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Abstract We introduce the concepts of gm-continuity, GM-converge to a point on generalized
topology and minimal structure spaces. Also, we introduce the notions of gm-T, space, gm-closed
graph and strongly gm-closed graph on generalized topology and minimal structure spaces. We
obtain several characterizations and properties of gm-continuous functions by using the interior
operator and closure operator defined on both a generalized topology g and a minimal structure
m. Moreover, we investigate some properties for gm-continuous functions by using the notions

of gm-T, space, gm-closed graph and strongly gm-closed graph.
© 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

The concept of minimal structure (briefly m-structure) was
introduced by Popa and Noiri (2000). Also they introduced
the notions of my-open sets and my-closed sets and character-
ize those sets using my-closure and my-operators, respectively.
They introduced the notion of M-continuous functions as
functions defined between minimal structures. They showed
that the M-continuous functions on minimal structures have
properties similar to those of continuous functions between
topological spaces. Csaszar (2002) introduced the concept of
generalized neighborhood systems and generalized topological
spaces. He also introduced the concepts of continuous func-
tions and associated interior and closure operators on general-
ized neighborhood systems and generalized topological spaces.
In particular, he investigated characterizations for the general-
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ized continuous function by using a closure operator defined
on generalized neighborhood systems. Recently, the concept
of generalized topology and the concept of minimal structure
have met the attention of many researchers (see Al-Omari
and Noiri, 2013; Boonpok, 2010; Keun and Kim, 2011;
Modak, 2013; Noiri and Popa, 2010; Vasquez et al., 2011;
Zakari, 2013a,b; Zvina, 2011).

Buadong et al. (2011) introduced the notion of the general-
ized topology and minimal structure spaces (briefly GTMS).
They studied some properties of closed sets on the space. In
this paper, we introduce the concept of gm-continuous func-
tions on generalized topology and minimal structure spaces.
We obtain several characterizations and properties of gm-con-
tinuous functions by using the interior operator and closure
operator defined on both a generalized topology g and a min-
imal structure m. Moreover, we introduce the notions of gm-T,
space, gm-closed graph, strongly gm-closed graph and investi-
gate some properties for gm-continuous functions by using
these notions.

1815-3852 © 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.
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2. Preliminaries

Definition 2.1 Csaszar (2002). Let X be a nonempty set and g a
collection of subsets of X. Then g is called a generalized
topology (briefly GT) on X if and only if ) € g and G; € g for
i € [0 implies |J,.,Gi € g. We call the pair (X,g) a general-
ized topological space (briefly GTS) on X. The elements of g are
called g-open sets and the complements are called g-closed sets.

The closure of a subset 4 in a generalized topological
space (X,g), denoted by c¢,(A4), is the intersection of general-
ized closed sets including 4, i.e., the smallest g-closed set con-
taining A. The interior of A, denoted by i,(A), is the union of
generalized open sets contained in 4, i.e., the largest g-open set
contained in 4.

Proposition 2.1 Min (2009). Let (X, g) be a generalized topo-
logical space. For subsets A and B of X, the following properties
hold.

(1) cg(X —A) =X —i,(4) and iy(X —A) =X — c,(4);

(2) ifX —Aeg, thenc,(A) =Aandif A € g, then iy,(4) = 4;
(3) if ACB, then c,(A) C c,(B) and iy(4) Ci,(B);

(4) ACc,(A) and iy(4) C 4;

(5) co(ce(A)) = co(A) and iy (ig(4)) = ig(A).

Proposition 2.2 Min (2009). Let (X, g) be a generalized topo-
logical space and A C X. Then

(1) x €ig(4) if and only if
that x € V C 4;

(2) x € cg(A) if and only if VN AF#D for every g-open set V
containing Xx.

there exists V € g such

Definition 2.2 Csaszar (2002). Let (X,g,) and (Y,g,) be two
generalized topological spaces. Then f: (X,g,)—(Y,g,) is
said to be g-continuous if f~'(V) is a g,-open subset of X for
every g,-open subset of Y.

Definition 2.3 Popa and Noiri (2000). Let X be a nonempty set
and P(X) the power set of X. A subfamily m of P(X) is called a
minimal structure (briefly m-structure) on X if O € m and
Xem.

By (X, m), we denote a nonempty set X with an m-structure
m on X and it is called an m-space. Each member of m is said to
be m-open and the complement of an m-open set is said to be
m-closed.

