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Abstract: Hierarchical modeling is often used a tool which, as an interdisciplinary effort, combines the estimation technique and 

data mining techniques to model reliability systems.  The reliability of the model is measured in terms of how much sufficiently 

accurate model is over the entire input range and the level of confidence in predictions. WinBUGS is Windows based software which 

provides researchers, especially in production process engineering, with a very useful data analytical tool. WinBUGS has ability to 

fit complex statistical models which express interdependence among several response variables based on Bayesian methods of 

inference and Markov Chain Monte Carlo (MCMC) simulation.  In this paper, we present a short description of WinBUGS and 

discuss implementation of WinBUGS programs by analyzing real data sets from two industrial applications. First application 

undertakes the analysis of the behavior of the overhead-costs with the number of machine-hours operated and the number of 

production-runs in a production process. In the second illustration, we analyze the relative importance of between fluxes variability 

versus sampling variation in a weld experiment which considers welding fluxes with differing chemical compositions.   

 

Keywords: Regression Model, Gibbs Sampling, Bayesian Updating, WinBUGS. 

1. INTRODUCTION  

 A major objective in modeling reliability systems is to capture the end-to-end behavior of large systems in a complex 

physical environment with the maximum level of accuracy. Hierarchical modeling methods are often used as a possible 

tool to modeling such systems reliably with multiple degrees of abstraction. The reliability of the model is generally 

measured in terms of how much sufficiently accurate model is over the entire input interval and the desired level of 

confidence one can attach to the predictions. For example, in predicting fuel efficiency of cars on different roads, where 

car fuel efficiency can be assumed to be a function of car and road parameters, sparse regression cubes can lead to the 

best categorization of cars for purposes of building fuel prediction models in each category. Categorization might be by 

car-class, make, model, manufacturer, year, or other attributes, however, these categories have a hierarchical structure. 

One may also aggregate these over years or over car-models to generate prediction models for larger categories. Such 

generalizations help when there is not enough data on each type of car to build a reliable model for that type alone.  It 

may be noted though when the samples used to build a regression model are sparse, model may over fit the samples and 

may result in poor predictions. Reliability of a regression model is measured in terms of the predictive power of the 

model (Weiseberg 1980; Breima et al. 1984). For an interesting work in data mining and machine learning research that 

build such generalized hierarchies, we refer to the regression trees in which a tree of regression models  is used. 

Regression Cubes are  analytical processing frameworks that do the same by exploring all different ways of generalizing 

data and using mostly categorical attributes to divide the input spaces into smaller subspaces (Chan et al. 2006; Ahmadi 

et al. 2011). Hierarchical structures, like regression trees or regression cubes, tend to construct a large number of models 

to represent all different ways of dividing the input space into subspaces. A reliability measure for a particular regression 

model over an input range indicates the ability of the fitted model to predict the output. The measure also provides an 

indication of accuracy of prediction by calculating a confidence interval. Thus, the framework needs to make sure that the 

hierarchy of regression models used for prediction are indeed reliable. This mechanism is an extension to widely used 

forward selection techniques (Kaplan and Atkinson 1989; Sheu and O’Curry 1998).  
 

http://www.uob.edu.bh/english/pages.aspx?module=pages&id=2922&SID=684
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The open-source software WinBUGS [

©
1996-2008 BUGS] is a Windows based computer program for the Bayesian 

analysis of statistical models using Markov Chain Monte Carlo (MCMC) numerical methods. WinBUGS stands for  
 
Windows Bayesian analysis software Using Gibbs Sampling. In 1989, the MRC Biostatistics Unit, Cambridge 

initiated this project and developed WinBUGS software jointly with the Imperial College School of Medicine at St. 

Mary's, London. The Bayesian analysis is advantageous in data analysis because Bayesian approach combines prior 

distributions (beliefs/experience) with the likelihood of (experimental/sample data) to drive the posterior/revised 

distributions (Gelman et al. 1995; Carlin and Louis 1996; Congdon 2001; Lunn et al. 2012). The MCMC numerical 

methods enhance the computations for most of the statistical models (Gilks et al. 1996).  
 

