

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 7, No.2 (Mar-2018)

Email address: pathan_aneela@quest.edu.pk, tayabuddin.memon@faculty.edu.pk, sheeraz.memon@faculty.edu.pk

http://journals.uob.edu.bh

A Carry-Look Ahead Adder Based Floating-Point

 Multiplier for Adaptive Filter Applications

Aneela Pathan
1
, Tayab D Memon

2
 and Sheeraz Memon

3

1 Institute of Information and Communication Technology, Mehran University of Engineering and Technology, Jamshoro, Pakistan

2Department of Electronic Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan
3Department of Computer System Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan

Received 29 Sep.2017, Revised 26 Jan. 2018, Accepted 13 Feb. 2018, Published 1 Mar. 2018

Abstract: Floating-point arithmetic has various applications in the field of Science and Engineering. Specially, need of high

precision floating-point multipliers is observed in Digital Signal Processing- like in filtering and transformations . High speed signal

processing demands for high speed hardware. Though, various high level languages based implementations of floating-point

multiplier are observed so far , but the hardware based implementation has still remained a bottleneck. With the development of Very

Large Scale Integration (VLSI) technology, Field Programmable Gate Array (FPGA) has become the best candidate for

implementing floating-point multipliers (due to their high integration density, low price, high performance and flexible applications).

In this work, we have shown the implementation of IEEE-754 single precision floating-point multiplier on FPGA using carry-look

ahead adder (for exponent addition). The multiplier may be used in adaptive filters for multiplying the fractional step size (mue) to

update the filter weights. This paper also presents the comparative analysis of proposed design with Spartan 6 FPGA's built-in IPcore

for floating-point multiplier. The results are compared in terms of recourse utilization, power consumption, observed delay, logic

levels and maximum achieved frequency. It is shown that our design is better in terms of achieved frequency with a small increase in

resource utilization.

Keywords: Floating-point multipier,Carry-look ahead adder, FPGA,IPcore ,Adaptive filter

1. INTRODUCTION

In adaptive filter design, the step size (mue) used to set
the weights of adaptive filters is kept small, as too large
step size gives a fast response to weight changes but
results in a large excess mean square error
(MSE)[1].Mostly, it is taken in fractions. Fractional or
floating-point arithmetic is one of the key areas in
adaptive filters, dealing not with the filter coefficients in
factional values but also the intermediate arithmetic
operations. Beside scientific computations, many DSP
applications need floating -point arithmetic[2] .

The fractional or floating-point arithmetic has always
remained a bottleneck to be implemented on hardware. It
is required to convert floating-point values to large
precision fixed-point representation for resulting in large
dynamic range, but the hardness of this conversion and
the quantization error reduces usage of this float to fixed
point arithmetic in high precision embedded systems[3] .

Though, various high level languages (Like C,C++)
based implementations of floating-point multiplier are
observed so far, but the hardware based implementation

has still remained a bottleneck. With the development of
Very Large Scale Integration (VLSI) technology, Field
Programmable Gate Array (FPGA) has become the best
candidate for implementing floating-point multipliers (due
to their high integration density, low price, high
performance and flexible applications).

The FPGAs come with various built-in primitives and
IPcores (Intellectual Property), optimized in terms of
area, speed or power[4]. Like, the IPcore for floating-
point multiplier is optimized in terms of area, but results
in reduced performance in terms of frequency[5]. Hence,
not restricting the design based on built-in IPcore, one
can have the opportunity to get customized optimization
in terms of area, power as well as frequency . This
approach tends to more adaptable and flexible circuits .

In this work, we have shown the implementation of
IEEE-754 single precision floating-point multiplier on
FPGA using carry-look ahead adder (for exponent
addition). The multiplier may be used in adaptive filters
for multiplying the fractional step size (mue) to update the
filter weights. Besides the comparative analysis of
proposed design with FPGA's built-in IPcore for floating-

http://dx.doi.org/10.12785/ijcds/070204

96 Aneela Pathan, et. al.: A Carry- look ahead Based Floating- point Multiplier …

http://journals.uob.edu.bh

point multiplier is also carried out. The results are
compared in terms of recourse utilization, power
consumption, observed delay, logic levels and maximum
achieved frequency. It is shown that our design is better in
terms of achieved frequency with a small increase in
resource utilization.

Several works are reported in area of floating-point
multiplier design and other floating-point arithmetic units
on a range of FPGA architectures. Few of them are
discussed below.