Definition 2.4 Popa and Noiri (2000). Let X be a nonempty set
and m an m-structure on X. For a subset 4 of X, the m-closure
of A denoted by ¢, (4) and the m-interior of A denoted by
in(A), are defined as follows:

(1) cw(d)=N{F:ACF,X — F € m};
(2) in(d) = U{U : UCA,U € m).

Lemma 2.1 Maki et al. (1999). Let X be a nonempty set and m a
minimal structure on X. For subsets A and B of X, the following
properties hold.

(1) cu(X —A) =X —i,(4) and i,,(X —A4) =X — ¢,,(4);

(2)if X—Ae€m, then c,(A)=A4and if A€ m, then
in(4) = 4;

(3) (’m(m) = @, Cm(X) :X7 lm(w) = w and lm(X) :X3

(4) if ACB, then ¢, (A) Cc,(B) and i,,(4) Ci,(B);

(5) ACcu(A4) and i, (4) CA;

(6) Cnlen(A)) = n(4) and inin(4)) = in(4).

Lemma 2.2 Maki et al. (1999). Let X be a nonempty set with a
minimal structure m and A a subset of X. Then x € ¢,,(A) if and
only if UN A#D for every m-open set U containing x.

Set M(x) ={U € m:x € U}Noiri and Popa (2002/2003),
we have the following definition.

Definition 2.5 Popa and Noiri (2000). Let (X, m;) and (Y, m;)
be two minimal structures. Then f: (X, m;)—(Y,my) is said
to be M-continuous if for x € X and V € M(f(x)), there is
U € M(x) such that f(U) C V.

Theorem 2.1 Popa and Noiri (2000). Letf: (X,m)—
(Y,my) be a function. Then the following properties are
equivalent:

(1) fis M-continuous;

(2) flem (4)) Cem (f(4)) for ACX;
(3) e (f71(B)) S/~ (cn,(B)) for BCY;
(4) " (iny(B)) iy (/' (B)) for BCY.

Definition 2.6 Buadong et al. (2011). Let X be a nonempty set
and let g be a generalized topology and m a minimal structure
on X. A triple (X, g, m) is called a generalized topology and min-
imal structure space (briefly GTMS space).

Definition 2.7 Buadong et al. (2011). Let (X, g, m) be a GTMS
space. A subset 4 of X is said to be a gm-closed if
cq(cm(A)) = A. A subset 4 of X is said to be a mg-closed if

em(ce(A)) = A.

Lemma 2.3 Buadong et al. (2011). Let (X,g,m) be a GTMS
space and A C X. Then

(1) A is gm-closed if and only if ¢,,(A) = A and c,(4) = 4;
(2) A is mg-closed if and only if ¢,,(A) = A and c,(4) = A.
Proposition 2.3 Buadong et al. (2011)Let (X, g,m) be a GTMS
space and A C X. Then A is gm-closed if and only if A is mg-
closed.

Definition 2.8 Buadong et al. (2011) Let (X, g,m) be a GTMS
space and A4 a subset of X. Then A4 is said to be closed if A is
gm-closed. The complement of a closed set is said to be an open
set.

Through this paper, GMO(X) denotes to the collection of
all open subsets of a GTMS space (X, g,m).

Definition 2.9 Buadong et al. (2011). Let (X, g, m) be a GTMS
space. A subset 4 of X is said to be a s-closed if cq(A) = ¢, (A).
A subset 4 of X is said to be a c-closed if cq(cy(A)) =
Cm (cg(A)) The complement of a s-closed (resp. c-closed) set is
called a s-open (resp. c-open) set.
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Proposition 2.4 Buadong et al. (2011). Let (X,g,m) be a
GTMS space and A CX. I f A is closed, then A is s-closed.

Proposition 2.5 Buadong et al. (2011). Let (X,g,m) be a
GTMS space and ACX. I f A is s-closed, then A is c-closed.

Theorem 2.2 Buadong et al. (2011). Let (X, g,
space and A C X. Then

m) be a GTMS

(1) A is closed if and only if there exists a s-closed set B such
that A = ¢;(B);

(2) A is closed if and only if there exists a c-closed set B such
that A = cy(c(B)).

3. gm-continuous functions

Definition 3.1 A function f: (X,g,,m)—(Y,g,,m2) is said to
be gm-continuous at a point x € X if for every open set
containing f(x), there exists an open set U containing x such

that f{(U)C V.

A function f: (X, g;,m;)—(Y,g,,my) is said to be gm-
continuous if it has this property at each point x € X.