We organize contents of our paper as follows. Following the brief introduction to what is meant by reliability measure 

in the context of regression models and WinBUGS in section 1, we present, in section 2, steps to install and implement 

WinBUGS. In section 3, we describe key aspects of WinBUGS application like monitoring parameter values, 

convergence and summaries of the sample values of the parameters of interest. We describe, in section 4, an industrial 

application which undertakes the BUGS analysis of the behavior of the overhead-costs with the number of machine-hours 

operated and the number of production-runs in a production process. In another illustration in section 5, we analyze an 

industrial experimental data which investigates the relative contributions of between fluxes variance and the sampling 

variance in a weld experiment in which welding fluxes with differing chemical compositions were prepared. We 

conclude paper in section 6 with some remarks. WinBUGS syntax for some commonly used probability distributions; 

data format and WinBUGS access from other software are presented in Appendix. 

2. WINBUGS: INTRODUCTION   

WinBUGS is an interactive Windows based BUGS program for Bayesian analysis of complex statistical models 

using Markov Chain Monte Carlo (MCMC) simulation.  The basic idea behind the Gibbs sampling algorithm is to 

successively sample from the conditional distribution of each node given all others in the graph. These are known as the 

full conditional distributions. Under broad conditions this process results in samples from the joint posterior distribution 

of the unknown quantities. Given likelihood and prior distribution, WinBUGS samples model parameters from their 

posterior distributions. After sampling parameters from several iterations, parameter estimates are obtained. Empirical 

summary statistics and diagnostics are computed from these samples and are used to draw inference about the 

population constants.  For an excellent reading of Bayesian inference methods, Markov Chain Monte Carlo methods 

and WinBUGS introduction, refer to Gelman et al. (1995), Gilks et al. (1996), Stringer et al. (2011), Lunn et al. (2012). 

 

A. WinBUGS Installation  

To install free WinBUGS software from http://www.mrc-bsu.cam.ac.uk/bugs, first download WinBUGS14.exe. 
Linux users can download the OpenBUGS program from http://mathstat.helsinki.fi/openbugs. The key for unrestricted 
use can be obtained by registration   http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/register.shtml. The WinBUGS 
manuals and other users’ resources are also available online. 

 

B. To Fit a Model in WinBUGS 

Step 1. Load the program code, initial values and data. 

 Start the WinBUGS program by double click on the WinBUGS icon or WinBUGS14.exe file in the 

WinBUGS14 directory.  

 From File menu on tool bar, select Open option to open program directory/file or New option to create 

programming code, data and initial values in one file or in separate files.  

 Select Model menu on tool bar and highlight Specification option to open Specification Tool window (Fig. 1).  
 

 

 

 

 

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/register.shtml
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Figure 1.      Specification tool window. 

In the Specification tool window: 

 Focus at the window containing the model code, data and initial values.  Highlight the word model at the 

beginning of the program code and click check model box in the Specification tool window. A message should 

appear on the left bottom screen of the WinBUGS program window: model is syntactically correct.   

 Open data (in a separate file or in the same file as the model code). Highlight the word list in the beginning of 

the data file and check load data in the Specification tool window. A message should appear on the left bottom 

screen of the WinBUGS program window: data loaded. 

 If you desire to run more than one chain, specify the number in nums of chains box in the Specification tool 

window. The default is 1 chain. 

 Click on the compile box in the Specification tool window to compile the model. A message should appear on 

the left bottom screen of the WinBUGS program window: model compiled. 

 Open initial values (in a separate file or in the same file as the model code). Highlight the word list in the 

beginning of set of initial values and check load inits box in the Specification tool window. A message should 

appear on the left bottom screen of the WinBUGS program window: this chain contains uninitialized variables.  

 If more than 1 chain to run is specified, load separate initial values for each chain by repeating the above steps 

for each file. 

