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Abstract The purpose of this study is to introduce a new analytical method namely, fractional
homotopy analysis transform method (FHATM) for series solution of the time fractional BBM-
Burger equation. The homotopy analysis transform method is an innovative adjustment in Laplace
transform algorithm (LTA) for nonlinear fractional partial differential equation in fluid dynamics
and makes the calculation much simpler. The proposed scheme finds the solutions of nonlinear
problems without any discretization, restrictive assumptions and avoids the rounding off errors.
The numerical solutions obtained by the proposed method indicate that the approach is easy to
implement and computationally very attractive.

© 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

The fractional calculus has a long history, starting from 30
September 1695 when the derivative of order o = 1/2 was
described by Leibniz (Oldham and Spanier, 1974). Fractional
order ordinary differential equations, as generalizations of
classical integer order ordinary differential equations, are
increasingly used to model problems in fluid flow, mechanics,
viscoelasticity, biology, physics and engineering, and other
applications (Podlubny, 1999). Fractional derivatives provide
an excellent instrument for the description of memory and
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E-mail addresses: skumar.rs.apm(@itbhu.ac.in, skiitbhu28@ gmail.
com, skumar.math@nitjsr.ac.in (S. Kumar), devendra.maths@ gmail.
com (D. Kumar).
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hereditary properties of various materials and processes.
Half-order derivatives and integrals proved to be more useful
for the formulation of certain electrochemical problems than
the classical models (Oldham and Spanier, 1974; Miller and
Ross, 1993; Samko et al., 1993; Hilfer, 2000; Podlubny,
1999; Kilbas et al., 2006).

In this paper, the homotopy analysis transform method
(HATM) basically illustrates how the Laplace transform can
be used to find the approximate solutions of the time fractional
BBM-Burger equation by manipulating the homotopy analysis
method. The proposed method is coupling of the homotopy
analysis method and Laplace transform method. The main
advantage of this proposed method is its capability of combin-
ing two powerful methods for obtaining the approximate solu-
tion of time fractional BBM-Burger equation. Homotopy
analysis method (HAM) was first proposed and applied by Liao
(1992, 1997, 2003, 2004) based on homotopy, a fundamental
concept in topology and differential geometry. The HAM has

1815-3852 © 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

http://dx.doi.org/10.1016/j.jaubas.2013.10.002


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jaubas.2013.10.002&domain=pdf
mailto:skumar.rs.apm@itbhu.ac.in
mailto:skiitbhu28@gmail.com
mailto:skiitbhu28@gmail.com
mailto:skumar.math@nitjsr.ac.in
mailto:devendra.maths@gmail.com
mailto:devendra.maths@gmail.com
http://dx.doi.org/10.1016/j.jaubas.2013.10.002
http://dx.doi.org/10.1016/j.jaubas.2013.10.002
http://www.sciencedirect.com/science/journal/18153852
http://dx.doi.org/10.1016/j.jaubas.2013.10.002

Fractional modelling for BBM-Burger equation by using new homotopy analysis transform method 17

been successfully applied by many researchers for solving linear
and non-linear partial differential equations (Abbasbandy,
2008, 2010, 2011, 2013; Jafari et al., 2010; Khan et al. 2012;
Liet al., 2013; Vishal et al., 2012; Zhang et al., 2011). In recent
years, many researchers have paid attention in obtaining solu-
tions to linear and nonlinear differential, and integral equations
by various methods by combining the Laplace transform meth-
od. Among these we may mention the following: the Laplace
decomposition methods (Jafari et al., 2013; Khan et al., 2012;
Khan et al., 2013; Wazwaz, 2010), homotopy perturbation
transform method (Kumar et al., 2012a, 2012b, 2013a, 2013b;
Singh et al., 2013). Recently, Khan et al. (2012) have applied
to obtain the solutions of the Blasius flow equation on a semi-
infinite domain by coupling of homotopy analysis and Laplace
transform method. Recently, many researchers (Arife et al.,
2013; Kumar et al., 2013; Zurigat, 2011) have solved fractional
differential equation by using modified homotopy analysis
method with Laplace transform method. The different type
solutions of the fractional BBM-Burger equation have been dis-
cussed by Fakhari et al. (2007), Song and Zhang (2009) by using
homotopy analysis method.

This paper is committed to the study of time fractional
BBM-Burger equation by using new fractional homotopy
analysis transform method. The BBM-Burger equation can
be written in time fractional operator form as

2
Diu—uyy +uy + (—) =0,

150
2 >

0<a<l, (1.1)

with initial condition u(x, ) = sec /i’ () and « is a parameter
describing the order of the time fractional derivative and lie
in the interval (0, 1]. We remark that the exact travelling wave

solution u(x, 1) = sec s (ﬁ — ﬁ) to the above initial value prob-

lem is given by (Fakhari et al., 2007).

Definition 1.1. The Laplace transform of continuous (or an
almost piecewise continuous) function f{z) in [0,00) is defined as

F(s) = LIf(1)] = / e 'f(1)dt. (1.2)
0
where s is a real or complex number.

