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Abstract: Rotatability is a very important property of the central composite designs (CCD) in predicting responses with stable 

prediction variance throughout the design region. A central composite design is made rotatable by the choice of α, the axial distance 

from the centre of the design region. In this work, we evaluate the prediction variance properties of the CCD with rotatable α by 

replicating the cube and star portions of the CCD. Three design optimality criteria, the D-efficiency, G-efficiency and V-criterion are 

utilized in evaluating the performances of the designs. The fraction of design space (FDS) plots for the scaled and unscaled 

prediction variances are employed in studying the performance characteristics of the prediction variance of the designs throughout 

the design region. The results show that, for k = 3 to 10 factors and with three centre points, the cube-replicated CCDs are D-

efficient. Replicating the cube or star portions of the CCD improves the prediction capability of the designs. However, none of the 

design options, cube-replicated and star-replicated, is consistently superior to the others with respect to G-efficiency, V-criterion and 

FDS plots for any of the k factors considered. Analytical formulae for obtaining the G-efficiency and V-criterion when portions of the 

CCD are replicated are also given.  

 
Keywords: replication, optimality criteria, axial distance, response surface, design efficiency, design space. 

1. INTRODUCTION 

The central composite design (CCD) of [1] is the most common and practically useful class of second-order 

response surface designs. The CCD is made up of three distinct portions: (i) the 
qk2  full  0q  or fractional  0q  

factorial portion (called the cube) of resolution V or higher, where q is an integer and k is the number of factors. The 

cube has coordinates of the form,    1...,,1,1...,,, 21 kxxx . (ii) the k2  axial portion (called the star) with 

coordinates of the form,        ...,,0,0,...,0...,,0,,0,0...,,0, ; and (iii) 0n  number of centre points of the 

form,  0...,,0,0 . Therefore, the CCD uses 022 nkN qk  
 number of design runs to estimate the 

   221  kkp  number of model parameters, see, for example, [2], [3], [4], [5] and [6]. 

 Among the numerous criteria listed in [7], [8] and [9] for choosing response surface designs, rotatability is the most 

desirable. A design that the variance,   xyV ˆ , of the predicted response,  xŷ , is constant at any given point, x , in 

the design space such that equal information is obtained in all directions at equal radius from the centre of the design 

space is said to be rotatable. This means that for a rotatable design,   xyV ˆ  is the same at all points, x , that are the 

same distance from the centre of the design region. See [10], [11], [12] and [5] for further discussions on rotatability 

and measures of rotatability.  

 Rotatability is a reasonable basis for the selection of a response surface design in response surface optimization and 

it is wise to choose a design that provides equal precision of estimation in all directions. The CCD is made rotatable by 

the choice of  . If the cube is replicated cn  times and the star, sn  times, then,   41

sc nfn  yields a rotatable 

CCD, where 
qkf  2  is the number of factorial points in the design. In this study, we evaluate the prediction 

capability and stability of the CCD when   41

sc nfn  by replicating the cube and star portions of the CCD. The 
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choice of optimality criteria and graphical procedure (that will be discussed in later sections) enhanced this evaluation. 

Full factorial portion of the CCD is used for k = 3, 4 and 5 factors. With the number of factors moderately increasing, 

one-half fraction of the factorial portion is considered for k = 6 and 7 factors while one-quarter fraction is considered 

for k = 8, 9 and 10 factors. Each design option is augmented with 30 n  centre points.    

2. THE PREDICTION VARIANCE  

In fitting the second-order design, the second-order model for describing the relationship between the response, y, 

and the variables, kxxx ...,,, 21 , is  

  eBxxxx  β0y         (1) 

where 0  is a constant, β  is the vector of the k parameters of the linear components, B is a kk   matrix whose 

diagonal elements are coefficients of the pure quadratic terms and the off-diagonal elements are the coefficients of the 

mixed (interaction) terms and, e is the random error that is normally distributed with mean, zero and variance, 
2 . For 

a point, x , in the design space, the prediction variance is 

       mmyV xXXxx
12ˆ  ,        (2) 

where  kkkk
m xxxxxxxxx 121

22
110 ...,,;...,,;...,,, x  is a point in the design space expanded to model form and X  

is the pN   expanded design matrix derived from the kN  design matrix. Each row in X  denotes an experimental 

observation such that the total number of rows in X  represent the total number of design runs, N, while the total 

number of columns represent the total number of parameters.  