 Click gen inits box in the Specification tool window. A message should appear on the left bottom screen of the 

WinBUGS program: initial values generated, model initialized. 

 Close the Specification tool window. 

 

Step 2.  Set monitors to store sampled values for parameters of interest. 

From the File menu on tool bar, select Inference and click samples box. Sample Monitor Tool window opens (Fig. 2).  
 

 

 

 

 

 

 

 

Figure 2.      Sample monitor tool window. 
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 In the Sample Monitor Tool window: 

 In the node box, type parameter (say, theta) and click set.  

 Repeat the same for other parameters of interest. 

 

Step 3. Run the simulations. 

Select Model menu on the toolbar and highlight Update option. Update Tool window opens (Fig. 3).  
    

 

 

 

 

 

Figure 3.     Update tool window. 

In the Update Tool window:  

 Type the number of updates (iterations of the simulation) in updates box (Default is 1000). 

 Click once on updates box and program starts simulating values for each parameter in the model.  

 The iteration box indicates number of updates currently being completed.  

 The number of times this value is revised depends on the number set for refresh box (Default  = 100 iterations). 

To report more frequently, set refresh to 10, 5, 1. 

 When updates are finished, a message should appear on the left bottom screen of the WinBUGS program: 

updates took*** s.  

 

Step 4.  View graphical and numerical summaries of samples for the parameters of interest for which we set the 

monitors. 

 In the Inference window, select sample monitor tool.  In the sample monitor tool: 

 In node box, type the name of the parameter (or * for all parameters) for posterior inference.  

 Several boxes about numerical summaries appear on sample monitor tool window: trace, history, density, stats, 

coda, quantiles, bgr diag, auto cor. 

 

Step 5.  Save files created during execution of WinBUGS  program. Focus the window containing results/information of 

interest and select the Save As option from the File menu on the tool bar. 

Step 6. To quit WinBUGS program, select  Exit option from File menu on the tool bar. 

 

3. MONITORING PARAMETER VALUES, CONVERGENCE AND SUMMARIES 

     The important decisions are required regarding checking convergence, number of iterations after convergence and 

posterior summaries of the model parameters. We need to set monitors for each parameter of interest and store the 

sampled values for those parameters. If not, WinBUGS will automatically discard the simulated values.   
 

A. Monitors for Parameters 

Two types of monitors can be set up in WinBUGS. A sample monitor tells WinBUGS to store every value it 

simulates for that parameter. We need to set sample monitors to view trace plots of the samples to check convergence and 

to derive posterior quantiles (for example, the posterior 95% Bayesian credible interval for that parameter).  

 A summary monitor in WinBUGS stores the running mean and standard deviation for the parameter. The values 

saved contain less information than saving each individual sample in the simulation but require less storage. 

However, if we want to estimate Bayesian credible intervals, we need to set a sample monitor to store the 

necessary information for each parameter.   

 To set a summary monitor:  Select Summary from the Inference menu. Type the name of the parameter to be 

monitored in the box marked node. Click once on the box marked set. Repeat these steps for each parameter to 

be monitored. 
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B. Chain Convergence 

Checking chain (simulation) convergence is very essential for the accuracy of the sample results.  However, it is not 

easy to diagnose that a chain has converged.  We need to select the number of chains, which means, sets of samples to 

generate. The default is 1 but we can run 2 or multiple chains to check the convergence of MCMC simulations.  

1) Guidelines to Assess Convergence 

 In practice, we may start using a single chain to check that the model compiles and runs and to obtain an 

estimate of the time taken per iteration.  

 Once we are satisfied with the model, we can choose multiple chains (say, 2-5 chains) to obtain a final set of 

posterior estimates.  

 Examine trace plots of the sample values versus iteration in the Specification tool window to look for evidence 

of when the simulation appears to have stabilized. 

 To obtain live trace plots for a parameter: 

o Select Samples from the Inference menu. 

o Type the name of the parameter in the node box or select from the pull down list. 

o Click the trace box. An empty graphics Dynamic trace window appears on screen. 

o Repeat for each parameter if required.  

o Start running the simulations using the Update Tool. 

o Trace plots for these parameters appear live in the graphics windows. 