Theorem 3.1 Ler f:(X,g,,m)—(Y,g,,my) be a function.
Then the following properties are equivalent:

(1) fis gm-continuous at x € X;

(2) x € ig, (i, (f7'(V))) for every open subset
containing f(x);

(3) x € ig, (im, (f~"(B))) for every c-open subset B of Y such
that x € f~"(ig, (im,(B)));

(4) x € iy, (im, (f7'(B))) for every s-open subset B of Y such
that x € £~ (ig, (im, (B))):

(5) xe f~YF) for every closed subset F of Y such

that x € cg, (c, (f 7' (F))).
(6) x € [~ (cq,(ca(B))) for every c-closed subset B of Y such

that x € cg, (¢, (f 7 (B)));
(7) x € [ (cq,(cm, (B))) for every s-closed subset B of Y such

that x € g, (¢, (f~(B))).

V oof Y

Proof

(1) = (2) Let V' be any open subset of Y containing f'(x). By
(1), there exists an open subset U of X containing x
such that f(U) C V. Since U is an open subset of X,
we have x € ig, (i, (f ' (V)))-

(2) = (3) Let B be any c-open subset of Y such that
x € f 7 (ig,(im,(B))). Then f(x) € iy, (im,(B)). Since
B is c-open, then i, (i,, (B)) is open, from Theorem

22 (2). By (2), we have x € g (im (/" (ie
(lmz(B))))) glgl (iml(_fil(B))). Hence X € ié’l
(in, (f1(B)))-

(3) = (4) Let B be any s-open subset of Y such that
x € 7" (ig,(im,(B))). Then B is c-open, from Propo-
sition 2.5. By (3), we get x € ig, (i, (f ' (B))).

(4) = (5) Let F be any closed subset of Y such that
x¢ f"YF). Then xeX—fYF)=f1Y-F).
By (). x€ig (in (/T (Y = F))) = ig, (X — cn,

(F1(F)) = X =y (n (F~(F))). Since ¥ —F is
open subset of X and then s-open, from Proposition
2.4. Hence we have x ¢ ¢, (¢, (f 7' (F))).

(5)=(6) Let B be any c-closed subset of Y such that
X € Cay (le (fﬁl(B)))' Then RS Cqy (le (f71 (cgz
(¢my(B)))))- Since B is c-closed, then ¢, (c,, (B)) is
closed, from Theorem 2.2 (2). By (5), x€ /!
(Cg: (sz (B))) .

(6) = (7) Obvious.

= (2) Letx € X and V be an open subset of ¥ containing
f(x). Then x ¢ [~'(Y = V) = £~ (cq, (e (Y = 1))).
since Y —V is closed. By (7), x¢ cg (cm (f7
(¥ = ¥))). Hence x € i, (in, (/' (V).

(2) = (1) Let V be any open subset of Y containing f'(x).
Then by (2), x € ig, (im, (f~'(V))), so there exists
an open set U = i, (i,,, (/' (V))) containing x such
that f(U)C V. Hence, [ is gm-continuous at
xeX. O

Theorem 3.2. Let f: (X,g,,m)—(Y,g,,m,y) be a function.
Then the following properties are equivalent:

(1) fis gm-continuous;
(2) f~Y(V) is an open subset of X for every open subset V of Y,
(3) " (igy(imy (B))) C g, (im, (f~'(B))) for every c-open sub-

set Bof Y;

(4) " (ig, (imy (B))) Cig, (i, (f~'(B))) for every s-open sub-
set B of Y;

(5) f7Y(F) is a closed subset of X for every closed subset F of

Y.

’

(6) cq (cm (f1(B))) Qf’l(cgz(cmz(B))) for every c-closed
subset B of Y,

(7) cg(cm (f 7' (B))) Cf " (ce,(cuy(B))) for every s-closed
subset B of Y.

Proof

(1) = (2) Let V be any open subset of Y such thatx € f~!(V).
Then f(x) € V. By (1), there exists an open subset
U of X containing x such that f(U) C V. Since U
is an open subset of X, we have x € iy (in,
(/1)) Thus f~1(V) Cig, (i, (f~'(V))). Conse-
quently, f~'(V) =g (in,(f7'(¥))) and then
S7Y(V) is open.

(2) = (3) Let B be any c-open subset of Y such that
x € [ (ig, (in,(B))). Then [(x) € ig, (i, (B)). By
(), /7" (ig,(im, (B))) is open. Then x € iy, (i, (/'
(igz (imz (B))))) g igl (lm] 071 (B))) ThuS X € igl (lml
(1)) Hence S (g, (i, (B))) C iy
(im, (/7' (B)))-

= (4) Obvious.

