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Abstract: A method of construction of A-optimal binary block designs for multiple asymmetrical parallel line assays has been 

proposed. Illustration of the method with examples has been provided. By this method two series of designs are obtained. The first 

series of designs have equal replication of treatments with unequal block sizes. The second series of designs have equal block sizes 

with unequal replications of treatments. 
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1. INTRODUCTION   

Bioassays are procedures that can determine the 

concentration of purity or biological activity of a 

substance on living organisms. These are carefully 

designed experiments in which two stimuli are applied to 

subjects. One preparation of stimulus (standard 

preparation) is of known strength while the other 

preparation is of unknown strength (test preparation). 

Comparison is made between the activities of living 

organisms between these two stimuli. Purpose behind 

conducting bioassay is to estimate the relative potency of 

the test preparation relative to the standard preparation.  

Parallel line assay is one of the important assays used in 

many research experiments. In parallel line assays, the two 

dose-response regression lines for each of the two stimuli 

are taken as parallel. There are three major contrasts of 

interest namely, preparation, combined regression and 

parallelism are used to get a valid estimate of the relative 

potency.  It is desirable that when a block design is used 

for an assay, these contrasts of interest are estimated with 

high efficiency. In some instances, interest of 

experimenter also lies in comparing several test 

preparations with more than one standard preparation. 

Such assays are  called as multiple bioassays. The utility 

of multiple bioassays is undisputed because resource 

crunch is ubiquitous. Such assays are more economical 

and pragmatic. Advantage of multiple bioassays is that it 

can be conducted as separate assays, whose results will 

eventually be combined to get final result. Finney [8] 

pointed out that conducting separate experiment for each 

comparison is expensive as well as not practical.  

 

Multiple bioassays need to apply the principles of 

assay design and the general theory of experimental 

design for factors at two or more levels. The number of 

doses (treated as treatments) increases rapidly in case of 

multiple bioassays. When the number of experimental 

units within homogeneous set is less than that of total 

number of doses then recourse is made to use of 

incomplete block designs. It is almost imperative to use an 

incomplete block design for conducting multiple 

bioassays. If the number of doses for all the preparations 

is same, then the assays are known as symmetric and if the 

number of doses of at least one preparation is different, 

then the assay is known as asymmetric. We are concerned 

about the asymmetric parallel line assay in this paper.  

Incomplete block design for symmetric parallel line assays 

for comparing a single test preparation have been 

investigated by several authors (see for example [6], [7], 

[9], [10], [11], [13], [14]).  

 

Optimality aspects of block designs for parallel line 

assays were first considered by Mukerjee and Gupta [12]. 

They have given the A-optimality criterion of block 

designs for the estimation of the three contrasts of interest. 

Many optimal designs are now available in the literature 

for symmetric parallel line assay. Some references in this 
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regard are due to [2], [3], [4], and [17]. However, very 

little work is available on incomplete block designs for 

asymmetric parallel line assays. Reference [10] introduced 

 - designs which are equi-replicate and proper. 

Reference [2] extended this method to non-proper designs. 

Recently [16] gave two series of designs for asymmetrical 

parallel line assay. All these studies are confined to the 

case where a single test preparation is compared with a 

standard one. Some work on multiple symmetric parallel 

line assays are done by [1], [17], [15] and [18]. However, 

no work seems to be available for multiple asymmetric 

bioassays.  

 

The purpose of this paper is to present a methodology 

for construction of A-optimal block designs for multiple 

asymmetric parallel line assays. This method is an 

extension of the method given by [16]. All these designs 

permit the estimation of three main contrasts with full 

efficiency. In Section 2, some preliminaries are discussed. 

Section three deals with A-optimality aspects of block 

designs for asymmetric parallel line assays. In section 4, a 

general method of construction has been discussed. 

Method is illustrated with examples. Two cases of this 

method have been considered. In the first case designs are 

obtained for equal replication of doses and in the second 

case designs with unequal replications are obtained. All 

matrices and vectors are real, vectors being written as 

column vectors. We denote an n-component vector of 

unities by 
n

1  and by 
n

I an identity matrix of order n. For a 

matrix A, A  will denote the transpose of A.    