 To obtain a trace plot showing the full history of the samples for any parameter set in the Sample Monitor Tool 

window during the  updates: 

o Select Samples from the Inference menu. 

o Type the name of the parameter in the node box or select from the pull down list. 

o Repeat for each parameter if required. 

o Click the history box. A graphics Time series window showing the sample trace will appear. 

 If we run more than one chain simultaneously, the trace and history plots will show each chain in a different 

color. Thus, we can be reasonably sure that convergence has been achieved if all the chains appear to be 

overlapping one another. 

 

2) Number of Iterations after Convergence 

 

     For assuring that chain (simulation) convergence has been achieved, we need to run the simulation for a further 

number of iterations to obtain samples that can be used for the posterior inference. More samples we have, more accurate 

will be our posterior estimates. One way to assess the accuracy of the posterior estimates is by calculating the Monte 

Carlo error for each parameter estimate. Monte Carlo error is an estimate of the difference between the mean of the 

sampled values which we are using as our estimate of the posterior mean for each parameter and the true posterior mean. 

As a rule of thumb, we should run simulations until the Monte Carlo error for each parameter of interest is less than 5% 

of the sample standard deviation. The Monte Carlo error (MC error) and sample standard deviation (sd) are reported in 

the Node statistics table which opens when we click stats box in the Specification tool window. 

 

C. Node Summary Statistics of the Posterior Distributions 

     The posterior samples are summarized graphically by kernel density plots or numerically by summary statistics such 

as the mean, MC error, standard deviation and 2.5%, median and 97.5% quantiles of the sample.  

     To obtain node summaries of the monitored samples: 

 Select Samples  from the Inference menu. 

 Type the parameter in the node box in the Sample Monitor Tool window or select from the pull down list or type 

* to select all monitored parameters.  

 Type the iteration number that you want to start your summary from in the beg box in the Sample Monitor Tool 

window. This discards the pre-convergence burn-in samples. 

 Click on the stats box. A table in Node statistics window reporting various summary statistics of the sampled 

values of the selected parameters appears. 

 Click on the density box.  A window showing Kernel density plots based on the sampled values of the selected 

parameter appears. 
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4. BUGS ANALYSIS OF OVERHEAD-COSTS IN RELATION TO MACHINE-HOURS OPERATED AND PRODUCTION-

RUNS IN A PRODUCTION PROCESS   

A plastic manufacturing firm uses injection molding equipment to manufacture plastic products. The management 

believes that machine-hours operated represents the most reasonable measure of the level of activity in the firm and  is 

interested in getting a better understanding of the firm’s overhead-costs to help estimate costs for the purpose of quoting 

prices on orders for existing and new products (Navidi 2006).  

 

A. Data and Model Description  

The firm keeps records for all production runs so that the direct material, direct labor, and machine-hour requirements 

for any product are readily predictable. Data records over 30 month period on overhead-costs, machine-hours operated 

and production-runs are considered in this analysis. No significant cost inflation or changes in production equipment have 

been noted over the period under reference (Navidi 2006). 

The firm’s management wishes to undertake an analysis of the behavior of overhead-costs to determine whether a 

relationship exists between the level of overhead-costs ( ) with the number of machine-hours operated ( ) and the 

number of production-runs   . For WinBUGS illustration, we carry out the multiple regression analysis using the firm’s 

production data records. The overhead-cost regression model is: 

                                                                                                    (4.1.1)       

where           are the model parameters and   is the random error.  Graphical model for WinBUGS is shown in Figure 

4.  
 

 

 

 

 

 

 

 

 

 

Figure 4. Model:      depends on      ,    .        is a logical functio of model  parameters       ,       

 

B. WinBUGS Application to Fit the Overhead-Cost Model 

In the following we present the output obtained by performing the steps to fit the multiple regression model using 

WinBUGS and overhead-costs data.   