In[6] the hardware based (FPGA) implementation of a
high speed floating-point multiplier with pipeline
architecture is presented . In the design ,Radix-4 Booth’s
encoding algorithm based on improved 4:2 compression
structure is implemented as floating-point multiplier.
While, the sum and carry vectors are added by a carry
look-ahead adder. The timing simulation results show that
the floating- point multiplier can be steadily run at the
frequency of 80 MHz.

In[7] authors have reported a fast and area efficient
carry select adder, that is implemented for exponent
addition in floating-point multiplier along with the parallel
processing of various units used in the architecture. The
result shows a decrement of 27 % in the combinational
path delay with an increment of around 8% in the number
of LUTs used in comparison to other works discussed in
paper. Whereas, the maximum frequency achieved in that
design is 24.41 MHz causing the bottleneck for design to
be used in high speed circuits.

In[8]the floating-point multiplier is proposed by
utilizing reduced complexity Wallace multiplier for
mantissa multiplication to minimize the latency.
Normalization and Alignment Shifter has also been
designed using barrel shifter to obtain the higher precision
and lower latency. The total delay for this shifter is found
to be 5.845 ns. While, the average delay of proposed
approach is 37.673ns resulting the average frequency to
restrict up to 26.54 MHz.

The work referred in[9] presents multi-functional,
multiple precision floating-point Multiply-add Fused
(MAF) unit. The mentioned multiply-add fused unit is
accomplished to perform a quadruple accuracy. The
design is done on a 65 nm silicon process attaining
highest operating frequency of 293.5 MHz at 381 mW
power.

In[10]FPGA based implementation of single precision
floating-point multiplier and adders using the different
adder approaches is discussed. The design shows that the
carry-select adder based circuit offers best performance of
all candidates including full carry-look ahead. Whiles, the
frequency achieved at maximum does not exceed from
14.29 MHz.

A 16/18 bit pipelined multiplier following IEEE-754
standard is presented in[11].The design lacks in rounding

mode support. The maximum frequency achieved is
19.0MHz.

A latency optimized floating-point built-in primitive
of Vertex II FFPGA is instantiated in [12]. The latency of
design is observed to be 4 clock cycles; whereas, the
maximum frequency is100 MHz.

 In[13]Handle-C along with Xilinx XCV1000 FPGA
is used for designing of a parameterizable floating-point
pipelined multiplier. With five stages of pipelining the
design could reach to 28MFlops.

The implementation of IEEE-754 multiplier is
observed in[14] targeted on Xilinx Virtex-5 FPGA. The
pipelined approach is used to maximize the efficiency. It
is also seen that over flow and underflow cases are
tackled, but the rounding is not implemented. The design
achieves 301 MFLOPs with the latency of three clock
cycles.

With the idea of increasing the speed by reducing the
delay, with incorporating an optimal adder like carry look
ahead, the author in[15] has deigned IEEE-754 floating-
point multiplier. The beauty of the design is its flexibility
of being interfaced with any 32 bit processor.

In[16] authors describe a proficient implementation of
an IEEE-754 single precision floating-point multiplier
using Vedic mathematics-as with using Vedic
mathematics partial products can be reduced, so that the
area and power constraints of the floating- point multiplier
can be reduced efficiently. The carried out work can be
further improved by using high speed adders and
substructures.

All the architectures mentioned above results in
optimization in one way or other, but still some space is
there to optimize the FPFA based floating-point multiplier
in terms of area as well as frequency. This idea of
customized optimization is carried out in this work and
the results achieved show the succession of idea.

This paper further proceeds as follows: adaptive filter
followed by carry-look ahead adder and IEEE-754 single
precision floating- point multiplier is discussed in section
2. Section 3 describes the system design in FPGA. While,
results and conclusion is given in section 4 and 5
respectively.

2. DESIGN COMPONENTS

In this section we have briefly described the basic
components separately.

A. Adaptive Filter

The system that manages to produce the relationship
of two signals using iterative manner in real time
environment is known as an adaptive filter[17] .

The theme of adaptive filter is the adaptation in order
to adjust the characteristics of the filter through an
interaction with the environment [18].

 Int. J. Com. Dig. Sys. 7, No.2, 95-102 (Mar-2018) 97

http://journals.uob.edu.bh

The basic components of adaptive filter shown in
Figure1 include:

 The signals being processed by the filter.

 The structure that defines how the output signal of
the filter is computed from its input signal.