2. CONTRASTS FOR MULTIPLE PARALLEL 

LINE ASSAY  

Let mi, i = 1, 2, …, c, denote number of doses of 

standard and test preparations. Here ( for i=1) m1 is the 

number of doses of standard preparation, m2 is number of 

doses of first test preparation, m3 is number of doses of 

second test preparation and finally mc+1 is number of doses 

of c
th

 test preparation. Let the doses of standard and that of 

test preparations be denoted by  i

m

ii

i

ttt ,...,,
21

 where i = 1, 2, 

… , c+1. For i =1, it denotes the doses of standard 

preparation and for i = 2, 3, …, c+1 doses of test 

preparations are denoted.     

Let 
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mv dose effects. Generally we are 

interested in three major contrasts in parallel line assay 

which are sufficient to get a valid estimate of relative 

potency. 

 

Normalized versions of these contrasts, viz., 

preparation, combined regression and parallelism 

contrasts for simple bioassays was given by [12]. We 

extend this for the case of multiple bioassays having one 

standard and c test preparations  as follows: 
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Contrasts represented above are in general format. 

These contrasts represent asymmetrical multiple parallel 

line assays with one standard and c test preparations 

having respective doses m1, m2, m3,…, mc+1 . It contains 

contrasts of all types of parallel line assays within its 

ambit like symmetrical, asymmetrical, simple and multiple 

bioassays. 

(i) These set of contrasts will reduce to simple 

asymmetric parallel line assays when we 

take c =1 and m1 ≠ m2. 

(ii) These set of contrasts will reduce to symmetric 

multiple parallel line assays with c tests 

when we take m1= m2 =…=mc+1= m. 

(iii)  These set of contrasts will reduce to symmetric 

parallel line assays when we take  

                c =1 and m1= m2 = m. 

We represent these three contrasts by Uτ  , where  

 
 )1(332312)1(11211

,...,,,,...,,,
cc

uuuuuuuU .              (2) 

 

3. A-OPTIMAL DESIGNS FOR 

ASYMMETRIC PARALLEL LINE ASSAYS   

Use of incomplete block designs in bioassays has been 

affected by the rigidity of such designs. The core concern 

of such designs is to estimate the differences between all 

pairs of treatments with the same (or nearly the same) 

variance. But in bioassays all contrasts are not of equal 

importance. In parallel line assay only three contrasts, as 

mentioned earlier, are of major importance. Incomplete 
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block designs are of special significance in bioassay 

keeping the limited resource availability in mind. With the 

use of incomplete block designs in bioassay the optimality 

study of such designs among the class of designs is 

necessitated as it serves as a criterion to choose better 

designs. 

Let us have a binary block design d with 





1

1

c

i

i
mv

 

treatments (doses) in b blocks and each dose of standard 

and test preparations are replicated ir  times. Let kj be the 

block size of the j
th

 block, j = 1, …, b, 

)...,,,(
21 bd

kkkdiagK ,
d
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Fixed effects additive model for the data collected 

through d is assumed here. Usual assumption that the 

errors are independent with zero mean and constant 

variance 2  is made. Let D be a class of all such designs 

in which Uτ  is estimable. Assume  
d

V  as the variance-

covariance matrix of ̂U , where ̂U   is the best linear 

unbiased estimator (BLUE) of Uτ  under d. An A-optimal 

design for Uτ  in D is one that minimize tr(
d

V ), where 

tr(.) stands for the trace of a square matrix. It minimizes 

the average variance of the BLUEs of the components of 

̂U  over the class of competing designs in D. 

 

From Lemma 3.1 of [10], it follows that 

UURV   12σ
dd

is non-negative definite for any Dd  . 

Hence, for each Dd    

)(σ 2

d
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d
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Now suppose that there is a design Dd 
0

  such that  
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It follows that if d0 minimizes the right hand side of (3), 

then d0 is A-optimal over D. From Lemma 3.1 of [10], (4) 

holds if and only if  
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Let in the case of multiple asymmetric parallel line 

assay 
0dN be the incidence matrix of d0. We may write 

0dN  as 
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where 
0 1d

N is m1×b incidence matrix for the standard 

preparation and 
id0

N  is mi×b incidence matrix for (i 1)
th

  

test preparation, i = 2, … , (c+1).  

 

Using equation (5), the condition for getting fully 

efficient binary design d0 for asymmetric parallel line 

assay is given in Lemma 3.1 of [16]. We extend that 

condition for multiple asymmetric parallel line assay as. 
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

 ,,,,
221122

2

11

2

22

1

11

1

212121

rm

k

rm

k

rm

k

rm

k

rm

k

rm

k
m

b

m

b

mmmm


 

.,,,

,,,,

111111

2

11

2

11

1

11

1

121112

2

11

2

12

1

11

1

111111

111111













cc

m

b

m

b

cc

mm

cc

mm

i

m

b

m

b

i

mm

i

mm

rm

k

rm

k

rm

k

rm

k

rm

k

rm

k

rm

k

rm

k

rm

k

rm

k

rm

k

rm

k

ccc

iii







 (6)   

        

The combined regression and parallelism contrasts can be 

estimated with full efficiency through the design d0 if and 

only if 
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for i = 1, 2, …, c.      