1) WinBUGS Code for Model, Data and Initial values 

Screenshots of the model syntax, data input and initial values are given in Figure 5.  In Figure 5, we have 

comment (starting with #) defining the regression model with two explanatory variables.  For sigma (standard deviation), 

we have used a non-informative prior that is uniform distribution. Precision parameter tau is the inverse of variance.  In 

data list,    is the size of the data set,           denote overhead-costs, machine-hours and production-runs, 

respectively. We input the data using      command and numerical values are separated using comma. For example, 30 

data values of monthly production-runs denoted by Z variable are written as                    .  Setting up the 

initial values:                                          where alpha and (beta1, beta2) are the intercept and 

slop parameters, respectively.  Sigma is the standard deviation.  

2) Results and Output Discussions 

WinBUGS sampling algorithm ensures that under regularity conditions, resulting sample converges to the 

posterior distribution of interest. Thus, before we summarize sample values, we must ensure that the chains have 

converged. 

Parameter values that have been sampled at the beginning of the simulation are typically discarded so that the 

chain can burn in, or converge to its stationary distribution. Large, conservative burn-in periods are generally preferable 

to shorter burn-in periods. A 100,000 update burn followed by a further 50,000 update burn resulted in the following 

parameter estimates statistics.  

f or(i IN 1 : N)

sigma

taubetaalpha

mu[i]

Y [i]

f or(i IN 1 : N)

index: i from: 1 up to: N
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Figure 5.     Model, data initial values. 

The posterior samples are summarized numerically by summary statistics such as the mean, variance and quantiles of 

the sample in Figure 6, or graphically by the kernel density plots in Figure 7. Summary statistics of posterior samples can 

also be produced in box-plots. Figure 8 shows boxplots of alpha, beta1, beta2 and sigma.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.     Summary statistics of posterior samples. 
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Figure 7.     Kernel density plots. 

For checking convergence, time series plots obtained from history box in the Sample Monitor Tool are commonly 

used to assess convergence. If the plot looks like a horizontal band, with no long upward or downward trends, then we 

have evidence that the chain has converged.  In Figure 9, time plots indicate that chain convergences have been reached 

for alpha, beta1 and beta2. Autocorrelation plots, in Figure 10, assess the convergence. Higher values of autocorrelations 

in parameter chains often signify a model that is slow to converge. Figure 11 shows trace plots. It is indicative from trace 

and autocorrelation plots that chain convergence for parameters                           looks reasonable.  

 

In summary, WinBUGS analysis indicates that: 

 The estimates of the regression coefficients of machine-hours operated (  ) and monthly production-runs (   ) 

are 31.64 and 558.6 with their standard errors respectively being 0.00131 and 0.04826.  

 The 95% credible interval for    is (30.63, 32.65) machine hours-operated and for    is (522.6, 594.8) monthly-

runs. 

 The estimates of the standard deviation (sigma) of overhead-costs and its standard error are $993.1 and 

$0.02999. The 95% credible interval for standard deviation (sigma) is ($975.1, $999.8).   

 The sampling distributions (kernel density) of beta0 (alpha), beta1 and beta2 are approximately normal.  

 The estimated overhead-cost regression model using WinBUGS: 

                                                                
                                                                                                                                                                     

 The estimated overhead-cost regression model using least square method: 

                                                                     
                                                                                                                                              (4.2.2.2) 
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Figure 8.     Box plots for model parameter estimates. 

 
  

 

 

Figure 9.     Time plots. 
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Figure 10.     Autocorrelation plots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11.     Trace plots. 
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5. BUGS ANALYSIS OF RELATIVE IMPORTANCE OF FLUX VARIATIONS DUE TO SAMPLING AND ANALYTIC 

ERRORS USING DIFFERING CHEMICAL COMPOSITIONS IN FLUX PREPARATIONS 

For the development and improvement of engineering methods, a metallurgist   investigated four different fluxes 

for their relative importance by analyzing between fluxes variance and sampling variation in a welding experiment where 

welding fluxes had differing chemical compositions.   A number of welds using each flux were made on AISI-1018 steel 

base metal. The hardness measurements of five welds using each of four fluxes, measured on the Brinell scale, were 

recorded
 
(Navidi 2006). 

