drg is
MSE (3gg) = Variance(sgg) + [Bias(orr )]’

:&Ziyi (Ji+ k) kzz /A,+k (12)
i=1

We observe that, when & = 0 in (12), MSE of OLS estimator
of o is recovered. Hence

MSE (d015s) 21 /

Hoerl et al. (1975) suggested that, the value of ‘k’ is chosen
small enough, for which the mean squared error of ridge esti-
mator, is less than the mean squared error of OLS estimator.

In case of ORR also, many researchers have suggested dif-
ferent ways of estimating the ridge parameter. Some of the well
known methods for choosing the ridge parameter value are
listed below.
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ki :};—& (Hoerl et al. (1975)) (13)

~2

po
(2) kz =<
i= I/Ll 12

O k=pr [z 1+

(Lawless and Wang (1976))  (14)

(1 + (5 3/&2)‘/2)]}

Nomura (1988) (15)
@ ks = (amax6™) /(0 = p = 1)67 + JmaxOipmsy)
Khalaf and Shukur (2005) (16)

A2
_ po 1
(5) ks =max (0’ ¥a  n(VIF, >)

Dorugade and Kashid (2010) (17)

where VIF; = = j=1,2, ...

tor of jth regressor.

, p 1s the variance inflation fac-

(6) » » 2
ke =6 (2a7) | s> (%5])
i=1 i=1
Montogomery et al. (2006) (18)
D - {wmiv %)+ |3 (0) } } / 30
Norliza et al. (2006) (19)

Q) k=r /Z{ I[6252 452 + (6325080 = (3220/26%)] }

Batah et al. (2008) (20)

éizl P

©

Kibria (2003) (21)

52
10) ko = Median| - i=12,....p
( ) 0(2/

i

Kibria (2003) (22)
Az . .
(1 1) k1| = W Kibria (2003) (23)
=17
)
(12) ki =— Hoerl and Kennard (1970a) (24)
6'2
(13) ki3 = max(@) Hoerl and Kennard (1970a)  (25)

~2

(2
(14) k=557

i=1"

Hoerl and Kennard (1970a) (26)

& 1 .
(15) kis = max ?4‘;[ l:1,2,...,p

Alkhamisi and Shukur (2007) (27)

All the methods of estimating ridge parameter are used in
Section 4.

3. Proposed ridge parameter

Hoerl and Kennard (1970a) conclude that, bias and total var-
iance of the parameter estimates are, respectively monotoni-
cally increasing and decreasing functions of ridge
parameters. They also suggested a value of ith ridge parameter
k(HK) used in GRR given in (6). Hoerl et al. (1975) suggests
the modification in k{(HK) used in ORR which performs fairly
well. Lawless and Wang (1976) suggest the modification in
k(HK) to reduce the bias by multiplying the ith eigen value
A; to the denominator of (6) to keep the variation depends
on the strength of the multicollinearity. Their estimator re-
duces the bias but results in greater total variance of the
parameter estimates.

In this article, we suggest a estimator that takes a little bias
than estimator given by Hoerl et al. (1975) and substantially
reduces the total variance of the parameter estimates than
the total variance using estimator given by Lawless and Wang
(1976), thereby improving the mean square error of estimation
and prediction. We suggest the modification by multiplying
Amax/2 to the denominator of (6). The suggested estimator is:

267

i=1,2,....p (28)

where Anax 1s the largest eigen value of X'X.

This leads to the denominator of the alternative estimator
given by (28) being greater than that of Hoerl and Kennard
(1970a) by Amax/2. Hence, we can write

2

&2 267 o
A—ZZ—; AZZ)LQ i=1,2,....p
o max %; 0

It clearly indicates that our suggested estimator lies in between
the estimators given by Hoerl et al. (1975) and Lawless and
Wang (1976). Kibria (2003) suggested optimal ridge parame-
ters by proposing new ridge parameters by modifying the
quantity k;(HK) = 6%/42. By adopting algorithms outlined in
Kibria (2003), we propose new methods to determine ridge
parameters in case of ORR for the ridge parameter k as below,
2 P &2

