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Abstract This paper is devoted to study the boundedness, ultimate boundedness, and the asymp-
totic stability of solutions for a certain class of third-order nonlinear differential equations using
Lyapunov’s second method. Our results improve and form a complement to some earlier results

© 2016 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The investigation of the qualitative properties of third order
differential equations (with and without delay) have been inten-
sively discussed and are still being investigated in the literature.
By employing the Lyapunov’s method, many good and inter-
esting results have been obtained concerning the boundedness,
ultimate boundedness and the asymptotic stability of solutions
for certain nonlinear differential equations. See, the papers of
Ademola and Arawomo (2013); Ademola et al. (2013);
Burton (2005); Hara (1971); Bao and Cao (2009); Pan and
Cao (2010, 2011, 2012); Omeike (2010); Oudjedi et al. (2014);
Remili and Beldjerd (2014); Remili and Oudjedi (2014);
Remili and Damerdji Oudjedi (2014); Li and Lizhi (1987);
Tung (2007a, b, 2010); Yoshizawa (1966) and their references.

In 1992, (Zhu, 1992), established some sufficient conditions
to ensure the stability, boundedness and ultimate boundedness
of the solutions of the following third order non-linear delay
differential equation

E-mail address: remilimous(@gmail.com (M. Remili).
Peer review under responsibility of University of Bahrain.

http://dx.doi.org/10.1016/j.jaubas.2016.05.002

X"+ ax" + bx' + f(x(t — 1)) = e(1).

Recently, (Graef et al., 2015), studied the following third order
non autonomous differential equation with delay

[g(x(0)x' (1)) + (h(x(0))x' (1) + @(x(0))x' (1) +f(x(t = 1)) = (1),

which is more general than those considered by Zhu (1992).
Simulated by the above reasons, we investigate the bounded-
ness, ultimate boundedness, and the asymptotic stability of
solutions for a kind of third-order differential equation with
delay as follows

[ (0)x" (O] + (h(x' (0)x' (1)) + (@(x(1))x(0)) +f(x(1 = r)) = (1),
(L.1)

where r > 0 is a fixed delay and e, f; g, h, and ¢ are continu-
ous functions in their respective arguments with f{0) = 0. The
continuity of functions e, f, g, h, and ¢ guarantees the exis-
tence of the solution of Eq. (1.1). In addition, it is also sup-
posed that the derivatives f'(x), g'(u), h'(y) and ¢'(x) exist
and are continuous.

The main purpose of this paper is to establish criteria for
the uniform asymptotic stability and, uniform ultimate bound-
edness, of solutions for the third order non-linear differential
Egs. (1.1). The results obtained in this investigation provide
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a good supplement to the existing results on the third order
nonlinear delay differential equations in the literature as
(Zhu, 1992; Graef et al., 2015).

The remainder of this paper is organized as follows. In Sec-
tion 2, we give a theorem, which deals with asymptotic stability
of the zero solution of the delay differential Eq. (1.1) with
e(t) = 0. In Section 3, we introduced theorem which discusses
the uniform boundedness, and uniform ultimate boundedness
of the solutions of Eq. (1.1) for the case e(7) # 0. Eventually,
some conclusions are given in Section 4.

2. Stability

Take general nonlinear non-autonomous delay differential
equation in the form

X =fx,), x(0)=x(t+0), —-r<0<0, =0, (2.1)
where f:Cy — R" is a continuous mapping, f(0) =0,
Cy:={¢ € (Cl-r,0], R") : ||¢|| < H}, and for H, < H, there
exists L(H;) > 0, with |f(¢)| < L(H,) when ||¢| < H,.

Lemma 2.1 Krasovskii, 1963. If there is a continuous func-
tional V(t,$) : [0,+00) x Cy — [0,+00) locally Lipschitz in ¢
and wedges W; such that:

O 1f wi([19l]) < V() V(5,0) =0 and Viy, (t,¢) <O
Then, the zero solution of (2.1) is stable. If in addition
V(t,¢) < Wy(||@||) Then, the zero solution of (2.1) is uni-
formly stable.

@) 1 Wi(Il) < V(e d) <Wa(llgl) and Vg, (t.9) <
—W;(||l)- Then, the zero solutionof (2.1) is uniformly
asymptotically stable.

Now, suppose that there are positive constants
80,81, N0, Iy @, 01, 00, 01 and p; such that the following condi-
tions which will be used on the functions that appeared in Eq.
(1.1) are satisfied:

(1) 0<gy<glu)<g, 0<hy<h(y) <h,
0 <)< o) <o,
(i) £(0)=0,22 > 8y > 0 (x # 0), and |f'(x)|
(i) & < gy <,
(iv) f*” (lg'(u |+Ih( )+ o' (u))du < co.