(4) = (5) Let F be any closed subset of Y such that

x¢ fYF). Then xe X — f Y (F)=/YY-F)=
S (ig, (imy(Y —F))), since Y — F is open. By (4),

X € igl (iml(f‘il(y - F))) = igl (X - le (‘fil(F))) =
X — ¢y (cm (f7'(F))). Then we have x¢c,,
(cn (f71(F))). Hence f~(F) = cq, (e (f(F)))

and then F is closed.
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(5) = (6) Let B be any c-closed subset of Y such that
X € Cé’] (le (‘fil(B))) Then X € Cé’l (le (f71 (ng
(cmy(B))))). Since cq,(cu,(B)) is closed, then by
(5), we get f~'(cg,(cay(B))) is closed and hence
Cg1 (Cm] (f‘il(B))) gfil (ng (sz (B)))

= (7) Obvious.

(7)= (1) Let F be any closed subset of Y and

X € ¢ (Cny (fH(F))). By (7), we have x € f(F).
By Theorem 3.1(5), f'is gm-continuous. [

Theorem 3.3 Let f:(X,g,,m)—(Y,g,,my) be a function.
Then the following properties are equivalent:

(1) fis gm-continuous;

(2) there exists a s-open subset U of X such
that f='(V) = i, (U) for every open subset V of Y;

(3) there exists a c-open subset U of X such
that f~Y(V) = iy, (in, (U)) for every open subset V of Y;

(4) there exists a c-closed subset H of X such
that f~'(F) = cq, (cw, (H)) for every closed subset F of Y;

(5) there exists a s-closed subset H of X such

that f~'(F) = cq, (H) for every closed subset F of Y.

Proof

()= (2) Let V be any open subset of Y. From Theo-
rem 3.2(2), f~'(V) is an open subset of X, since f
is gm-continuous. Then, there exists a s-open sub-
set U of X such that f~'(V) =i, (U), from
Theorem 2.2(1).

(12) = (3) Let V' be any open subset of Y. By (2), there exists
a s-open subset U of X such that /~'(V) = i,, (U).
Since U is c-open, then f~' (V) = iy, (in, (U)).

(3) = (4) Let F be a closed subset of Y. By (3), there exists a
c-open  subset U of X such that
S7'X = F) =iy, (in,(U)), since X —F is open.
Hence, X — [~ (F) = ig, (i, (U)). Thus, f~'(F) =
Co(Coy(X =U)). If H=X—-U, then H is a

c-closed subset of X such that f~'(F)=

681 (cml (H))

(4) = (1) Let Fbe a closed subset of Y. By (4), there exists a
cclosed subset H of X such that f~1(F)=
Cq, (Cmy (H)). By Theorem 2.2 (2), f~'(F) is a closed
subset of X. Thus, f is gm-continuous, from
Theorem 3.2 (5).

(1) = (5) Follows directly from Theorem 3.2 (5) and
Theorem 2.2 (1). O

Definition 3.2 A GTMS-space (X,g,m) is called a s-discrete
GTMS-space if every subset of X is s-closed.

Theorem 3.4 Let [: (X, g,,m)— (Y, g,,ma) be a function such
that (Y, g,,my) be a s-discrete GTMS-space. Then the following
properties are equivalent:

(1) fis gm-continuous;
(2) f(cg (cm (4))) Ty, (e (f(A))) for every subset A of X;
(3) ig, (im, (f(A)) C f (i, (im, (4)))) for every subset A of X.

Proof

(1) = (2) Suppose that A4 is a subset of X. Since f(4) Cc,,
(em(F(4),  then  ACL(F(A)) Cf (e lem
(f(4)))). By Theorem 2.2(1) , cq,(cm,(f(4))) is
closed, since f(4) is s-closed subset of Y. Thus,
7 (e, (cmy (£(A4)))) is closed subset of X, since [ is
gm-continuous. Hence, ¢, (¢, (4)) Cf " (cq, (Cos

(f(4)))), this that /(¢ (e (4))) C
Cey (Cmy ((4)))-
(2) = (3) Obvious.
= (1) Let Fbe a closed subset of Y. Then ¢, (c,,,(F)) = F.
By (2), we have c,(c,(f~'(F))) Cf~'(F). Thus,
SYF) is closed subset of X and hence [ is gm-
continuous. [J

implies

Theorem 3.5. Let f: (X,g,)—(Y,g,) be a g-continuous func-
tion and f: (X,m)—(Y,my) be a M-continuous function.
Then the function f: (X, g,,m)— (Y, g,,ma) is gm-continuous.