 

Let 
1j

β  (respectively
ji

β ) be the j
th

 column of 
0 1d

N  

(respectively
id0

N ) for j = 1, 2,…, b and i =  2, … , (c+1). 

Then from equations (7) and (8) we must have    
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We find that (9) is satisfied if and only if  



 

 

32                  Shashi Shekha et. al. :  Incomplete Block Designs for Multiple Asymmetric Parallel Line Assays 

 

 
http://journals.uob.edu.bh 

 

)1(...,,2,1and,...,2,1,0 


cibj
jii

βw . 

Summarizing, we get the following result 

 

Lemma 3.1: The preparation, combined regression and 

parallelism contrasts of multiple asymmetric parallel line 

assay can be estimated free from block effects and with 

full efficiency through a binary design d0 if and only if 
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In the next section, using Lemma 3.1 above, we give 

methods of construction of binary block designs for 

multiple asymmetric parallel line assays in which all three 

contrasts of interest can be estimated with full efficiency.   
  

4. A METHOD OF CONSTRUCTION OF A- 

OPTIMAL DESIGNS FOR MULTIPLE 

ASYMMETRIC PLA  

In order to construct designs satisfying the conditions 

of Lemma 3.1, first we obtain some incidence vectors for 

each of the incidence matrices 
id0

N for i = 1,2,…, c+1 

such that the row sums of the incidence matrices make a 

complete replication. Suppose 

,)...,,,(
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incidence vector for the standard preparation doses (for i 

=1) and that of the test preparation doses (for i =2,3,…, 

c+1), satisfying the conditions of Lemma 3.1. Here bi, i = 

1, 2, 3,…, c+1 is a positive constant representing the 

number of columns of 
id0

N  which makes one complete 

replication for 
i

m  doses. Now we consider some special 

cases for construction of such designs. 
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Now let *

0d
N be the incidence matrix for the design d0 

for a single replication and *

0id
N  be the corresponding 

partitioned matrices. Then the incidence matrix of the 

design having a single replication is given by 
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Now for r replications the incidence matrix for a single 

replication 
*

0dN  is repeated r times. Finally the incidence 

matrix of an equireplicate design for parallel line assay 

permitting the estimation of all three contrasts of interest 

with full efficiency is given by 

      ***
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NNNN               (12) 

Clearly, 
0d

N given in (12) is the incidence matrix of a 

binary design with b = rg blocks, each dose being 

replicated r times. We thus have the following result. 

 

Theorem 4.1: Suppose 
i
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  is a set of g incidence 

vectors for the standard and test preparation doses, 

satisfying the conditions of Lemma 3.1. Then using these 

vectors, it is possible to construct a binary block design 

with incidence matrix given by (4.3) for multiple 

asymmetric parallel line assays permitting the estimation 

of all three major contrasts of interest with full efficiency. 

 

Example 4.1: Let m1=5, m2= 10, m3=15. That is, this 

assays has one standard and two test preparations. Let r be 

the replications for standard and test preparation doses. 

For a single replication, i.e., 1
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3

2

3

1

2

2

2

1

1

2

1

1

3

2

3

1

2

2

2

1

1

2

1

1

*

0













aa

aa

aa

aa

aa

aa

aa

aa

aa

N
d

(14) 

  

In the above matrix, the first five columns represent 

the incidence of the standard preparation doses, next ten 

columns represent the incidence of the first test 

preparation and last fifteen columns represent the 

incidence of second test preparation. The design has b = 6 

blocks, three of them are of size 12 and three are of size 

18.  