Definition 1.2. The Laplace transform L[f{¢)] of the Riemann—
Liouville fractional integral is defined as (Podlubny, 1999):

LIZA(D)) = 5 F(s). (1.3)

Definition 1.3. The Laplace transform L[f{f)] of the Caputo
fractional derivative is defined as (Podlubny, 1999)

n—1
LIDu(x,0)] =s"F(s) = > _s"* Db (0,1), n—1<na<n  (1.4)
k=0

2. Basic idea of newly fractional homotopy analysis transform
method (FHATM)

To illustrate the basic idea of the FHATM for the fractional
partial differential equation, we consider the following frac-
tional partial differential equation as:

Du(x, 1)+ Rixfu(x, 1) + Nxlu(x, 1) = g(x,1),
t>0,xeRn—1<a<n, (2.1)

where D)* =27 R[x] is the linear operator in x, N[x] is the
general nonlinear operator in x, and g(x, #) are continuous
functions. For simplicity we ignore all initial and boundary
conditions, which can be treated in a similar way. Now the
methodology consists of applying the Laplace transform first

on both sides of Eq. (2.1), we get

LIDu(x,t)] + L[R[x]u(x, t) + N[xJu(x, )] = L[g(x,1)]. (2.2)

Now, using the differentiation property of the Laplace trans-
form, we have

n—1

1
Llu(x,0)] = 3 sk (x, 0)

k=0

+ L L(R[x]u(x, t) + N[x]u(x, 1)

s

—glx,) =0, (23)
We define the nonlinear operator

1 n—1

N[O 1:4)) = LIg(x, 1:9)] = > 5™k (x,0)

$ o LRIxu(x, 1) + Nux, ) — g(x.0), (24)

where ¢e[0, 1] be an embedding parameter and ¢(x, #; g) is the
real function of x, ¢ and ¢. By means of generalising the tradi-
tional homotopy methods, Liao (1992, 1997, 2003, 2004) con-
structed the zero order deformation equation

(1= @) L{¢(x, 5;9) —uo(x, 0)] = hgH(x, ON[d(x, 1 : @), (2.5)

where 7 is a nonzero auxiliary parameter, H(x, ¢) # 0 an auxil-
iary function, ug(x, ) is an initial guess of u(x, ) and ¢(x, t; q)
is an unknown function. It is important that one has great free-
dom to choose auxiliary thing in FHATM. Obviously, when
g = 0 and ¢ = 1, it holds

o(x,50) = uy(x,1), ¢(x,61) =u(x,1), (2.6)

respectively. Thus, as p increases from 0 to 1, the solution var-
ies from the initial guess ug(x, f) to the solution u(x, t). Expand-
ing ¢(x, t; q) in Taylor’s series with respect to ¢, we have

D(x, 15.9) = uo(x, 1) + > _g"um(x, 1), (2.7)
m=1
where
1 9"P(x,1;9)
Up (X, 1) = P T o (2.8)

If the auxiliary linear operator, the initial guess, the auxiliary
parameter %, and the auxiliary function are properly chosen,
the series (2.7) converges at ¢ = 1, we have

u(x, 1) = up(x, 1) + ium(x, 1), (2.9)

m=1

which must be one of the solutions of the original nonlinear
equations.
Defines the vectors

iy = {uo(x, 1), uy (x, 1), p(x,0), ... u,(x, 1)}

Differentiating Eq. (2.5) m time with respect to embedding
parameter ¢ and then setting ¢ = 0 and finally dividing them
by m!, we obtain the mth order deformation equation

Llw (x,8) — gpthm1(x, )] = hgH(x, t) Ry (U1, X, ).

(2.10)

(2.11)
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Operating the inverse Laplace transform on both sides, we get

Un(X,1) = Lylhm1 (X, 1) + hg L7 [H(x, )Ry (dl-1, %, )], (2.12)
where
m—1
Ry (i1, x,1) = (mi 1)!3 aﬁr('flt; ) L (2.13)
and
0, m<l1,
Ton = { L, om>1.

In this way, it is easy to obtain u,,(x, t) for m > 1, at Mth
order, we have

u(x,t) = Zum(x7 1),

m=0

(2.14)

when M — oo we get an accurate approximation of the origi-
nal Eq. (2.1).

3. Solution of the given problem by a newly proposed method

We first consider the following time-fractional BBM-Burger
equation as (Fakhari et al., 2007).

2
D‘fufuvy,v,+uvx+(%) =0, t>0, O0<a<l, (3.1)
with initial condition

u(x,0) = sec i’ (g) (3.2)

Applying the Laplace transform on both sides in Eq. (3.1) and
after using the differentiation property of Laplace transform
for fractional derivative, we get

s*Llu(x, )] — s*u(x,0) + L{ux — e + (“;) } =0. (33

On simplifying

u

" 1 2 (X —a ? _
L) = seei? (3) 45 L -t (1) [ <0 34)
We choose the linear operator as
£[p(x, t9)] = LI$(x, 1;.9)], (3.5)

with property £[c] = Owhere c¢ is constant.
We now define a nonlinear operator as

NI (x,150)) = Lid(, )] — - seci? ()

