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The nonlocal symmetries for the special K(m,n) equation, which is called KdV-type
K(3,2) equation, are obtained by means of the truncated Painlevé method. The nonlocal symme-
tries can be localized to the Lie point symmetries by introducing auxiliary dependent variables
and the corresponding finite symmetry transformations are computed directly. The KdV-type
K(3,2) equation is also proved to be consistent tanh expansion solvable. New exact interaction exci-

tations such as soliton—cnoidal wave solutions are given out analytically and graphically.
© 2016 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Rosenau and Hyman introduced and studied the KdV-type
equations with nonlinear dispersion

u+ W, + W), =0, mn>1, (1)

to understand the role of nonlinear dispersion in pattern
formation in Rosenau and Hyman (1993). The K(2,1) and
the K(3, 1) models are just the usual KdV and modified KdV
equations. The integrability of the models K(—1,-1),
K(3,-1),K(~1,-2), and K(-2,—-2) was proved by means of
an equivalent approach and the Lagrange transformation by
Rosenau in Rosenau (1996), and the author also analyzed
the interaction of traveling compactons. The authors classified
the Painlevé integrability of the Eq. (1) and obtained the single
soliton and compacton solutions in Lou and Wu (1999),
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Marinakis (2015) and Pikovsky and Rosenau (2006). The
explicit solutions and the stability of the compacton solutions
are studied extensively by many authors (Biswas, 2008, 2010b;
Dey and Khare, 1998; Ebadi and Biswas, 2011; Inc et al., 2013;
Rosenau, 1996, 1994; Rosenau et al., 2007; Rosenau, 1998).
The traveling wave solutions and source solutions of the Eq.
(1) are discussed from the point of view of the theory of sym-
metry reduction (Bruzon and Gandarias, 2010; Wang and
Lou, 2009) and the 1-soliton solution and topological soliton
solutions are studied in Biswas (2010a). The solitary solutions,
conservation laws, cnoidal waves and snoidal waves for the
other types of the nonlinear equations such as D(m,n) equa-
tion and R(m,n) equation are discussed in detail in Biswas
and Kara (2011), Biswas and Triki (2011), Ebadi et al.
(2013), Antonova and Biswas (2009) and Girgis and Biswas
(2010).

Recently, abundant interaction solutions among solitons
and other complicated waves including periodic cnoidal waves,
Painlevé waves and Boussinesq waves for many integrable sys-
tems were obtained by nonlocal symmetries reduction and the
consistent tanh expansion method related to the Painlevé anal-
ysis (Cheng et al., 2014; Lou et al., 2012; Lou et al., 2014).
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Hinted at by the results of nonlocal symmetry reduction, Lou
found that the symmetry related to the Painlevé truncated
expansion is just the residue with respect to the singular man-
ifold in the Painlevé analysis procedure and called residual
symmetry (Gao et al., 2013; Hu et al., 2012; Lou, 2013). Fur-
thermore, the author proposed a simple effective method, the
consistent tanh expansion (CTE) method in Lou (2015), which
is based on the symmetry reductions with nonlocal symmetries.
The CTE method can be used to identify CTE solvable systems
and it is a more generalized but much simpler method to look
for new interaction solutions between a soliton and other types
of nonlinear excitations (Chen and Lou, 2013; Chen et al.,
2015). The new interaction solutions using the CTE method
in the paper are all analytical exact solutions, which are differ-
ent from those ones in Sheikholeslami et al. (2015, 2012) and
Sheikholeslami and Ganji (2015) using the Adomian decompo-
sition method and semi analytical method. All these analytical
and numerical solutions can help us to learn more about the
K{(m,n) equation.