 The prediction variance is scaled by multiplying by N and dividing by the process variance, 
2 , so that the 

scaled prediction variance (SPV) is 

  
  

  mmN
yNV

xXXx
x 1

2

ˆ 


.        (3) 

The scaling is used to facilitate comparison among various competing designs and penalizes larger designs. It is 

believed that scaling will help the experimenter ascertain if there is substantial decrease in prediction variance by 

additional run considering the cost, represented by N, of additional design run. However, some practitioners prefer the 

unscaled (standardized) prediction variance (UPV), 

   
  

  mmyV
xXXx

x 1

2

ˆ 


,        (4) 

in design evaluation and comparison. The quality of the design is not considered to be a function of the cost in using 

UPV as opposed to using SPV. In their works, [13] [14] and [6] discussed in details, the reasons why the UPV should 

be the ideal choice for design comparison in practical situations. Furthermore, [14] argued that larger designs often lead 

to smaller prediction variances and provide the experimenter with more useful information than scaling the prediction 

variance. In this study, we explore the advantages of UPV and SPV throughout the entire design space using FDS plots. 

The results presented here will help the practitioner to decide which option to adopt, to scale or not to scale. 

 

3. NUMERICAL AND GRAPHICAL METHODS OF EVALUATION 

In this section, we discuss briefly, the concepts of the three optimality criteria and the graphical technique that were 

used for the comparisons. 

A. Optimality Criteria 

The D-efficiency, G-efficiency and V-criterion are the three optimality criteria used in evaluating the various design 

options in this study. The D-efficiency is given by 

  ND
p1

100 XX ,         (5) 

where XX  is the determinant of the information matrix, XX , of the design. The G-efficiency is given by 

   2ˆmax

100

xyVN

p
G  .        (6)  
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The V-criterion minimizes the normalized average integrated prediction variance and is defined as 

     xx dyV
N

V
R ˆmin


,        (7) 

where 
k2  and R is the region of interest. See [15] and [8] for detailed discussions on the relevance of these 

optimality criteria in design evaluation and comparison. We shall develop exact G-efficiency and V-criterion for the 

replicated portions of the CCD. 

B. Fraction of Design Space Plots 

Single-value criteria, like those defined above, do not completely reflect the characteristics of the prediction variance 

of the design. Therefore, graphical display of the prediction variance of the design across the design space is more 

informative. One of such graphical methods is the fraction of design space (FDS) plot. The works of [16] introduced the 

FDS plot. The FDS plots have been used extensively in robust design studies and evaluations: see, for example, [17], 

[18], [19], [20] and [21]. According to [19], the graphs allow for comparison of scaled and unscaled prediction variances 

of competing designs for any fraction of the design space, showing which design is dominant with smaller prediction 

variance for all fractions of the design space. Small values of SPV or UPV are seen as lines close to the horizontal axis on 

the FDS plot. The flatter the graph, the stronger the stability and prediction capability of the design. The FDS graphs will 

be plotted for the scaled and unscaled prediction variances in this study. 

C. Exact G- and V-optimality Criteria 

[3], [4] and [22] strongly recommend the choice of exact optimality criteria for design evaluation since the exact value 

is more reliable than the average prediction variance provided by many statistical software packages. [22] argues that 

statistical software packages merely provide approximate results rather than the exact values, leading to poor design 

evaluation.  In this study, we propose computational formulae for obtaining exact G- and V-optimality criteria when the 

cube or star or both cube and star portions of the CCD are replicated. [4] have already proposed exact G- and V-

optimality criteria that are based on replication of the centre points alone for reduced models in the hypercube. 

However, the formulae proposed in this study accommodate the appropriate replication of the centre point for the CCD. 

We now give the exact V- and G-optimality for the three cases under consideration. MATLAB software 2008a was used 

extensively in doing the necessary matrix algebra that gave rise to the desired results after very tedious algebra. 