 

Remark 4.1: Alternatively, if we choose  

)00100(1

1
a , )10001(1

2
a , )01010(1

3
a ,  

)0000110000(2

1
a   

)1010000101(2

2
a   

)0101001010(2

3
a and  

)000000000010101(3

1
a ,  

)101011010100000(3

2
a ,  

)010100101001010(3

3
a   

as the incidence vectors for standard and test preparations, 

respectively, then the incidence matrix for a single 

replication becomes 

 

































3

3

3

2

3

1

2

3

2

2

2

1

1

3

1

2

1

1

*

*

*

,,

,,

,,

0 2

0 1

0

aaa

aaa

aaa

N

N
N

d

d

d

=


















010100101001010010100101001010

101011010100000101000010110001

000000000010101000011000000100





   (15) 

 

For three replications the incidence matrix of the design is 

given by  

  ***

0000 dddd
NNNN





































010100101001010010100101001010

101011010100000101000010110001

000000000010101000011000000100

010100101001010010100101001010

101011010100000101000010110001

000000000010101000011000000100

010100101001010010100101001010

101011010100000101000010110001

000000000010101000011000000100



















(16)T

he present design has total 9 blocks. Some of the blocks 

have now reduced sizes than the earlier one. However, 

number of blocks increases from 6 to 9.  Through this 

method number of blocks and/or block sizes can be 

determined keeping in mind the need of the hour and 

resource availability.  

 

The above example can be easily extended for more than 

two test preparations.   

 

In the present case 1

1

m

ji

m

j
kmkm i  , i = 2, 3, …, 

(c+1), gj ...,,2,1 . Thus if we take im as a constant 

proportion of m1, then im

j
k would be of same proportion of 

1m

jk . This will ensure the fulfillment of condition (i) of 

Lemma 3.1. The construction of designs through this 

method also depends on the appropriate choice of the 

vectors gji

j
...,,2,1, a , i =1, 2, …. ,(c+1). Note that  

01w
i

 and last ( 2/
i

m ) elements when im is even and 

2/)1( 
i

m elements when im is odd are the mirror image 

of the first 2/
i

m  or 2/)1( 
i

m  elements with opposite 

sign, for i =1, 2,…, c+1. Using this property [16] proposed 

a general methodology for construction of such designs 

for simple bioassays. This method can easily be extended 

for multiple bioassays. We do not repeat this procedure 

here, one may refer to [16] for details.   

 

B.  Case 2: Unequal replications  

In this case, we first choose the incidence vectors 
i

j
a  

such that 0


i

i

j
wa  for all i and j. 

Thus,
11

1 ,...,2,1for),say(1

1

bjkk
m

jmj
1a , 

22

2 ,...,2,1for),say(2

2

bjkk
m

jmj
1a ,  and so on and 

lastly 
11

1 ,...,2,1for),say(1

1 

  

 cc

m

jm

c

j
bjkk c

c

1a . 

In order to have replication numbers to be an integer 

value we first workout least common multiple of bi’s (say 

λ). We take λ as the total number of blocks in the design 

i.e., the number of blocks in all 
id0

N are λ. In such situation 
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standard and test preparations should have (
ii

br / ) 

replications.  

Thus we have  

,...,2,1for),say(
1

1

1

1













jkk
c

i

m

j

c

i

m

i

j

i

i

1a .  (17) 

Let *

0d
N be the incidence matrix for the design d0 for a 

single replication and *

0 id
N  are the corresponding 

partitioned matrices. These incidence matrices for a single 

replication are then given by  

 i

b

ii

d ii

aaaN ...
21

*

0

                                              (18) 

In the final incidence matrix 
*

idN is repeated ri times i.e., 

    ***

0000

...
iiii dddd

NNNN    ,  

and the incidence matrix of the design is displayed below  

 























 )1(0

0 2

0 1

0

c
d

d

d

d

N

N

N

N


.                (19) 

  

In order to get designs having more replications, the same 

set of λ incidence vectors need to be repeated desired 

number of times.   

Thus we have the following result. 

 

Theorem 4.2: Suppose i

b

ii

i

aaa ,...,,
21

  be set of bi incidence 

vectors for the standard and test preparation doses for 

i=1, 2, …, c+1, satisfying the conditions of Lemma 3.1. 

Then using these vectors, it is possible to construct a 

binary, proper block design with incidence matrix given 

by (4.18) for multiple asymmetric parallel line assays 

permitting the estimation of all three major contrasts of 

interest with full efficiency. 

 

Example 4.2: Let m1=4, m2=6 m3=9 and ir , for i =1, 2, 3, 

be the replications for standard and test preparation doses. 

For a single replication, we choose the following 

incidence vectors for all the preparations: 

,)0110(,)1001( 1

2

1

1
 aa  

)001100(,)100001(,)010010( 2

3

2

2

2

1
 aaa , 

)010001100(,)100010001( 3

2

3

1
 aa  and 

)001100010(3

3
a . 