22
pﬂvmax i—1 o

ki (AD) = Arithmatic Mean|k;(AD)] = (29)

52
ky(AD) = Median[k;(AD)| = Medlan( 20 2) i=1,2,...,p

(30)
. 262
k;(AD) = Geometric Mean[k;(AD)] = v (31)
Amax (H.;’:l&[Z) !
. 2p L~ 62
k4(AD) = Harmonic Mean[k;(AD)] = Z—z (32)
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Table 1 Ratio of AMSE of OLS over various ridge estimators for different ‘k’.
n 20 50 100
2 1 5 10 25 1 5 10 25 1 5 10 25
ki 1.9591 1.9041 1.8936 1.6576 1.5648  2.5220 1.4035 29800 2.2481 1.8036 1.5990  3.1048
ks 1.6458 0.9895 0.4923 0.9257 0.9901 1.1969 0.7672 1.7184 1.7886 1.1572  0.6954 2.1013
k3 1.3152 1.3529 0.9294 1.2887 1.0035 1.7400 1.0407 2.4535 1.1916 1.2865 1.1165 2.6206
ky 1.7382 1.8200 2.1747 1.6185 1.5653  2.2507 1.6252 24887 1.9691 1.2809 1.4109  2.3090
ks 1.8347 1.9279 1.9896 1.6721 1.5275 2.5228 1.4097 2.9830 2.1999 1.8048 1.6031 3.1061
ke 1.6473  0.9834 0.4908  0.9277 0.9900 1.1914  0.7644 1.6984 1.7886 1.1534  0.6935  2.0706
k7 0.3247 0.9443  0.4901 0.9241 0.1079 0.9689 0.7559 1.7019  0.0466 0.7116 0.6531 2.0729
kg 1.6918 1.3932 0.9431 1.3282  1.2879 1.8878 1.0647 2.5851 1.7534 1.4120 1.1524 2.7445
ko 1.3903 1.2905 1.5517 1.3176  1.1746 1.4637 1.2562 1.5268 1.3655 1.3197 1.2091 1.5733
kio 1.4950 1.0041 0.5202 1.0275 1.2124 1.6613  0.8165  2.5551 1.3958 1.2047 1.2136  2.2630
ki1 1.6073 1.0439 0.5224  0.9630 1.3523 1.6802  0.8153 2.1401 1.4944 1.2839 0.9872 2.2678
ki 1.0007 1.7249 2.2101 1.6536 0.8251 1.9723 1.6099  2.5894 0.5697 1.0581 1.3364  2.3380
ki3 1.4461 0.0093 0.2329 0.0221  0.4099 0.6154  0.0489 0.6211  0.0860 0.2930 0.5761 0.0650
kia 1.8815 1.8245 2.1426 1.7185 1.4737  2.1611 1.5981 2.5000 1.8469 1.7491 1.5616  2.5921
kis 0.13589 0.7942 0.47573 0.8983 0.05383 0.67948 0.71321 1.5857 0.02639 0.44348 0.56721 1.89147
ki(AD) 1.2140 1.1574  1.3590 1.2027 1.0938 1.2634 1.1487 1.2918 1.2187 1.1850 1.1156 1.3133
k>(AD) 1.4810 1.0225 0.5435 1.1078  1.1589 1.7110  0.8607 2.7609 1.3960 1.2103 1.3920 2.3595
k3(AD) 1.6132 1.1010 0.5511 0.9986 1.4388 1.8322  0.8557  2.3839 1.6500 1.3221 1.1685  2.3874
k4(AD) 1.9872 2.0282  2.2600 1.8183  1.5990 2.5482 1.6182 2.9882 2.3328 1.8823 1.6926 3.2643
From 29, 30, 31, 30 &; is the ith element of &¢;5,i = 1,2, ..., p xg:(l—pz)l/zu,-,-—o—pu,-p, i=1,2,...,n j=12,...,p.
and 62 is the OLS estimator of ¢2, i.e. 62 = %’

Result 1.
ki = ky(AD) = k,

Result 2. If 1, is close to ‘p’ then k4(AD) = 2k 4, and if A,
is close to ‘1’ then k4(AD) = 2k;.