 

Case One: Only the star is replicated 

When only the star portion of the CCD is replicated sn  times, the V-criterion is  

 
    











 





f

kk
kNn

Qn

k

nf

kk
NV s

ss
18

1
129

45233

2
1

4
1

1
42

21
1111 




 ,  (8) 

where 01 2 nknfN s  ,   1
42 Qnkf s11 , 1

4
11 2  kNnQ s  ,  22

11 2  ffN , 

  1
22 Qnf s21 . The G-efficiency is given by   

  
  xyV

p
G

ˆmax

100

1

1  ,         (9) 

where  

  xyV ˆ
1
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Case Two: Only the cube is replicated 

The V-criterion when only the cube is replicated cn  times is given by 

 
    







 





F

kk
kN

Q

k

F

kk
NV

18

1
19

45233

2
2

4
2

2
42

22
1222 




 ,              (11) 

where 02 2 nkFN  , fnF c ,   2
42 QkF 12 , 2

4
22 2  kNQ  ,  22

22 2  FFN , 

  2
22 QF 22 . The G-efficiency is given by 

  
  xyV

p
G
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100

2

2  ,                   (12) 
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Case Three: The Cube and Star are replicated 

If the cube is replicated cn  times and the star, simultaneously replicated sn  times, then the V-criterion is given by  

 
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where   3
42 QnkF s13 , 3

4
33 2  kNnQ s  ,  22

33 2  snFFN  ,   3
22 QnF s23  

The G-efficiency is given by 

  
  xyV

p
G

ˆmax

100

3

3  ,                    (15) 

where  

    



















 











k

ji

ji

k

i

i

k

i

i xxxxNyV
2

22
33

1

4
23

1

2
130333

ˆ x ,               (16) 

1303   , 
 











 





3

2

213

22

2

1

Q

nF

nF

s

s




 ,   3

4
3

3
423 12

2

1



 kNn

Qn
s

s

  and 













3
4

3
33

1

QnF
s


 . 

These mathematical expressions can be programmed into any statistical software to obtain the exact G- and V-

optimality criteria .  

4. DESIGN EVALUATIONS AND COMPARISON 

In this section, we compare the results obtained by evaluating the replicated options of the CCD using the three 

alphabetic optimality criteria and fraction of design space plots. The comparisons of designs proceed as follows: in 

section 5.1, we define the pattern of replication adopted for the evaluation, in section 5.2, comparisons of the various 

replicated options of the CCD are made using the optimality criteria while in section 5.3, graphical evaluations and 

comparisons are made. 



 

 

                                                                               Int. J. Comp. Theo.  Stat.  2, No. 2, 87-97 (Nov-2015)         91   

 

 

http://journals.uob.edu.bh 

A. Replication of the CCD 

The first replicated option of the CCD is where the cube is replicated twice and the star not replicated. This design 

option is denoted by 12SC . The second design option is where the star is replicated twice and the cube is not 

replicated, denoted by 21SC . Other replicated options are 13SC , 31SC , 14SC  and 41SC . These designs are 

compared together with the traditional version,
 11SC , where only the centre point is replicated. These seven options of 

the CCD are all augmented with 30 n  centre points and compared using the optimality criteria and FDS plots. 

B. Comparison Using Optimality Criteria 

The results of the alphabetic optimality criteria for the seven options of the CCD are summarized in Table 1. The 

results show that, for all the k variables under consideration, higher replication of the cube increases the D-efficiency of 

the CCD. Replicating the cube increases  , making it possible for the designs to be evaluated at points closer to the  

 

Table 1: Summary of Design Optimality Criteria 

K p Design N α D-eff G-eff V-criteion 
3 

 

 

 

 

 

 

10 

 

 

 

 

 

 

C2S1 

C1S2 

C3S1 

C1S3 

C4S1 

C1S4 

C1S1 

25 

23 

33 

29 

41 

35 

17 

2.0000 

1.4142 

2.2134 

1.2779 

2.3784 

1.1892 

1.6818 

83.53 

53.63 

91.86 

45.35 

97.26 

39.66 

41.30 

136.00 

165.22 

134.62 

180.77 

142.04 

200.67 

177.16 

5.6125 

5.3314 

5.6628 

5.4623 

5.4779 

5.6714 

5.4971 

4 

 

 

 

 

 

 

15 

 

 

 

 

 

 