< 6, forall x,

For ease of exposition throughout this paper we will adopt
the following notations

P(t) = g(x"(1)), 0i(t) =
0x(1) = W (x'(1))x"

and

o1(1) = min{x"(0),x" (1)}, 0:(t) =
pi(1) = min{x(0),x(2)}, py(1) =
(1) = min{x'(0),x'(1)}, (1) =

For the case e(1) =
following theorem.

~

(1)
P(1)’
(1) and 05(¢) =

@' (x()X'(1). (2.2)

max{x"(0),x" (1)}, (2.3)
max{x(0), x(z)},
max{x'(0),x'(1)}.

0, The stability result of this paper is the

Theorem 2.2. If in addition to the hypotheses (i)—(iv), suppose
that the following is also satisfied

. [2g0(ho — 1,81) 280(1, 90 — 51)}
r < min ,
{ g1 012,80+ 1)

Then every solution of (1.1) is uniformly asymptotically stable.

Proof. Eq. (1.1) is equivalent to the following system

X =y
g :% (2.4)
M) — 0:(1)y — 03(1)x — p(x)y — f(x)
O e
. /:y(s)f/(X(S))d&

The main tool in the proofs of our results is the continu-
ously differentiable functional W = W(t,x,,y,,z,) defined as

o) (t)

W([7 xﬁymz) =e = Vl( ,X[,y,,Z[) = 377V17 (25)
where
V= F(x) +flx )y+ﬁy + 2+ yz
! : 2 2P(1) !
+ ul )y +i/ / &)déds, (2.6)

wt):/OIQ(S)d& and Q(1) = [0:(1)] +02(0)] +16(1)];
(2.7)

such that F(x) fo u)du and 0, 0,, 0, are defined as (2.2).
u and A are some positive constants which will be specified
later in the proof. We observe that the above functional V
can be rewritten as follows

Y\ = () cp()( f(X))2_f2(x) |

+—(y+

2 o(x) 2¢(x)  2P(1)
+”1(h(y) +ﬂ/ / £)deds.
Considering the conditions (i) and (iii), we derive that
i (h(y) = mP) o o - me)

It follows that there exists sufficiently small positive constant
0, such that

—_—

w(h(y) — i P(1))
2P(1) 2 Y

= (32_}/2 + 5222. (28)

(z+w P(t)y)* +

Under the hypotheses (i)—(iii), we have

= BT ¢ W)f( )
> 'ulfd ( UI‘PO)
= 53F(X)7

P
53:;41(1— ! )>u1(1—ﬂ> =0.
K ®g H

Moreover, assumption (ii) implies
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L (x) _ o
ez % (2.9)

Clearly, from (2.9), (2.8) and (2.6), we have the following
estimate

v, >52y2+5222+ 939 2+/1/ / &)déds.

m F(x)

(2.10)

Since the integral f (&)dé is positive, we can find a positive
constant k,, small enough such that the last inequality gives

V= ko(x* 4y + 27), (2.11)

where kg = min{8;%}. Observe that

P(1) = ¢ (X" ()" (0).

Thus, from hypotheses (i) and (iv), we have

CU(Z) = /Q ds
v P20 bl
< L[ e [ ol [ s
a1(1) p1(2) e
+OC »+00

where o, 62, p;, P, ¥, Y, are defined as (2.3).
Therefore we can find a continuous function W;(|®(0)])
with

Wi (|®(0))) = 0 and W, (|®(0)]) < W(t, ®).

The existence of a continuous function W, (||4||) which satisfies
the inequality W(z, ) < Wa(||¢])), is easily verified.

Now, the time derivative of the functional Vy(¢,x,,y,,z/),
with respect to the system (2.4) can be calculated as follows

V., = 70 = mo(l? + [%&)h(”] 2100 4

1 t
+—=—=z+ ) x(s ds—)/ (&)d
(P(r) w) [
where

O(1) = — 3 0:(0)2" — 0s(1) (ﬁz(())y +4 y2>
+05(1) Gyz - %xz - ulxy)
S0, (012 + |02<t>|< el + )
100 (3 xy|).