 The parameters within this structure that can be
iteratively changed to alter the filter’s input-
output relationship.

 The adaptive algorithm that describes how the
parameters are adjusted from one time instant to
the next [19].

Ek

-
∑Fk

Xk Dk

Yk

+

Figure 1. Block diagram of adaptive filter

Most of the common adaptive algorithm is Least
Mean Square (LMS).

The LMS is the adaptive algorithm, used to drive the
desired filter coefficients with stochastic gradient descent
method. The filter is adapted based on the current time
error (difference between the desired signal and the actual
signal) [20].

B. Carry -look ahead adder

One of the major bottlenecks of ripple carry adder is
the time of carry propagation (where the next output sum
bit is dependent upon the previous carry). This can be
handled once the next stage carry is calculated at prior.
This approach is adapted by carry-look ahead adder, that
is one of the fast digital adders [21].

Carry Look Ahead Adder

Bit 0

P0 G0 S0

X0 Y0

C0

Bit 1

P1 G1 S1

X1 Y1

C1

Bit 2

P2 G2 S2

X2 Y2

C2

Bit 3

P3 G3 S3

X3 Y3

C3

Figure 2. Block diagram of carry-look ahead adder

In comparison to ripple carry adder, carry-look ahead
adder has improved speed, as it pre-calculates the carry
bit.

Hence, using this adder in the design will result in
overall reduced delay [22].

The carry- look ahead approach works on the basis of
two terms the Propagate and the Generate. Those may be
prior calculated as follow:

Pi =Ai xor Bi (Carry propagate) (1)
Gi=Ai and Bi (Carry generate) (2)

The Si and Ci+1 represent the sum and carry-out.

Respectively, the Si and Ci+1 are expressed as:

Si = Pi xor Ci-1 (3)

Ci+1 = Gi or (Pi and Ci) = Gi+ (Pi Ci)) (4) [18].

C. IEEE -754 Single precision floating- point multiplier

The IEEE-754 standard defines number

representations and operations for floating-point
arithmetic. The three types of floating- point formats
given in IEEE-754 standard are Single, Double and
Double-Extended[23] .

 The floating- point representation of any number
consists of three fields known as Sign, Exponent and
Significant or Mantissa part. The bit width distribution of
three IEEE formats for floating- point representation is
given in figure 3, figure 4 and figure 5 respectively.

Figure 3. Single precession (32−bit)

Figure 4. Double precession (64−bit)

Figure 5. Double extended (128−bit)

D. Spartan 6's built-in IPcore of floating- point

multiplier

Along with other built in IPcores, Xilinx's Spartan 6
FPGA also facilitate the designer with more complicated
core of floating-point arithmetic (figure 6 shows the
interface of the built-in floating- point unit).

Sign Exponent Significant/Mantissa

1-bit 11-bits 52-bits

Sign Exponent Significant/Mantissa

1-bit 15-bits 112-bits

Sign Exponent Significant/Mantissa

1-bit 8-bits 23-bits

98 Aneela Pathan, et. al.: A Carry- look ahead Based Floating- point Multiplier …

http://journals.uob.edu.bh

S_axis_a_tvalid m_axis_result_tvalid

S_axis_a_ready m_axis_result_ready

S_axis_a_data m_axis_result_data

S_axis_a_tuser m_axis_result_tuser

S_axis_a_tlast m_axis_result_tlast

S_axis_b_tvalid

S_axis_b_ready

S_axis_b_data

S_axis_b_tuser

S_axis_b_tlast

S_axis_operation_tvalid

S_axis_ operation__ready

S_axis_ operation__data

S_axis_ operation__tuser

S_axis_ operation__tlast

S_axis_ operation__tvalid

Aclk

Aresetn

aclken

Figure 6. Floating- point unit interface

The provided core may be used for customized design-
as the operand word length, required latency and even the
interface may be selected as per design requirement. A
range of arithmetic operations may be performed with this
built-in core, where each operation variant has a common
interface[5] .

Amongst the steps of floating-point multiplier, the
more resource consuming part is the mantissa multiplier.
The mantissa multiplier takes more hardware as compare
to the exponent addition and even the sign bit calculation
of floating-point conversion.

Using Spartan 6's built-in IPcore, the floating-point
multiplier may be designed particularly in four
configurations, categorized on the basis of DSP48 usage.
Those possible configurations are summarized in the
table1.