For the special m = 3, n =2 in the Eq. (1), we will study
the nonlocal symmetries related to the Painlevé analysis and
different interaction solutions from the consistent tanh expan-
sion method for the KdV-type K(3,2) equation (Lou and Wu,
1999; Marinakis, 2015; Inc et al., 2013)

w+ (1), + () = 0. 2)

The outline of the paper is as follows. In Section 2, the non-
local symmetries related to the Painlevé truncated expansion
are obtained and the corresponding finite transformation is
derived by solving the initial value problem of the enlarged sys-
tem. Section 3 is devoted to the consistent tanh expansion
method for the KdV-type K(3,2) Eq. (2) and different interac-
tion solutions among different nonlinear excitations. Summary
and discussions are given in the last section.

2. Nonlocal symmetries and its localization for the KdV-type
K(3,2) equation

In Ref. Lou and Wu (1999), the KdV-type K(3,2) Eq. (2) is
proved to be Painlevé integrable and the truncated Painlevé
expansion reads

u="215 1y, (3)

9P

by the usual leading order analysis where ug, u;, u, are func-
tions to be determined later and ¢ = ¢(x, ¢) is an arbitrary sin-
gularity manifold. Substituting the Eq. (3) into the Eq. (2) and

collecting the coefficients of different powers of
¢, j=0,-1,-2,...,—7), we have

up = =20¢5, =206, )
5600¢A‘(3¢§X + ¢i¢,\'XXX - 4¢X¢,¥X¢XX,\‘) = 07 (5)

1800¢% . — 2400¢> .. p,rr + 40, + 80022 . = 0, (6)

Uy + 3“%“2){ + 6“2,{”2,\‘)( + 2“2“2,\‘):)( =0. (7)

It is clear that the Eq. (7) is just the Eq. (2) with the solution
up and the residual u; is the symmetry corresponding to the
solution u, based on the residual symmetry theorem in Lou
(2013). So the truncated Painlevé expansion

2042 20¢,,
u=— L — =+, 8)
¢ ¢
is an auto-Bdcklund transformation between the solutions u
and u, if the function ¢ satisfies the Egs. (5) and (6).
For the nonlocal symmetry u;, the corresponding initial
value problem is

B 0 )]y = u, 9)

de

with € being an infinitesimal parameter. In order to localize the
nonlocal symmetry u;, we introduce five new dependent vari-
ables by requiring

b.=f fi=8

Then the linearized equations of the prolonged system of
(5)—(7) and (10) are listed as follows

&y = hv hx = k7 d)/ =m. (10)

56001’ c* + 16800g° ¢’ — 44800fgho’ + 50400/g° ¢
+ 16800/ ke’ — 224001 g6" — 22400/ ha® = 0, (11)

40£ 6™ + 72008 5% — 4800gfha? — 2400g*fo" — 2400g%ha”
+ 120 me” + 1600 ha” + 1600/h%c” = 0, (12)

a? + 3u§0ff + 6u20" Uy + OUp O + 602 1y

+ 2”20—?;@ + 2O—u2 Uyxx = 07 (13)
o? = oM. (14)

It is not difficult to find that the solution of the Egs. (11)—
(14) has the form
64) = _¢2> " :20g7 (;f: _2f¢7 of= _2f2 _2g¢7
o' =—6fg—2ho, o =—6g>—8h—2kd, ¢"=-2m¢p. (15)

Then the corresponding initial value problem becomes

d df dg

di, . Y I o .\
I - 20g7 de - d) ) de - 2f¢7 de - 2f 2(/)g7
D e 21,

de

dk O »

e —6g”~ — 8fh — 2k¢, A —2me,

h(e)| g =2, P(e)leg =, Sle)| o =1,

g(6)|(:0 =4 h(e)‘(:o = ha

k(€)|e—g =k, 1ia(€)] g = m.