Hoerl et al. (1975) have shown that k; < &‘,’2

inequality from result 1, k4(AD) < ky < &3’2 . Hence k4(AD)
satisfies the upper bound of ridge parameter stated by Hoerl
and Kennard (1970a).

Proposed estimator is examined by means of a simulation
technique which we present in the next section.

Using this,

4. Performance of the proposed ridge parameter

In this section, we examined the performance of the ridge esti-
mator using the proposed ridge parameters in both ORR and
GRR over the different ridge parameters (k) reviewed in this
article. We examined the average MSE (AMSE) ratio of the
ridge estimator using proposed ridge parameters and other
ridge parameters over OLS estimator. Performances of new
ridge estimators given in (28)—(32) are studied in two parts.
In part A, performance for proposed ridge estimators is eval-
uated through simulation in case of ORR. Whereas, in part
B a simulation study is carried out for evaluating the perfor-
mance of proposed ridge estimators in case of GRR.

4.1. Part A

We consider the true model as Y = Xf§ + &. Here ¢ follows a
normal distribution N(0,0°1,) and the explanatory variables
are generated (see Batah et al., 2008) from

where u;; is an independent standard normal random number
and p? is the correlation between x; and xj; for j, j/ < p and

j#J.j,J = 12,...,p. When j or j = p, the correlation will

be ‘p’. Here we consider predictor variables p = 4 and
p = 0.9. These variables are standardized such that XX is in
the correlation form and it is used for the generation of Y with
p = (23,5, 1). We have simulated the data with sample sizes
n = 20, 50 and 100. The variance of the error terms is taken
as o@ = 1, 5, 10 and 25. Ridge estimates are computed using
different ridge parameters given in (13)—(27) and (29)—(32).
The MSE of such ridge regression parameters are obtained
using (12). This experiment is repeated 2000 times and obtains
the AMSE. Firstly, we computed the AMSE ratios (AMSE
(6ors)/AMSE (arr)) of OLS estimator over different estima-
tors for various values of triplet (p, 1, %) and reported in Ta-
ble 1. We consider the method that leads to the maximum
AMSE ratio to the best from the MSE point of view.

In the following figure (Fig. 1), we represent the same val-
ues reported in Table 1 Here we noted that values of AMSE
ratios only for ky,ks,k4 and k4(AD) are represented because
these values for remaining choice of ‘4’ have less importance
for the comparative study. Here input values are n, p and ¢°.
These input values are ordered according to the increase of val-
ues. For fixed value of ‘p’ changes values of ‘»’ and for fixed
values of (p, n) changes the values of ¢2. There are 12 sets of
(p, n, o°) values. These are arranged as (0.9,20,1),
(0.9,20,5),...,(0.9,100,25) and it is numbered as 1, 2,...,12,
respectively.

Same procedure for another choice of p = 3 and f§ = (3,1,
5) is done and AMSE ratios are computed and represented in
Fig. 2.

From Table 1, Figs. 1 and 2, we observe that the perfor-
mance of proposed ridge parameters ki(AD),k>(AD),k3(AD)
and k4(AD) is better than OLS. Particularly k4(AD) performs
equivalently and is little better than ridge parameters proposed
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by Hoerl et al. (1975) and Dorugade and Kashid (2010)
whereas, it gives better performance than other ridge parame-
ters reviewed in this article for all combinations of correlation
between predictors (p), sample size (n) and variance of the er-
ror term (¢°) used in this simulation study.

4.2. Part B

Here we evaluate the performance of proposed ridge parame-
ters in case of GRR. Here we generate the data which exhibit
with multicollinearity using the procedure for the generation of
y with f = (2,3,5,1) as discussed in part A. We consider pre-
dictor variables p = 4 and p = 0.9. We have simulated the
data with sample sizes n = 20, 50 and 100. The variance of
the error term is taken as o> = 1,5,10 and 25. Generalized
ridge estimators are computed using different ridge parameters
given in (6)—(10) and (28). The MSE of such ridge regression
parameters are obtained using (5). This experiment is repeated
2000 times and obtains the AMSE.