TABLE I. IMPACT OF FAMILY AND MULTIPLIER USAGE ON THE

IMPLEMENTATION OF THE MULTIPLIER

Multiplier Usage
Spartan-6 FPGA

Family

Virtex 6 and 7 Series

FPGA Families

No Usage Logic Logic

Medium Usage
DSP48A1+logic in

multiplier body

DSP48E1+logic in

multiplier body

Full Usage
DSP48A1 used in

multiplier body

DSP48E1 used in

multiplier body

Maximum Usage
DSP48A1 multiplier

body and rounder

DSP48E1 multiplier

body and rounder

3. SYSTEM DESIGN IN FPGA

A. spartan 6's built-in IPcore based design

Eight implementations were carried out in this work
using Spartan 6 FPGA. In first four implementations,
Spartan 6's built-in core for floating- point multiplier was
instantiated using IPcore based design option. Figure 7
shows the general arithmetic functions of floating- point
multiplier carried out by built-in IPcore.

24x24 Mantissa

Multiplier

Sign Bit calculation

Exponent Addition

Bias Subtraction

32 bit Multiplier

32 bit Multiplicand

32 bit Product

Figure 7. Arithematic functions for floating-point multiplier

Interface for core based design of floating- point unit
provides various configuration options. Like, selection of
floating- point arithmetic operation, setting the latency for
the output and to make the design synchronous,
asynchronous, clock enabled and using DSP48 or not.

In our design, we selected the option of floating- point
multiplier with zero latency, hence getting the output with
no delay.

After instantiating the core to main module, the clock
was introduced in order to get the registered synchronous
output. This configuration caused the output to observe
the latency of one cycle.

Among the four implementations using built in core,
in the first design, the primitive of floating-point
multiplier was configured with the option of no usage of
DSP48 as discussed in table 1. Hence, whole floating-
point multiplier was carried out on logic units-the Look up
tables (LUTS).

In the second design, using the same method the
option of medium usage of DSP48 was selected. This
option translated the some part of 24 bit mantissa
multiplication on built-in DSP ; whereas, the other logic
(i.e. sign bit calculation, exponent addition, bias
subtraction and mantissa normalization) was translated on
LUTS.

The third design was carried out using the full usage
option of DSP48, that completely translated the mantissa
multiplier on DSP48 while the other logic was translated
on LUTS.

And finally, the option of maximum usage of DSP48
was utilized that not only translated the multiplier on
DSP48 but exponent addition was also translated on DSP
48.

 Int. J. Com. Dig. Sys. 7, No.2, 95-102 (Mar-2018) 99

http://journals.uob.edu.bh

The Register Transfer Level (RTL) view of the built-
in core based design may be seen in figure 8.

a1

RTL_wide_fdrse_32

a[31:0]
clk

b1

RTL_wide_fdrse_32

RTL_wide_fdrse_32

b[31:0] result[31:0]
b[31:0]

result1[31:0]

clk
d[31:0]

r[31:0]

s[31:0]e[31:0]
q[31:0]

a[31:0]

DSP48
clk
d[31:0]

r[31:0]

s[31:0]e[31:0]
q[31:0]

clk
d[31:0]

r[31:0]

s[31:0]e[31:0]
q[31:0]

result1[31:0]

Figure 8. RTL view of IPcore based floating- point multiplier

B. Carry- lookahead based design

Besides the designs mentioned above, four designs
were implemented using verilog syntax.

As per steps of floating-point multiplier, all the
required modules were designed and implemented using
the proper coding style and logic optimization to make the
design more compact and efficient.

In order to make the designs comparable with those of
built-in IPcore of floating-point multiplier, some changes
were made in the project goals and strategy setting options
(we selected balanced design for our project).

In the first design, the project goals and strategy
option was customized to no usage of DSP48 (hence
making the design comparable built in core based design).
This resulted in LUT based implementation of the
multiplier.

In second, the option of selecting the DSP48 be used
was set to 60%. This customized strategy resulted in same
number of DSP 48 multipliers to that of built in primitive
based design ,while 40 % logic was translated on LUTS.

For third design, the 100 % DSP48 was utilized that
resulted whole mantissa multiplier to be translated on
DSP48.

Whereas in fourth design, besides the mantissa
multiplier, the bias subtraction was also translated on DSP
48.

The first step of floating- point multiplier (that is sign
bit calculation) was simply carried out using XOR gate as
shown in figure 9.