C2S1 

C1S2 

C3S1 

C1S3 

C4S1 

C1S4 

C1S1 

43 

35 

59 

43 

75 

51 

27 

2.3784 

1.6818 

2.6322 

1.5197 

2.8284 

1.4142 

2.0000 

90.78 

62.13 

97.94 

53.20 

100.00 

46.78 

76.44 

136.57 

167.79 

148.94 

204.35 

166.67 

245.10 

166.79 

8.0865 

7.3539 

7.6586 

7.0765 

7.1250 

7.0890 

7.2000 

5 
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C2S1 

C1S2 

C3S1 

C1S3 

C4S1 

C1S4 

C1S1 

77 

55 

109 

65 

141 

75 

45 

2.8284 

2.0000 

3.1302 

1.8072 

3.3636 

1.6818 

2.3784 

97.69 

72.27 

103.27 

63.55 

106.46 

56.92 

85.64 

151.95 

136.36 

184.52 

180.19 

214.31 

234.90 

145.75 

8.9429 

9.0521 

7.8184 

7.3464 

7.0576 

6.3065 

8.9682 

6 
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C2S1 

C1S2 

C3S1 

C1S3 

C4S1 

C1S4 

C1S1 

79 

59 

111 

71 

143 

83 

47 

2.8284 

2.0000 

3.1302 

2.1491 

3.3636 

1.6818 

2.3784 

93.83 

67.49 

99.71 

58.07 

103.18 

51.04 

81.41 

141.77 

237.29 

166.64 

339.40 

196.96 

435.59 

180.48 

14.0153 

10.9457 

12.6258 

10.2708 

11.3608 

10.4258 

12.1112 

7 
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C2S1 

C1S2 

C3S1 

C1S3 

C4S1 

C1S4 

C1S1 

145 

95 

209 

109 

273 

123 

81 

3.3636 

2.3784 

3.7224 

2.1491 

4.0000 

2.0000 

2.8284 

100.33 

78.82 

104.51 

70.59 

106.79 

63.97 

90.61 

177.15 

144.07 

231.62 

223.93 

276.92 

321.95 

143.21 

15.3302 

17.4405 

12.9993 

13.9689 

11.7361 

12.5407 

17.5616 
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99 

211 

115 

275 

131 

83 

3.3636 

2.3784 

3.7224 

2.1491 

4.0000 

2.0000 

2.8284 

97.86 

75.64 

102.29 

66.72 

104.75 

59.67 

87.87 

159.07 

236.19 

210.27 

385.81 

285.55 

542.75 

162.65 

20.2443 

16.5216 

16.9609 

14.2918 

15.0127 

13.9614 

19.9353 
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2.3784 

3.3636 
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85.97 

105.78 

79.07 

107.27 

73.23 

95.70 

236.46 

110.78 

317.96 

187.96 

379.37 

301.51 

146.67 

19.0762 

31.0234 

16.1704 

22.2146 

14.7884 

18.0602 

25.7885 

10 
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C2S1 

C1S2 

C3S1 

C1S3 

C4S1 

C1S4 

C1S1 

535 

299 

791 

319 

1047 

339 

279 

4.7568 

3.3636 

5.2643 

3.0393 

5.6569 

2.8284 

3.1623 

105.96 

93.88 

107.61 

88.33 

108.46 

81.66 

86.97 

364.85 

78.92 

461.34 

68.08 

527.41 

110.32 

212.90 

17.8845 

48.3387 
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extremes of the design space than to the centre of the design space. This, consequently, results in increase in the D-

efficiency as designs are evaluated close to the extremes of the design region. 

 For k = 3, 100% D-efficiency is not achieved at 14SC , though the D-efficiency at this point is 97.26%, which is 

close to 100%. However, 100% D-efficiency is achieved at 14SC  for k = 4, at 13SC  for k = 5, and at 12SC  for k = 7. 

This indicates that the higher the number of variables, the easier it becomes to achieve D-efficiency with minimal 

replication of the cube. It could be observed that higher replications of the cube, for moderately large number of factors, 

yield D-efficiencies greater than 100%, what may be referred to as super D-efficiency. However, this is achieved at the 

cost of very high number of design runs. Again, these super D-efficiencies are achieved at very high   values that may 

appear impractical for some experiments. For instance, for k = 9, 13SC  has D-efficiency value of 105.78% at   = 

4.4267. Considering the remaining points of the design, which are between -1 and +1 for any factor, it is obvious that 

this   value may not be feasible in many experiments. The design option, 11SC , tend to moderate the value of   but 

this does not achieve the desirable D-efficiency except for k = 9 where  11SC  is 95.70 D-efficient. 