 

Thus the value of b1, b2 and b3 would be 2, 3 and 3, 

respectively and its least         common multiple is 6. Thus 

1
,...,2,1for,21 bjk

m

j
  

2
,...,2,1for,32 bjk

m

j
  and 

3
,...,2,1for,33 bjk

m

j
 . Therefore, the value of 1r , 2r  

and 3r  would be 3/
11
 br  and 2/

22
 br  and 

2/
33
 br  .  1

2

1

1

* ,
0 1

aaN 
d

,  2

3

2

2

2

1

* ,,
0 2

aaaN 
d

 and 

 3

3

3

2

3

1

* ,,
0 3

aaaN 
d

. The incidence matrix of the design is 

then given by  








































3

3

3

2

3

1

3

3

3

2

3

1

2

3

2

2

2

1

2

3

2

2

2

1

1

2

1

1

1

2

1

1

1

2

1

1

,,,,

,,,,

,,,

0 3

0 2

0 1

0

aaaaaa

aaaaaa

aaaaaa

N

N

N

N







d

d

d

d



























0011000100011000110

0100011001000011001

1000100010100100110

0011000100011001001

0100011001000010110

1000100010100101001













.  

 

Example 4.3: Let m1=6, m2=8, m3=12 and ir , for i=1,2,3, 

be the replications for standard and test preparation doses. 

For a single replication ,)100001(1

1
a ,)010010(1

2
a  

)001100(1

3
a , )00111100(,)11000011( 2

2

2

1
 aa , 

)011000011000(3

1
a , )011000011000(3

2
a and 

)100100100100(3

3
a . Here we have 

3,2,3
321
 bbb . Thus ,21 

m

jk for j =1, 2, …, 1b , 

2
,...,2,1for,42 bjk

m

j
  and 

3
,...,2,1for,43 bjk

m

j
 . 

Therefore the value of r1, r2 and r3 would be r1= λ /b1= 2, 

r2= λ /b2= 3 and r3= λ /b3= 2,   1

3

1

2

1

1

* ,,
0 1

aaaN 
d

 

 2

2

2

1

* ,
0 2

aaN 
d

 and  3

3

3

2

3

1

* ,,
0 3

aaaN 
d

. The incidence matrix 

of the design is given by  

 






































3

3

3

2

3

1

3

3

3

2

3

1

2

2

2

1

2

2

2

1

2

2

2

1

1

3

1

2

1

1

1

3

1

2

1

1

,,,,

,,,

,,,,

0 3

0 2

0 1

0

aaaaaa

aaaaaa

aaaaaa

N

N

N

N







d

d

d

d



























10010010010000111100001100

01100001100011000011010010

00001100001100111100100001

10010010010011000011001100

01100001100000111100010010

00001100001111000011100001













.  

 

In last two examples replications for test and standard 

preparations are different.  Example 4.2 has three 

replications for standard while in Example 4.3 we have 

two replications for standard preparation. 

Here we just presented two examples of designs 

constructed through the above method. To generate more 

designs, we have to choose vectors 
i

j
a for j =1, 2, ..., bi ( 

for different values of i) for particular values of mi’s such 

that condition (ii) of Lemma 3.1 is satisfied.   

Let im be even for i =1, 2, … ,c+1 , i

m

j kk i  , for  j = 

1, 2, …, bi , and all ki’s are are even. We also assume that 

mi’s are divisible by respective ki’s and bi=mi/ki . As 

assumed earlier λ is the least common multiple of bi’s. 
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Thus   ri= λ/bi. This will ensure the fulfillment of the 

condition (i) of Lemma 3.1. 

 

Now, let 2/*

ii
mm  , 2/*

ii
kk   for 1,...,2,1  ci . 

Step1:  Construct   001a ...*

1

0

1 k
, 

  010a ...*

1

0

2 k
, …,   *

1

...0

kbi

100a . 

Step 2: Obtain the vectors i

j
a such that 










00

0

j

ji

j
a

a
a , where  

00

ja is the mirror image of 
0

ja  for  j = 1, 2, …, bi.  

Step 3: For a single replication obtain different 
*

0 id
N matrices. 

Step 4: Finally, obtain the incidence matrix of the design 

0d
N from (4.18).  

 

The design given in Example 4.3 is obtained by applying 

this method. For readily use, one can get the vectors of 
i

ja for some specific values of mi’s in [16]. From these 

vectors desired designs can be generated easily.   
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