Multiplier MSB

Multiplicand MSB

Figure 9. Sign bit calculation

Twenty-four bit mantissa multiplier was set to be
translated either on the LUTs or on DSP48 as shown in
figure 10.

&0

0

0

LUT

DSP 48

Multiplier’s 24 bit Mantissa
Multiplicand’s 24 bit Mantissa

Multiplier’s 24 bit Mantissa
Multiplicand’s 24 bit Mantissa

Figure 10. LUT/DSP48 based mantissa multiplier

Mantissa normalization is the method of converting
the 48 bit output got after the mantissa multiplication to
23 bits as per requirement of single precision floating-
point multiplication.

In this step, condition is set on the most significant bit
of the output product, that is, if it is high the immediate 23
bits would be the mantissa bit otherwise right shift would
be made to check for the next MSB. The procedure would
be continued till the first high bit is achieved.

In our design, the multiplexer logic is implemented to
perform this task.

48 bit Mantissa 23 bit Mantissa

Figure 11. Mantissa Normalization

Exponent addition is another important element of
floating- point multiplier. In our design we have used 8 bit
carry-look ahead adder to do this work. This proposed
modification brought very good effect in overall
performance of the multiplier.

100 Aneela Pathan, et. al.: A Carry- look ahead Based Floating- point Multiplier …

http://journals.uob.edu.bh

C a r r y L o o k A h e a d A d d e r

B i t 0

P0 G 0 S0

X 0 Y 0

C 0

B i t 1

P1 G 1 S1

X 1 Y 1

C 1

B i t 2

P 2 G 2 S2

X 2 Y 2

C 2

B i t 3

P3 G 3 S3

X 3 Y 3

C 3

Multiplier’s 8 bit Exponent
Multiplicand’s 8 bit Exponent

Figure 12. Exponent Addition

After the addition of exponents, to avoid the over flow the
constant bias value (127 in decimal) is subtracted from the
result to restrict the output of single precession floating-
point multiplier to 32 bits.

&0

0

0

LUT

DSP 48

Figure 13. Bias subtraction

The bias subtraction can be translated on the look up
tables or DSP48 as per required option.

4. RESULTS

The results given in tables are written after
implementing the built-in IPcore of floating-point
multiplier and the proposed design using carry- look
ahead adder. Xilinx ISE 14.2 software and Spartan 6
xc6slx16-3csg324 FPGA device is used in
implementation. All eight implementations are compared
in terms of LUTS, DSP48 primitives, total delay
observed, logic levels, maximum achieved frequency and
estimated power.

TABLE II. DESIGN SUMMARY OF FLOATING- POINT MULTIPLIER

WITH BUILT IN CORE USING LOGIC ONLY AND PROPOSED DESIGN

No Usage Built in Primitive Our Design

LUTS 841 1051

DSP48 0 0

Delay 17.529ns 5.027ns

Levels of Logic 60 3

Maximum Frequency 57.049 MHz 198.922MHz

Power Estimation 0.023 (W) 0.026 (W)

TABLE III. DESIGN SUMMARY OF FLOATING- POINT MULTIPLIER

WITH BUILT IN CORE USING LOGIC AND MEDIUM USAGE OF DSP48 AND

PROPOSED DESIGN

Medium Usage Built in Primitive Our Design

LUTS 397 1020

DSP48 1 1

Delay 15.935ns 5.027ns

Levels of Logic 44 3

Maximum Frequency 62.755 MHz 198.922MHz

Power Estimation 0.024(W) 0.026(W)

TABLE IV. DESIGN SUMMARY OF FLOATING- POINT MULTIPLIER

WITH BUILT IN CORE USING LOGIC AND FULL USAGE OF DSP48 AND

PROPOSED DESIGN

TABLE V. DESIGN SUMMARY OF FLOATING- POINT MULTIPLIER

WITH BUILT IN CORE USING LOGIC AND MAXIMUM USAGE OF DSP48

AND PROPOSED DESIGN

Maximum Usage
Built in

Primitive
Our Design

LUTS 108 170

DSP48 5 5

Delay 23.055ns 5.080ns

Levels of Logic 11 3

Maximum Frequency 43.374MHz 196.866MHz

Power Estimation 0.024 (W) 0.026(W)

The results shown in above tables very clearly
indicate the difference between the resource utilization,
maximum frequency achieved, delay observed, logic level
and power estimation. All this comparison is carried out
after post place and route simulation of the design. The
power estimation is carried out using Xilinx Power
Analyzer tool.