The solution of the initial value problem for the enlarged
system (5)—(7) and (10) can be written as

qu)= ¢ /}: f §= g . 2€f2
Ited” 7 (1+ep) (1+ed)’ (1+ep)’’

- h B 6¢fg 6€eXf . m

" Urew) ey Ut Uty

b s 00— 20 %P 0P

# d(1+ed) F(1ch) 6 (1+ep)
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k68 +8fh 68 +8fh  36fg
(1+ep)  d(1+ed)  d(l+ed)’ ¢ (1 +ed)*
727 72¢f 727* 241
- Y 3+ 3 3T 3 5
P(1+ed)  ¢*(1+ed)  ¢*(1+eh)

k=

¢*(1+eg)’*
N 36ef 24
P*(1+ep)”  ¢*(1+ep)

Using the finite symmetry transformation, one can obtain
solitary wave solution for the Eq. (2) with the trivial solution
uy = 0 by supposing the function ¢ as

¢ =1+exp(kx +1It), (16)

where k and / are arbitrary constants. The function (16) is the
solution of (5) and (6) only with the relation

1= -5k (17)

Then substituting the Eq. (16) with (17) into the Eq. (8), one
can obtain the solitary wave solution for the KdV-type K(3,2)
Eq. (2). If selecting the nontrivial seed solution and different
types of the function ¢, one can obtain much more exact solu-
tions of the Eq. (2) and the main purpose of the paper is to
study the new interaction solutions from the CTE method,
which are discussed in detail in the next section.

3. Consistent tanh expansion solvability and interaction solutions

In this section, the consistent tanh expansion method is devel-
oped to find the interaction solutions between solitons and
other types of nonlinear waves such as cnoidal periodic waves,
Airy waves and so on. By the leading order analysis for the
KdV-type K(3,2) Eq. (2), we can take the following truncated
tanh function expansion

u = uy + u; tanh(w) + u, tanh? (w), (18)

where uy, u;,u; and w are functions of (x,7) to be determined
later. Substituting (18) into the K(3,2) Eq. (2) and vanishing
the coefficients of different powers of tanh(w), we have

5 (8wi + 3w — 4wxwxxx)

U, = 720tt’i, uy = 20wy, U=

2 ?
3wl

(19)
5600w, (314{3\,7\, — AW W Wy + wi Worer — Wiy wi) =0, (20)

800w§_ W Wyrrr + 3200w§ + 10400w§_ wixx + 6400”’i Wry

+ 1600wxwmxwix + 5920014{4.1«»[2 + 40wi.w, — 10200wix

- 2400wi1¢’x,\4x” =0. (21)
The Egs. (20) and (21) are the consistent conditions for the
K(3,2) equation, which is also called w-equation for simplicity.
It is very difficult to solve the nonlinear Egs. (20) and (21)
because of the higher derivatives of the unknown function w.
From the Egs. (18)—(21), we can prove the following nonauto
Biacklund transformation (BT) theorem after direct
calculations.
Nonauto-BT theorem. If w is a solution of the Egs. (20) and
(21), then

5(8 '4. 3w? =AW Wi
u= (8wi+ w;\z W) 420w, tanh(w) — 20w?tanh*(w),
w2 :

(22)

is a solution of the K(3,2) Eq. (2). That is to say, once the solu-
tion of (20) and (21) is known, the corresponding expression u
can be obtained from the nonauto-BT theorem directly,
whence the new solution of the Eq. (2) can be obtained. Some
interesting examples are listed in the following paper.

A quite trivial solution of (20) and (21) has the form

w = kx — 80k’t, (23)

with k& being an arbitrary constant. Substituting the trivial
solution (23) into Eq. (22), the soliton solution of the K(3,2)
Eq. (2) yields
, _ —20K” cosh(—2kx + 160k°1) + 100k”

3cosh(—2kx 4+ 160k°1) + 3 '

In order to obtain the interaction solutions between soli-
tons and other nonlinear excitations of the Eq. (2), we try to
find different solutions to the w-equations (20) and (21). The
first type of the soliton—cnoidal wave interaction solution for
the K(3,2) Eq. (2) possesses the form

k ot k Nt
W:M—l—atanh {sn(w,m)}, (24)
Co C1

then substituting the Eq. (24) into the consistent conditions
(20) and (21), we can find the constant relation