A. Data and Model Description  

It is noted that four sample means of hardness measurements differ. There is, of course, uncertainty in the 

sample means, however, question of interest is whether the sample means differ from each other by a greater amount than 

could be accounted for by uncertainty alone.  We analyze between fluxes variation (              ) versus variation 

due to sampling and analytic (             ) using one-way analysis of variance. The one-factor variance component 

model using flux as the grouping factor: 

                                                                                                         (5.1.1) 

where     is the hardness measurement of the  -th flux and  -th weld,   is the grand mean,    is the  -th flux-effect and      

is the random error. The intraclass correlation coefficient (ICC) or the variance partition coefficient (VPC) symbolized by 

ρ and defined in terms of variance components is   

                                                                   ⁄           (5.2.2)     

which means that in terms of percentages how much of the total variance is attributable to flux differences. Graphical 

model is depicted in Figure 12. 
 

  

 

 

 

 

 

 

 
 

Figure 12.     Model: y[i,j] depends on  mu[i] and sigma2.with (tau.with) mu[i]  is a functiojn of theta, siga2.btw (tau.btw). 

 

B. WinBUGS  Analysis of One-factor Variance Component Model 

In the following we present the output obtained by performing the steps to fit the multiple regression model using 

WinBUGS and overhead-costs data.   

1) WinBUGS Code for Model, Data and Initial values 

In Figure 13, we have defined a model for one-factor variance component.  For ICC (intra-class correlation), we have 

used a noninformative prior that is uniform distribution and for within-variation, prior is a gamma distribution. Precision 

parameter tau is the inverse of the variance.  In data list, hardness measurements of four fluxes and five welds are entered 

in a 4x5 matrix format.  The initial values:   

                                                                                                       
 

 

 

f or(i IN 1 : batches)

f or(j IN 1 : samples)

sigma2.btw

sigma2.with

tau.btw

tau.with

theta

mu[i]

y [i, j]
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Figure 13.     Model, data, initial values. 

2) Results and Output Discussions 

A 100,000 update burn followed by a further 400,000 update burn resulted in the lower table of node statistics 

in Figure 14. We noted a relatively long run was necessary because of the high autocorrelation between successively 

sample values of some parameters especially sigma2.between and sigma2.within. The MC errors of both parameter 

estimates were higher than 5%. We further have 1,500,000 update burns. Node statistics, ignoring first 100,000 update 

burns, are in the upper table of Figure 14, or graphically by kernel density plots in Figure 15.  

We noted that the MC errors for all parameter estimates except sigma2.between were smaller than 5%.  Box-

plots of hardness measurements are given in Figure 16. For checking convergence, in Figure 17, time plots indicate that 

chain convergences have been reached for ICC, sigma2.within and theta. However, the posterior distribution of 

sigma2.between has a very long right tail.  

Autocorrelation plots in Figure 18 and   trace plots in Figure 19 also assess convergence. Higher values of 

autocorrelations in parameter chains often signify a model that is slow to converge. It is obvious from high 

autocorrelation of sigma2.between that chain convergence is very slow.  The MC error changed very little from 0.2558 in 

500,000 runs to 0.15 in 1,500,000 runs.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.     Node statistics. 
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Figure 15.     Kernel density plots. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16.     Box plots for hardness measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.     Time plots for chain convergence. 
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Figure 18.     Autocorrelation plots. 
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Figure 19.     Trace plots. 
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Summary of the analysis of the node statistics with 1,500,000 runs in Figure 14 is as follows: 

 The estimates of the mean hardness measurements on the Brinell scale of four fluxes are 258.1, 263.1, 268.5 and 
262.3 with their standard errors respectively being 0.008651, 0.005877, 0.008444 and 0.00557. The 95% 
credible intervals respectively for the four flux means are: (250.9, 265.0), (256.7, 269.6), (261.3, 275.7) and 
(255.8, 268.8).   