 On the other hand, none of the star-replicated options is D-efficient. In fact, the higher the replication of the star 

portion, the smaller the D-efficiency. This is due to the fact that higher replication of the star results in decrease in the 

value of  , leading to evaluation of the  

designs at points closer to the centre of the design space. The smaller the   value, the smaller the D-efficiency. In 

general, replicating the star portion reduces the D-efficiency of the CCD. 

 Table 1 has also shown that replicating either the cube or star portions improves the G-efficiency of the CCD. 

However, the G-efficiency values of the star-replicated CCD are better than those of the cube-replicated options for k = 

3 to 8 factors. These results are reflected in the FDS plots for the scaled prediction variances in Figures 1 to 6 where the 

higher star-replicated options, 31SC  and 41SC , have better stable  minimum scaled prediction variance than the cube-

replicated options and 11SC . These results are achieved as the   values get closer to the centre of the design region as 

replication of the star increases. Contrarily, the G-efficiency of the replicated-cube options for k = 9 and 10 are superior 

to those of the star options for the same number of factors. This could be observed in Figures 7 and 8 where the FDS 

plots for k = 9 and 10 factors have the smallest and stable SPV that are distributed throughout the entire design space 

for 13SC and 14SC . 

 The results in Table 1 further reveal that no design option is consistently superior in terms of the V-criterion. The 

design with the smallest average prediction variance is considered the best among the competing designs. For k = 3, the 

design option, 21SC , with the smallest V-criterion value is the better design than the others under this criterion. For k = 

4 and 6, 31SC  has the best V-values that are very close to those of 41SC . The design option, 41SC , has the best values 

and considered the best design option for k = 5 and 8 factors in terms of the V-criterion. Relating this result to the plots 

in Figures 3 and 5, it could be observed that 41SC  maintained the smallest SPV for the entire design region. The cube-

replicated option, 14SC , provides the best V-criterion values for k = 7, 9 and 10. This is obvious in Figures 7 and 8 for 

k = 9 and 10 factors, respectively, where this design option displays the lowest and smallest SPV throughout the design 

region. 
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 Table 1 has shown that replicating the cube portion of the CCD improves the V-criterion for all the factors under 

consideration. This indicates that the V-criterion for the replicated-cube options get better as the axial distance gets 

closer to the extremes of the design space. However, the V-criterion for the replicated-star options gets better as the 

number of factors increases. This explains why, for the star-replicated options, 21SC  is the best for k = 3, 31SC  is the 

best for k = 4 and 41SC  is the best for k = 5, 6, 7, 8, 9 and 10 factors. 

C. Comparison Using Graphs 

The FDS plots are displayed in Figures 1-8 for both the scaled and unscaled prediction variances and for all the k 

number of factors under consideration. Generally, the graphs show that the prediction variances of the designs get better 

with replication as the higher replicated options displayed the smallest prediction variance (scaled or unscaled). The 

replicated-star option, 41SC , displayed the smallest and most stable SPV for k = 3, 4, 5, 6, 7 and 8 in Figures 1(a), 2(a), 

3(a), 4(a) 5(a) and 6(a), respectively. This indicates that replicating the star tends to improve the scaled prediction 

variance of the rotatable CCD for the stated k number of factors. However, for Figures 7(a) and 8(a), the replicated-cube 

option, 14SC , display the smallest and most stable SPV throughout the entire design space, making the 14SC  the best 

choice in predicting responses for k = 9 and 10 factors. 

 

         
   (a)          (b) 

Figure 1: (a) SPV and (b) UPV for Three-Factor Rotatable CCD. 

 

  

          
 (a)          (b) 

Figure 2: (a) SPV and (b) UPV for Four-Factor Rotatable CCD. 
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 (a)     (b) 
Figure 3: (a) SPV and (b) UPV for Five-Factor Rotatable CCD 

 

                 
                         (a)                (b) 

Figure 4: (a) SPV and (b) UPV for Six-Factor Rotatable CCD 

 

 

                                         
   (a)              (b) 

Figure 5: (a) SPV and (b) UPV for Seven-Factor Rotatable CCD 

0 0.5 1
7

8

9

10

11

12

13

14

15

16

fraction of design space

sc
ale

d p
red

ict
ion

 va
ria

nc
e

 

 

C2S1

C1S2

C3S1

C1S3

C4S1

C1S4

C1S1

0 0.5 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

fraction of designspace

un
sc

ale
d 

pr
ed

itio
n 

va
ria

nc
e

 