We computed the AMSE ratios (AMSE (4ors)/ AMSE
(aGrr)) of OLS estimator over different estimators for various
values of triplet (p, n, 62). These ratios are reported in Table 2
and here we noted that values of AMSE ratios only for
k{(HK), k(FG) and k{AD) are represented in Fig. 3

Same procedure for another choice of p = 3and f = (3,1, 5)
is done and AMSE ratios are represented in Fig. 4.

From Table 2, Figs. 3 and 4, we conclude that proposed
ridge parameter k(AD) and k(HK), the ridge parameter pro-
posed by Hoerl and Kennard (1970a) both perform equiva-
lently. Whereas, the performance of k; (AD) is better than
OLS, k{HMO), k(FG),k{TC) and k,(F) for all combinations
of correlation between predictors (p), sample size (n) and var-
iance of the error term (¢°) used in this simulation study.

5. Conclusion

In this article we have proposed a new method for estimating
the ridge parameter in the presence of multicollinearity. The
performance of the proposed ridge parameter is evaluated
through the simulation study, for different combinations of
correlation between predictors (p), the number of explanatory

35 = . =ka(AD)

3.2 1 i !
2
[
L
v
=
<<

1 2 3 4 5 6 7 8 9 10 11 12
SetNumber

Figure 1  Ratio of AMSE of OLS over various ridge estimators

for different ‘6’ (p = 4, f = (2,3,5,1) and p = 0.9).

AMSE ratio

4.4 = - =k4(AD)

41 ' —kl
3.8 . _—
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Figure 2 Ratio of AMSE of OLS over various ridge estimators
for different ‘k* (p = 3, f = (3,1,5) and p = 0.9).
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38 “-'ki(AD)
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1 2 3 4 5 6 7 8 9 10 11 12
Set Number

Figure 3  Ratio of AMSE of OLS over various ridge estimators
for different ‘k;” (p = 4, f = (2,3,5,1) and p = 0.9).
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ki(FG)
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1 2 3 4 5 6 7 8 9 10 11 12
Set Number

Figure 4 Ratio of AMSE of OLS over various ridge estimators
for different ‘k” (p = 3, f = (3,1,5) and p = 0.9).
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Table 2 Ratio of AMSE of OLS over various ridge estimators for different ‘k;’.
n 20 50 100
62 1 5 10 25 1 5 10 25 1 5 10 25
ki k{(HK) 23771 24828 2.7997 23730 1.7549 3.1660 2.1404 3.5339 2.9098 2.2880 1.9120 4.1019
k{HMO) 1.7969  2.0272 2.0637 19364 1.2744 2.4380 1.7089 3.0186 1.8384 1.7823 1.5184  3.5253
k{FG) 2.0767  2.0997 2.0756 1.9922 1.4868 2.5389 1.7438 3.1379 2.4047 1.9007 1.5634  3.6587
k{TC) 1.9325 1.9963 2.0460 1.9345 1.5955 2.1970 1.8157 2.3773 2.0415 1.8883 1.7068  2.5269
kd{F) 1.1077  1.1161 L.1112 1.1166 1.0371 1.0419 1.0420 1.0431 1.0178 1.0201  1.0203  1.0208
k{AD) 2.2035 2.2866 2.6788 2.1872 1.6402 29614 19841 3.2328 2.8273  2.1192 1.7657  3.7458
variables (p), sample size () and variance of the error variable Hocking, R.R., Speed, F.M., Lynn, M.J., 1976. A class of

(6%). The evaluation of our estimator has been done by com-
paring the AMSE ratios of OLS estimator over the proposed
estimator and the other estimators reviewed in this article. Fi-
nally, we found that the performance of the proposed estima-
tor is satisfactory over the other estimators in the presence of
multicollinearity.
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