Using the Schwartz inequality |uv| <1 (i

+ Z—é) |02(l)|] 0% +2)

+_|XZ| +
8o

+v?), we obtain

1
+—)|93(t)|(x2 +y +27)
&o

1 h 1
k =fmax{1+u +—=, 14+u +—}.
‘T2 " g " g

Furthermore, from hypotheses (i) and (ii), we get

5 — ho — g
Vl(u) < _[ﬂlfpo -0 — Ar]yz _ {Tll:l + Q( )

+ (g tmr) [ e / (e,

Using again the Schwartz inequality, and making use of the
fact that |f'(x)| < &;, we obtain the following inequalities

t 5 5 t
iy [y o <25 1 [ e @)

and

a3 e <

After some rearrangement we obtain

0
24 < - [:“1(%’0 -0 — (,{ +%) r}yz

ho — 18 51”} 2 ki
- | +—=0()V
{ g% 2g, ko Or

5 1 N
+ {7 (m +5> - 2} /H_y (&)de.
Let

3 +g)
A== +—1,
> I3 %
1 1
My = g — 8y — 2 (20, +—
1= 1P 1T ( #1“'&))”7

Mzzho—mgl_ﬁ.

gf 2g,

(31) > (31 ! 5
—z 4+ — &)de.
2g0 2g0 t—r‘y ( )

4

(2.13)

Hence, the last inequality becomes

V., <

(24)

k
—M1y2 — M222 + k—(])Q(l) V]

Now, in view of the inequalities (2.11) and (2.5) and taking
n= ’Z—‘I‘ we obtain

oty ky
WEM) =e Vrl(m - k_oQ(t) Vi

ko)

<e R [-My' — My,

Provided that

7 < min {2g0(h0—ﬂlg1) 2g0(#1€00_51)}

gor " a2ug +1)
one can conclude for some positive constant D > 0 that
W22.4)([7 Xy Vz) < — DO+ 27),

where

kN
D =e¢ % min {M,, M)}.

From (2.4), W5(||X]|) = D(y* + 2*) is positive definite function.
Hence, Lemma 2.1 guarantees that the trivial solution of
Eq. (1.1) is uniformly asymptotically stable and completes
the proof of the Theorem. [
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3. Boundedness of solutions

Consider
X =flt,x,),x,(0) =x(t +0),—r <60<0 (3.1)
where f: R x C — R", is continuous mappings and takes

bounded sets into bounded sets.

Lemma 3.1 Burton, 1985. Let V(t,¢) : R x C — R be contin-
uous and locally Lipschitz in ¢. If

() Wollx(0) < Vioox) < W) + W ([ wa(ixolas ),
(i) Viay < —Wis(

x(O)+M,

for some M >0, where W;(i =0,1,2,3) are wedges, then the
solutions of (3.1) are uniformly bounded and uniformly ulti-
mately bounded for bound B.

Now, we shall state and prove our main result on the
boundedness and ultimate boundedness of (1.1) with e(¢) # 0.

Theorem 3.2. If hypotheses (i)—(iv) hold true, and in addition
the following conditions are satisfied

() le(?)] < m, for some m > 0,
@) 00 > 52,

_ . 1 2hopo—01g1) (i @o—01)
(i) 1 —mzn{ga Iy i T }

Then every solution of (1.1) is uniformly bounded and
uniformly ultimately bounded provided r satisfies

. [200— (14 o)) go(2(h0—ﬂlgl)—ﬂzgf)
r < min { 5 , 2570] ,
2g, (1109 — 01 — pol1) }
01(2h + Quy + )80 +2) 7

(3.2)

Proof. In the case e(f) # 0 The Eq. (1.1) is equivalent to the
following system

J

X =y
. % (3.3)
7 = —@z = 0x(0)y = 05(1)x — o(x)y — f(x)

P(1)
+/ti‘y(s)f’(x(s))ds+e(t).

As in Theorem 2.2, the proof of this theorem also depends on
the differentiable Lyapunov functional U defined as

U(l, Xty Vs Z!) = e—ﬂ(f) V(ta x,,y,,z,) = e—'?(t) v, (34)
suCh that V(tvxhymzt) = Vl(tvxl7y[>zl)+ VZ(tvxtvyHZl)
where V) is defined as (2.6) and

Vy = %F(x) +%x2 +f(x)y +

@yz + ox(z + h(y)y)

1 2
+ r([)(z +h(y)y),

10 = [ [ 5000+ 0sol]as

)

where Q(1), is defined as (2.7) and 04(¢) = <}l’,((—‘t§> . wand « are
positive constants which will be specified later in the proof. We
have

Vo= o FU) + 5 (4 0)) + 1P
o(x) SON S 2
#050 (y 4 L) L Sl PO
We can verify that
h(y) f(x)
R M T
ho 1,
>;F(X)—%f (x)
* h() 51
> [ (- o
254F(X),

where 04 = hy — % > 0. Thus from (ii) we obtain,
040
v, > —“20)& (3:5)

Clearly, from (3.5) and (2.10) and the fact that the integral
ffr( ) f[’H y2(€)déds is positive, we deduce that

050
V = 6,07 + 6,2 +5T0x2,

where ds = ;3 + d4. Further simplification of the last estimate
gives

V= k(x4 y* + %), (3.6)
where k = min{d,; ‘352‘5“}. From hypotheses (i) and (iv), we have
! 1 (1) , I A0)
[iouoias <o [ ol % [ g
0 8o Jyi 80 Jor(n)

(Ig' ()] + 1 (u)])du

1 +o00 hl +o0
<— H(u du+—/
T8 ) ) 8 J oo
<M < oo,

o0

where a1, 02, ¥, Y, are defined as (2.3).
Therefore we can find a continuous function U;(|®(0)])
with

Ui(|2(0)]) = 0 and U(|P(0)]) < U(1, D).