The results in table show that with a small increase in
look up table utilization, a significant increase is observed
in the maximum frequency achieved.

The effect of using carry-look ahead adder may be
observed in the logic levels achieved in implementations.
As in carry- look ahead adder, the carry is calculated prior
to next stage, hence the logic level is reduces as observed
in the results. As for as power is concerned, all eight
implementations consume approximately same amount.

The timing performance diagram shown in figure 14
verifies our design requirement of maximum latency of
one cycle. Here we can see that the multiplier’s output
comes immediately at the second positive edge of the
clock.

Full Usage Built in

Primitive

Our Design

LUTS 106 177

DSP48 4 4

Delay 23.053ns 5.080ns

Levels of Logic 11 3

Maximum Frequency 43.378MHz 196.866MHz

Power Estimation 0.024 (W) 0.026(W)

 Int. J. Com. Dig. Sys. 7, No.2, 95-102 (Mar-2018) 101

http://journals.uob.edu.bh

Result [31:0]

0 ns

CLK

c32b0000

100 ns 200 ns 300 ns 400 ns

c19000000Multiplier [31:0]

41180000Multiplicand [31:0]

Figure 14. Timing performancen with latency of one clock cycle

5. CONCLUSION

In this work, we have shown the implementation of
IEEE-754 single precision floating- point multiplier on
FPGA using carry-look ahead adder for exponent
addition. Also the comparative analysis of proposed
design with Spartan 6 FPGA's building IPcore for
floating- point multiplier is carried out . The results are
compared in terms of recourse utilization, power
consumption, observed delay, logic levels and maximum
achieved frequency. The maximum frequency achieved
with IPcore based design is 62.755 MHz while our
proposed design results in 196.866MHz that is about three
times larger than IPcore based design, hence making it
suitable for high speed circuits.

It can be concluded here that not all IPcores always
serve the selected aim. As we can see that in area point of
view the floating- point multiplier’s built-in core is better
but when talking about the speed, with slight increase in
look up tables our design is better than the first.

So, here comes the trade of for selecting the best as
per user requirement. If the priority is area then the built-
in primitive of floating- point multiplier is better, but if
speed is of concerned, defiantly our design is much better.

REFERENCES

[1] D. Bismor, "LMS algorithm step size adjustment for fast

convergence," Archives of Acoustics, vol. 37, pp. 31-40, 2012.

[2] J. Sohn and E. E. Swartzlander, "Improved architectures for a

floating-point fused dot product unit," in Computer Arithmetic

(ARITH), 2013 21st IEEE Symposium on, 2013, pp. 41-48.

[3] G. Govindu, L. Zhuo, S. Choi, P. Gundala, and V. K. Prasanna,

"Area, and power performance analysis of a floating-point based

application on FPGAs," UNIVERSITY OF SOUTHERN
CALIFORNIA LOS ANGELES DEPT OF ELECTRICAL

ENGINEERING2003.

[4] "Spartan-6 Libraries Guide for HDLDesigns (UG615), Xilinx Inc"
2009.

[5] I. LogiCORE, "Floating-Point Operator v6. 0," Xilinx Inc, 2012.

[6] G. Renxi, Z. Shangjun, Z. Hainan, M. Xiaobi, G. Wenying, X.
Lingling, et al., "Hardware implementation of a high speed

floating point multiplier based on FPGA," in Computer Science &

Education, 2009. ICCSE'09. 4th International Conference on,
2009, pp. 1902-1906.

[7] S. Raghav and R. Mittal, "Implementation of Fast and Efficient
Mac Unit on FPGA," 2016.

[8] S. Kakde, M. Mahindra, A. Khobragade, and N. Shah, "FPGA

Implementation of 128-Bit Fused Multiply Add Unit for Crypto
Processors," in International Symposium on Security in

Computing and Communication, 2015, pp. 78-85.

[9] K. Manolopoulos, D. Reisis, and V. A. Chouliaras, "An efficient
multiple precision floating-point Multiply-Add Fused unit,"

Microelectronics Journal, vol. 49, pp. 10-18, 2016.

[10] B. Fagin and C. Renard, "Field programmable gate arrays and
floating point arithmetic," IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 2, pp. 365-367, 1994.

[11] N. Shirazi, A. Walters, and P. Athanas, "Quantitative analysis of

floating point arithmetic on FPGA based custom computing

machines," in FPGAs for Custom Computing Machines, 1995.