1
Wy = — as (80a5kfc(5, + 400a4k‘1‘cgkocl + 800k§c’%a3kfcg
0€i
+800k; cia?kick + aw,chey + 400kyctak, o + 80k(5)cf)7
m=—1, (25)
where a, ¢y, ¢, ko, ki, w, are arbitrary constants. Substituting

the Egs. (24) and (25) into the Eq. (22), one can arrive at the
special solitary wave solution

15— 5cosh (—%x+21)2

s (26)
3cosh (—1x+21)
by selecting the proper arbitrary constants
a=0.5, =2, c1=1, kg=2, ky=-1, w =-3, (27)

and the density plot of the solution (26) with constant selection
(27) is shown in Fig. 1. Here we give the simple example to
show that we can obtain the same solitary wave solutions of
the nonlinear equation from the CTE method, which can also
be constructed by means of the other traditional methods such
as the function expansion method and the Painlevé truncated
expansion method. Because the K(3,2) equation describes
the motion of the shallow water waves, this simple solitary
solution is just a special solution of the equation.

The soliton—cnodial interaction solution for the K(3,2) Eq.
(2) is obtained by choosing

w = kyx + wyt + E(sn(ksx + wst,m), n,m), (28)

where E, (£, n,m) is the third type of incomplete elliptic inte-
gral and sn(z,m) is the usual Jacobi elliptic sine function. Sub-
stituting the Eq. (28) into the Eq. (22), the constants should
satisfy the relation
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Fig. 1 A special solitary wave solution for u with the constants
selection a = 0.5, ¢co =2, c; =1, kg =2, ky = -1, wy = =3.

kz*(\/gz_l)lq7 I’}’l:l, n:3+\/§

Wy = (40 — 40\/§)k§7 w3 = —80k§ (29)

where k; is an arbitrary constant. Then substituting the Egs.
(28) and (29) into the Eq. (22), one can obtain the soliton—
cnoidal interaction solution for the K(3,2) equation with the
special parameter selection.

4. Summary and discussions

In summary, the nonlocal symmetries of the KdV-type K(3,2)
equation are obtained with the truncated Painlevé expansion
method. In order to solve the initial value problem related to
the nonlocal symmetries, we prolong the KdV-type K(3,2)
equation such that the nonlocal symmetries become the local
Lie point symmetries for the enlarged system. The finite sym-
metry transformations of the enlarged KdV-type K(3,2) equa-
tion are derived by using the Lie’s first principle and the
corresponding finite symmetry group is given out explicitly.
Meanwhile, the KdV-type K(3,2) equation is proved to be
consistent tanh expansion solvable and we find abundant inter-
action solutions between the soliton and cnoidal periodic
waves including arbitrary constants. By selecting the proper
arbitrary constants, these new interaction solutions are dis-
played analytically and graphically from the nonauto-
Bicklund transformation theorem. Furthermore, there exist
other methods to find the exact solutions of the nonlinear sys-
tems such as nonlinearizations, Lie point symmetries and
Darboux transformations, etc. More about the consistent tanh
expansion method and the Bicklund transformation related to
the nonlocal symmetries of the KdV-type K(3,2) equation and
other interesting integrable systems are worthy of further
study.

5. Nomenclature

Consistent tanh expansion method: (CTE method)
For a given derivative nonlinear polynomial system,

) =0, (30)

we look for the following possible truncated expansion
solution

P(x7 t’ Uy Uyy Uy, -«

u=" witanh (w)’, (31)
J=0

where w is an undetermined function of space x and time #,n
should be determined from the leading order analysis of the
Eq. (30) and all the expansion coefficient functions u; should
be determined by vanishing the coefficients of different powers
of tanh(w) after substituting the Eq. (31) into the Eq. (30).

Definition: If the system for u;(j = 0,...,n) and w obtained
by vanishing all the coefficients of powers tanh(w) after substi-
tuting the Eq. (31) into the Eq. (30) is consistent, or, not over-
determined, we call that the expansion (31) is a CTE and the
nonlinear system (30) is CTE solvable.
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