+s5°L {(j)x — ¢+ (%2> j . (3.6)

Using the above definition, with assumption H(x, t) = 1, we
construct the zeroth order deformation equation

(1 - Q£ [¢(x,1:9) — uo(x, 1)] = qhN[¢(x, 1; q)]. (3.7)
Obviously, when ¢ = 0 and ¢ = 1,

O(x,1,0) = up(x,1), d(x,61) =u(x,1). (3.8)
Thus, we obtain the mth order deformation equation
Lty (x, 1) = spttm—1 (X, )] = ARy (-1, X, ). (3.9)

Operating the inverse Laplace transform on both sides in Eq.
(3.9), we get

U (X, 1) = Yt (X, 1) + gL " [R(i,_1, X, 1)], (3.10)

where

1
Ry (ify-1,%,1) = Lty 13, 1)] = { secly’ (’Z‘)

m—1
+ SixL (um—] )x - (um—l )xxt + Zumlk(uk)x:| .
k=0
(3.11)
Now the solution of mth order deformation Eq. (3.9)
(X, 1) = (2,0 + Wity — (1 = 1,,) sec i’ G)
+ h[‘71 (SiaL[(um—l)x - (u’”—l)xxl
m—1
+ Zum—l—k(uk)x:| . (3.12)
k=0

We start with initial condition up(x, ) = u(x,0) = sechz(i")7
and the iterative scheme (3.12), we obtain the various iterates

_he (3 + cosh (2)) sech*(3) tan (%)

u(x,t) =
e 1) 4T (e + 1) ’
e 12’(— 104423 cosh (%)Jrlﬁcosh x+cosh (h)) sech® (l)
wy(x, ) = 1287 (2211 - :
H(1-+1)* (3+cosh (3)) sec/i* () tanh (3)
- 4T (a41)

72T («) sec h (%) (sinh(%)+7 sinh (37‘)—1 14 sinh (%))

+ 28T (22)T (1) :
Proceeding in this manner, the rest of the components u,(x, f)
for n = 2 can be completely obtained and the series solutions
are thus entirely determined.

Finally, we have

u(x,t) = up(x, 1) + ium(x, t).

m=1

(3.13)

However, mostly; the results given by the Adomian decompo-
sition method and homotopy perturbation transform method
converge to the corresponding numerical solutions in a rather
small region. But, different from those two methods, the
homotopy analysis transform method provides us with a
simple way to adjust and control the convergence region of
solution series by choosing a proper value for the auxiliary
parameter 7. So the valid region for 7 where the series con-
verges is the horizontal segment of each 7% curve. When we
choose o = 1 then clearly, we can conclude that the obtained
solution > u, (x,f) converges to the exact solution
u(x, 1) = sech’ (3 — 1), which is an exact solution of the stan-
dard BBM-Burger equation.

Es(u)

Figure 1

Absolute error Es(u) at « = 1, 1 = —1.
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Table 1 Comparison study between the exact solution and Sth term approximations by FHATM.

X t Exact solution Appr. solution at o« = 1, 7 = —1 Esw)ata =09, 1 = —1 Esw)atoa =11 = —1
20 0.01 0.0001825 0.0001828 1.60588 x 10~° 3.03359 x 1077
15 0.01 0.0022210 0.0022247 1.95707 x 10> 3.7165x 10~°
10 0.01 0.0267237 0.0267690 2.13530x 10* 4.52894 % 10°°
20 0.001 0.0001817 0.0001817 2.8241x 1077 3.01818 x 10~%
15 0.001 0.0022110 0.0022114 3.43703 x 10~° 3.69715x 1077
10 0.001 0.0266053 0.0260985 3.39917x 10°° 4.50091 x 10~°

4. Numerical result and discussion

The simplicity and accuracy of the proposed method are illus-
trated by computing the absolute errors Es(x, )=
lu(x,t) — @is(x,t)| where u(x, ) are the exact solutions and
its(x, 1) are approximate solutions of (1.1) obtained by truncat-
ing the respective solution series (3.13) at level m = 5. Fig. 1
represents the absolute error which show our approximate
solution converges to the exact solution very rapidly. From
Fig. 1 of absolute error, it is seen that our approximate solu-
tions obtained by fractional homotopy analysis transform
method converges very rapidly to the exact solutions in only
Sth order approximations. It achieves a high level of accuracy.
The accuracy of the result can be improved by introducing
more terms of the approximate solutions.

From Table 1, it is observed that the values of the approx-
imate solution at different grid points obtained by the pro-
posed method are close to the values of the exact solution
with high accuracy at the level m = 5. It can also be noted that
the accuracy increases as the value of n increases.

5. Concluding remarks

In this work, the authors have proposed a very effective meth-
od called the fractional homotopy analysis transform method
(FHATM) for solution of time fractional BBM-Burger equa-
tion. The proposed iterative scheme finds the solution without
any discretization, linearisation or restrictive assumptions. It
may be concluded that FHATM is very powerful and efficient
in finding the analytical solutions for a wide class of boundary
value problems. The method gives more realistic series solu-
tions that converge very rapidly in physical problems.
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