Proof. Let 7 be any open subset of Y. Since f'is g-continuous,
we have f'(V) =i, (f'(V)). By Theorem 2.1, we have
SV =i, (V) Cin, (F1(V)), since f is M-continuous.
Thus [~ (V) Ciw, (i, (f'(V))). Consequently, f~'(V) is open
subset of Y. [

From the above theorem, we have the following implication
but the reverse relation may not be true in general.

M — continuity + g — continuity =- gm — continuity

Example 3.1. Let X = Y = {a,b,c}, g, = {0,{a}, {b},{a,b}},
8 = {@, {a},{a,b}}, m = {@7 {a}.{b}.{a,b}, X}, m> = {@, {a},
{b},{a,b},{a,c},X}.1If f: (X, g, m1)—(Y, g,,my) defined by
fla) = a,f(b) = b,f(c) = ¢, then f'is gm-continuous but it is not
M-continuous, since {a, ¢} C Y but £~ (i,, {a,c})) = {a,c} €
im (' ({a, ¢})) = {a}.

Example 3.2. Let X =Y ={a,b,c}, g, = {0, {c}{a,c}}, & =
{0.{a}, {c} . {a,c}},m = {0,{a},{b}, {c},{a,b},{a,c}, X},
m; = {@7{0},{17}7{&,[)},/\/}. It f: (nglvml)_>(yvg21m2)
defined by f(a) = ¢, f(b) = b,f(c) = a, then fis gm-continuous
but it is not g-continuous, since {c} is g,-open but /! ({c}) =
{a} is not g,-open .

Definition 3.3. Let X be a nonempty set. Then the collection "
of subsets of X is called a gm-family on X if NI'#().

Definition 3.4. Let (X, g,m) be a GTMS space and ' a gm-
family on X. Then we say that a gm-family I'GM-converges
to xe X if GM(x)CT, where GM(x)={Ue€ GMO(X):
x e U}

Letf: (X,g,)—(Y,g,) be a function. Then it is obvious that
AT)={f(4): A €T} is a gm-family on Y.

Lemma 3.1. Ler (X, g,m) be a GTMS space. Then the following
properties hold.
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(1) Let U be an open subset of X. Then x € U if and only
if U € T whenever a gm-family T GM-converges to x;

(2) Let F be a closed subset of X. Then x € F if and only if
there exists a gm-family T such that T GM-converges to
xand X —F ¢ T.

Proof. (1) Let U be an open subset of X and x € X. Then
U € GM(x). Hence if a gm-family I" converges to x, then it fol-
lows that U € T since GM(x) CT.

Conversely, suppose that for every gm-family I' converges
to x,UeTI. Then since GM(x)GM-converges to x, by
hypothesis, we get U € GM(x) and hence x € U.

(2) Let F be a closed subset of X and x € F. Then
X—F¢GM(x). Let T'=GM(x), then T is a gm-family
satisfying the condition.

For the converse, Let I' be a gm-family GM-converges to x
and X — F¢ T. Since GM(x) CT, we get X — F¢ GM(x) and
soxeF. O

Theorem 3.6. Let f: (X, g,,m)—(Y,g,,my) be a bijective
function. Then f is gm-continuous if and only if for a gm-fam-
ily T GM-converging to x € X, f(I') GM-converges to f(x).

Proof. Suppose f'is gm-continuous and I' is a gm-family GM-
converging to x € X. Let V € GM(f(x)). Then x € f~'(V). By
gm-continuity, f~'(V) is an open subset of X. By Lemma
3.1(1), we have f~'(V) € T'. By surjectivity, V € f(T') and hence
GM(f(x)) C/A(I"). Consequently, f/(I')GM-converges to f(x).

For the converse, Let x € X and ¥ be any open subset of ¥
containing f{x). Then Ve GM(f(x)). Since GM(x) GM-
convergences to x, by hypothesis, we get GM(f(x))C
f(GM(x)). From F is injectivity, it follows f~!(V) € GM(x).
If U= f~'(V), then U is an open subset of X containing x such
that f(U) C V. Hence f'is gm-continuous. [

The gm-continuity does not satisfy if the condition of The-
orem 3.6 doesn’t exist and vice versa.