 The estimates of the intra-class correlation coefficient (ICC), sigma2.between and sigma2.within   are 0.3746, 
63.15 and 71.31 with their standard errors respectively being 0.0003816, 0.15 and 0.03094.   

 There is a high order of between fluxes variability.  The estimated standard error of sigma2.between is 15% after 
1,500,000 iterations.  

 The estimate of intra-class correlation 0.3746 in terms of percentages implies that 37.47 percent of the total 
variance is attributable to flux differences and remaining 53.01 percent to the error variability within the fluxes.  

 The sampling distributions (kernel density) of mean hardness measurements on the Brinell scale of four fluxes 
are approximately normal (Figure 15).   

 

6. CONCLUDING REMARKS 

Hierarchical modeling techniques are often used as a popular tool which combines the estimation techniques and data 
mining techniques to model systems efficiently and ensuring reliability with multiple degrees of abstraction. A reliable 
model is often the one that remains sufficiently accurate over the whole input interval and provides a higher level of 
confidence in predictions. Reliability of a regression model is considered in terms of whether or not the model is able to 
predict accurately. The open-source software WinBUGS is a very useful Windows based computer program for the 
Bayesian analysis of complex statistical models using Markov Chain Monte Carlo numerical simulations. This is a 
powerful novel statistical analytical tool for performing the statistical analysis of engineering, industrial and scientific 
data using Bayesian inference and Markov Chain Monte Carlo (MCMC) sampling.  In our paper, we have given a short 
introduction and description of WinBUGS technique and its implementation by analyzing real data sets from two 
industrial applications.  The first application undertakes the multiple regression analysis to study the behavior of the 
overhead-costs with the number of machine-hours operated and the number of production-runs in a production process. 
In the second illustration, we carry out the variance-component analysis to investigate the relative importance of between 
fluxes variance and sampling variation in a weld experiment in which welding fluxes were prepared with differing 
chemical compositions.   
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Appendix 1.  Commonly Used Probability Distributions 

Distribution  Expression 

Normal 
x ~ dnorm(mu,tau); tau= 

1/sigma*sigma 

Log-normal x ~ dlnorm(mu,tau) 

Student - t x~ dt(mu,tau,k) 

Beta x~ dbeta(a,b) 

Gamma x ~ dgamma(a,b) 

Exponential x~dexp(lambda) 

Weibull x~dweib(v,lambda) 

Uniform x ~ dunif(a,b) 

Binomial x~dbin(p,n) 

Poisson x~ dpois(lambda) 

Multinomial x~ dmulti(p[],N) 

Multivariate    

Normal 
x~ dmnorm(mu[],T[]) 

Multivariate 
Student-t 

x ~ dmt(mu[], T[], k) 

 

Appendix 2.  Data Format 

i. Rectangular format 

x [ ] y [ ] 

47 0 

148 18 

... ... 

360 24 

END  

ii. S-Plus format  

list(N=12,x= c(47,148,119,810,211,196,148,215,207,97,256,360), 

y = c(0,18,8,46,8,13,9,31,14,8,29,24)) 

We need a “list” to indicate data which consist of mixture of scalars and vectors/arrays, or vectors/arrays of 

different lengths. 

 

Appendix 3.  WinBUGS (Other sources) 

i. Interfaces for R, SPlus, SAS, Matlab.  

         http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml 

ii. R2winbugs function for R is most developed- Reads in data, writes script,   monitors output etc.  

 http://cran.r-project.org/src/contrib/Descriptions/R2WinBUGS.html 

 

iii. OpenBUGS site provides an open source version including BRugs which works  

               from within R. http://mathstat.helsinki.fi/openbugs/ 

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
http://cran.r-project.org/src/contrib/Descriptions/R2WinBUGS.html
http://mathstat.helsinki.fi/openbugs/
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