 

C2S1

C1S2

C3S1

C1S3

C4S1

C1S4

C1S1

0 0.5 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

fraction of design space

un
sc

ale
d 

pr
ed

ict
ion

 v
ar

ian
ce

 

 

C2S1

C1S2

C3S1

C1S3

C4S1

C1S4

C1S1

0 0.5 1
5

10

15

20

fraction of design space

sc
ale

d p
red

ict
ion

 va
ria

nc
e

 

 

C2S1

C1S2

C3S1

C1S3

C4S1

C1S4

C1S1

0 0.5 1
8

10

12

14

16

18

20

22

24

26

fraction of design space

sc
ale

d 
pr

ed
ict

ion
 v

ar
ian

ce

 

 

C2S1

C1S2

C3S1

C1S3

C4S1

C1S4

C1S1

0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

fraction of design space

un
sc

al
ed

 p
re

di
ct

io
n 

va
ria

nc
e

 

 

C2S1

C1S2

C3S1

C1S3

C4S1

C1S4

C1S1



 

 

                                                                               Int. J. Comp. Theo.  Stat.  2, No. 2, 87-97 (Nov-2015)         95   

 

 

http://journals.uob.edu.bh 

            
       (a)      (b) 

 

Figure 6: (a) SPV and (b) UPV for Eight-Factor Rotatable CCD 

 

 

 

            
           (a)     (b)  

 

Figure 7: (a) SPV and (b) UPV for Nine-Factor Rotatable CCD 
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   (a)             (b) 

Figure 8: (a) SPV and (b) UPV for Ten-Factor Rotatable CCD 

 

Figures 1(b) and 4(b) show that 41SC  has the smallest UPV spread across the entire design region for k = 3 and 6 

factors than the other replicated options. However, 14SC  has the best spread of small UPV for k = 4, 5, 7, 8, 9 and 10 

factors as shown in Figures 2(b), 3(b), 5(b), 6(b), 7(b) and 8(b). The cost of experimentation, represented by the number 

of runs, N, really influenced the performances of these design options for some of the factors. Figures 2(b), 3(b), 5(b) 

and 6(b) portray the fact that if the cost of experimentation is not considered, 14SC  performs better than the other 

replicated options in terms of stability and minimum prediction variance. 

The choice of plotting the SPV or UPV is very important since comparisons are being made among designs of 

various sizes. If the experimenter is interested in obtaining efficient designs while considering the cost of adding extra 

run to increase precision of prediction by reducing the prediction variance, plotting the SPV is preferable. In this case, 

41SC  is recommended for k = 3, 4, 5, 6, 7 and 8 factors for the rotatable CCD while 14SC  is recommended for k = 9 

and 10 factors. Plotting the UPV is a better alternative if the experimenter is not restricted by cost but desires design 

with high precision for prediction irrespective of the design sample size. The various plots show that larger design runs 

yield smaller prediction variance since 14SC  and 41SC , the higher replicated cube and star options with high number 

of runs, respectively, continuously yield small prediction variances. For the choice of plotting UPV, 41SC  is 

recommended for k = 3 and 6 factors while 14SC  is recommended for k = 4, 5, 7 8, 9 and 10 factors for the rotatable 

CCD. 

 

5. CONCLUSIONS 

         Replicating the cube and star portions of the CCD has offered the opportunity to assess the characteristics of the 

prediction variance of the CCD for predicting responses when the choice of   gives the advantage of having equal 

variance of prediction round the design at any given point. The results have shown that if the practitioner is interested in 

D-efficient designs, replicating the cube is recommended since all the replicated-cube options are D-efficient. Since 

cost of experimentation could be a discouraging factor, then 12SC  may be desirable. However, where the user could 

afford extra design runs, 13SC  and 14SC  are ideal. The user is also advised on the use of 13SC  and 14SC  for larger 

number of factors as the D-efficiency of these design options are estimated at relatively impractical   levels. 

 None of the seven design options considered in this study has shown any consistent superiority over the others 

when assessed using the G-efficiency, V-criterion and FDS plots. For some factors, replicating the star is more 

advantageous while for other factors, replicating the cube is more advantageous. The choice of plotting the scaled or 

unscaled prediction variance for proper design evaluation is left for the practitioner based on the priorities as regards 

cost and desire for minimum variance for prediction. 
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