Example 3.3. Let X = Y = {a,b, ¢}, g, = {0, {a}, {P},{a,b}}.
& = {(2)7 {a}v {a7 b}}’ mp = {®7 {a}1 {b}7 {avb}v {av C}v X}’ my =
{0,{a},{b},{a,b}, X}. If f: (X, g, m1)—(Y,g,,m>) defined
by fla) = ¢,f(b) = a,f(c) = b. Then f'is bijective function and
we have, GM(a)GM-converges to a, but f(GM(a)) does not
converge to fla), since f(GM(a))= {{c},{a,c}}C
GM(f{a)) = 0. On the other hand, {a,b} is an open subset of
Y but f7'({a,b}) = {b,c} is not open in X. Thus, f is not
gm-continuous.

Definition 3.5. Let f: (X, g,,m)—(Y,g,,my) be a function.
Then fhas a gm-closed graph (resp. strongly gm-closed graph)
if for each (x,y) € (X x Y) — G(f), there exists an open subset
U containing x and an open subset V' containing y such that
(Ux V)NG() =0 (resp. (U x cg, (e, (V) NG(f) = D).

Lemma 3.2. Let f: (X,g,,m)—(Y,g,,my) be a function.
Then f has a gm-closed graph (resp. strongly gm-closed graph)
if and only if for each (x,y) € (X x Y) — G(f), there exists an
open subset U containing x and an open subset V' containing y
such that flU)NV =0 (resp. f{lU) N g, (cmy(V))) =0).

Proof. Obvious. [

Definition 3.6. A GTMS space (X, g, m) is called gm-T, space
if for any pair of distinct points x and y in X, there are disjoint
open sets U, V such that x € U,y € V.

Theorem 3.7. Let f: (X, g,,m)—(Y,g,,ms) be a gm-continu-
ous function. If (Y, g,,m,) is gm-T> space, then f has a strongly
gm-closed graph.

Proof. Let (x,y) € (X x Y) — G(f). Then f(x)#y. Since Y is
gm-T, space, there are disjoint open sets U,V such that
f(x) € U,y € V. This implies that ¢, (c,,(¥))) N U = 0. For
f(x) € U, from gm-continuity of f, there exists an open set G
containing x such that f{G) C U. Consequently, we can say
that there exist open sets G, V' containing x, y respectively, such
that f(G) N ¢y, (cmy(V))) =0 and so by Lemma 3.2, f has a
strong gm-closed graph. O

Corollary 3.8. Let f: (X, g,,m)—(Y,g,,my) be a gm-contin-
uous function. If (Y,g,,my) is gm-T> space, then f has gm-
closed graph.

Theorem 3.9. Let f: (X, g,,m)—(Y,g,,my) be an injective
gm-continuous function and Y is gm-T, space. Then X is gm-
T> space.

Proof. Obvious. [

Theorem 3.10. Let f: (X, g,,m)—(Y,g,,ma) be an injective
gm-continuous function with gm-closed graph. Then X is gm-
T> space.

Proof. Let x; and x, be any distinct points of X. Then
Sx))#f(x2), so (x1,/(x2)) € (X x Y) — G(f). Since f has gm-
closed graph, there exists an open subset U containing Xx;
and an open subset V' containing f(x,) such that (U)NV =
(). Since fis gm-continuous, /~!(¥) is an open subset containing
x5 such that UNf~'(V) = (. Hence X is gm-T, space. [J

Corollary 3.11. Let f: (X,g,,m)—(Y,g,,m2) be an injective
gm-continuous function with strongly gm-closed graph. Then X
is gm-T5 space.

4. Conclusions

Through this paper, we introduced many concepts on general-
ized topology and minimal structure spaces namely, gm-con-
tinuous functions, gm-T, space, gm-closed graph and
strongly gm-closed graph. We obtained several characteriza-
tions and properties of gm-continuous functions by using these
notions. It is worth mentioning that for the first time, we
offered the concept of gm-continuity on generalized topology
and minimal structure spaces to open the horizons for
researchers to expand the study of other types of continuity
on these spaces. Although, we could not introduce the concept
of the continuity on generalized topology and minimal struc-
ture spaces as previously defined by Duangphui et al. (2011),
we were able to provide a appropriate definition which enables
us to find the relationship between it and the continuity on
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generalized topological spaces (Csaszar, 2002) and the continu-
ity on minimal structures (Popa and Noiri, 2000), as we have
seen in Theorem 3.5. The difficulty is due to the generalized
topology and minimal structure spaces are determined by
two different types of spaces (generalized topological space
and minimal structure) in reverse to the bigeneralized topolog-
ical spaces, which are determined by the same type of spaces.
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