Proceedings. IEEE Symposium on, 1995, pp. 155-162.

[12] B. Lee and N. Burgess, "Parameterisable floating-point operations

on FPGA," in Signals, Systems and Computers, 2002. Conference

Record of the Thirty-Sixth Asilomar Conference on, 2002, pp.
1064-1068.

[13] J. Allan and W. Luk, "Parameterised floating-point arithmetic on

FPGAs," in Acoustics, Speech, and Signal Processing, 2001.
Proceedings.(ICASSP'01). 2001 IEEE International Conference

on, 2001, pp. 897-900.

[14] M. Al-Ashrafy, A. Salem, and W. Anis, "An efficient
implementation of floating point multiplier," in Electronics,

Communications and Photonics Conference (SIECPC), 2011

Saudi International, 2011, pp. 1-5.

[15] A. Jain, B. Dash, A. K. Panda, and M. Suresh, "FPGA design of a

fast 32-bit floating point multiplier unit," in Devices, Circuits and

Systems (ICDCS), 2012 International Conference on, 2012, pp.
545-547.

[16] R. S. S. Teja and A. Madhusudhan, "FPGA implementation of

low-area floating point multiplier using Vedic mathematics," IJ of
Emerging Technology and Advanced Engineering, 2013.

[17] S. Goswami, P. Deka, B. Bardoloi, D. Dutta, and D. Sarma, "A

novel approach for design of a speech enhancement system using
NLMS adaptive filter and ZCR based pattern identification," in

Emerging Trends and Applications in Computer Science
(ICETACS), 2013 1st International Conference on, 2013, pp. 125-

129.

[18] "Design and Comparative Analysis of Various Adders through
Pipelining Techniques."

[19] P. Kunche and K. Reddy, "Adaptive Noise Cancellation to Speech

Enhancement," in Metaheuristic Applications to Speech
Enhancement, ed: Springer, 2016, pp. 7-15.

[20] R. V. G. KRISHNA and N. V. SATISH, "Implementation of

Fixed-Point LMS Adaptive Filter," 2016.

[21] "Simultaneous carry adder," ed: Google Patents, 1960.

[22] P. Shrivastava, "Analysis and Design of an Area-Efficient Fastest

Carry Look Ahead Adder with Enhanced Multiple Output
Transmission Gate Logic," 2014.

[23] W. Kahan, "IEEE standard 754 for binary floating-point

arithmetic," Lecture Notes on the Status of IEEE, vol. 754, p. 11,
1996.

102 Aneela Pathan, et. al.: A Carry- look ahead Based Floating- point Multiplier …

http://journals.uob.edu.bh

Aneela Pathan received degrees of BE

in Telecommunication from Mehran

UET, Jamshoro Sindh, Pakistan in 2008

and ME in Electronic Engineering

from NED university Karachi in 2010.

Currently, she is pursuing her PhD

degree (FPGA based DSP system

Design) from Meharn UET. Mrs.

Pathan worked as Assistant Manager

(satellite receivers’ design) in

SUPARCO from March 2008 to

Feboury 2013.

Since then she serves as Assistant Professor in Quaid-Awam

University College of Engineering Science and Technology

Larkana.

Tayab D Memon received a BE

(Hons) Electronics Engineering

(First Class) and a PG Diploma

Telecommunication and Control

Engineering (First Class) from

Mehran University of Engineering

& Technology, Jamshoro,

Pakistan, in 2003 and 2006

respectively. He received PhD

from Royal Melbourne Institute of

Technology (RMIT) Melbourne

Australia in 2012.
Currently he is working as Associate Professor in the

Department of Electronic Engineering, MUET. His research

interests include short word length DSP Systems, embedded

systems, and their FPGA-based implementation.

 Sheeraz Memon is working with the

department of Computer

SystemEngineering,MehranUET,Sindh

,Pakistan,sinceSep,2004. He completed

his Bachelor of Engineering in

computer system in Feb, 2004 and

Master of Engineering in

Communication Systems and

Networks in Feb 2007, form Mehran

UET Jamshoro.
The same year he was awarded Ph.D scholarship under faculty
development program and Mr.Memon left for securing the
doctoral degree from RMIT University Australia. He is skilled in
Digital Signal Processing (DSP), Voice/Speech Feature
Extraction, Machine Learning/Pattern recognition and Digital
Image Processing.