The existence of a continuous function U,(]|¢||) which satisfies
the inequality U(z, ¢) < Ux(||¢]]), is also easily shown.

Using a basic calculation, the time derivative of the
functional V(¢,x,,y,,z,), along the trajectories of the system
(3.3), results in

V,(3'3) = VIUJ) + Vlz(s,z)’
where
z
Vl(a.s) = Vl(“) + .ulye([) + e(l).

P(1)
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Combining (2.13) with (j) we get

- ,U|61 2 hO_/“llgl 5|r 2
Vm.s) < —[Hl(/’o—bl - (/1+T>V}y - {T_rgo z

01 1 ) ! 2/ H
+ [3 (ul +g—0) - } [ @+ B+ el
Q)0 + 7). (3.7)

We have

Vi, = 0()F() + (1 — p(x))xy + L IPO— M0N0

y

PO
+ 1yz + 1oh(9)y? — 1xXf(x) + poxe(t) + ze(1)
eyl =5+ KOO0

=[5 g 0 00 100

s (v 24520 [,

We can now proceed analogously to (2.12)

(v oy i) [ o1 o

,u251r > 51}111” 5 51}” 2)
< xX°+ y +—z
( 2 2g, 2g,

Wor  hié 0 ) /t )
+ =+ 5—+ vy (&)dE.
( 2 2¢ 28) Jir ©

Using Schwartz inequality and conditions (i), (ii), (j) we obtain

1+ orr
VZ(M) S 04()F(x) — {50 - 2(/71) - 7&} X2

(Moo — 0181 1o 2
_|20%0 — TIs1 M2 p
i 5 2+ )|y
[ 1'51111:| |:‘llz 51V:| l’ll
+ | ohi + y o+ +5— — |y|m
L o 2g, 2 2g, gol |

+ palxlm + [zl + (22 + )[04 (1)
[ 1 1 1
1 2,22, 2
+_(u2+2g0(-+ho)x +3V +2g0z}wxn|

h + +1 [
vo Bl [
Lo 1=

(3.8)
Combining (3.8) and (3.7), and using condition (jjj), we get
sta) < O4(O)F(x) + po|x|m + \y|m +2lz|m — Bx°
= oy’ = B2 + Q1) (¥ + 7 + 2%)

. (al[gowl +2u;0> +24m) z) / P(OE,

where

R |

(3,u or1h
By = iy — 01 — piahy — 1 ( —t 2g01>
h

[537{0 2#12»’1_&_ ]

8i

1
ky = k1+2—( + ) + o+ (1+hy).

8o

Taking

O1[go (i + 1) +2 4+ I
2g

min{ﬁlv /))27 ﬁ3} :ﬁ7

and using (3.2) and (3.6) and (jj) the last estimate becomes

=),

Visay < 0a(0)F(x) +

X

m+ It |y|m + 2|z|m
£o
2 2 2 ka
- B+ +2) +;Q(I)V
It follows that

Viss) < 0a()F(x) = B> + 37 +2°) + By(lx| + |z] + [v1)

ks

where

+—= Q(t) V7
y= ﬂma)c{27

k
h + }
y Mo -
B 8o :

The above estimate may be written as

B

Vi GRS (24074 2) 20007

R R pa))

=0F) - 2) 1 200y

=)+ (vl -7)°
B
2

X

(e -+
3
27

B
L
LOOF(x) =S (3P +y*+2%) +%Q(Z)V+

It is clear that

1 1
Utz = | Vi = (500 +5 10401 ) V]

Putting o = % and « = 4 we obtain

§<x2+y2+z2>+

36,

Uiy (x50 20) < L{* 57 }, for some

L>0.

Hence the conclusions of Theorem 3.2 follow from Lemma 3.1,
this completes the proof of Theorem. [J

4. Conclusions

It is well known that the problem of ultimate boundedness of
solutions of nonlinear is very important in the theory and
applications of differential equations. Sufficient conditions
for the boundedness, ultimate boundedness, and the asymp-
totic stability of solutions for a certain third order nonlinear
differential equation are given with the aid of an effective
method namely Lyapunov second or direct method. The
appropriate Lyapunov function is given explicitly to obtain
the results. Finally, it is worth noting that our study comple-
ment some well known results on the third order differential
equations in the literature.
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