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Abstract: Floating-point arithmetic has various applications in the field of Science and Engineering. Specially, need of  high 

precision floating-point multipliers is observed in Digital Signal Processing- like in filtering and transformations . High speed signal 

processing demands for high speed hardware. Though, various high level languages based implementations of floating-point 

multiplier are observed so far , but the hardware based implementation has still remained a bottleneck. With the development of Very 

Large Scale Integration (VLSI) technology, Field Programmable Gate Array (FPGA) has become the best candidate for 

implementing floating-point multipliers (due to their high integration density, low price, high performance and flexible applications). 

In this work, we have shown the implementation of  IEEE-754 single precision floating-point multiplier on FPGA using carry-look 

ahead adder (for exponent addition). The multiplier may be used in adaptive filters for multiplying the fractional step size (mue) to 

update the filter weights. This paper also presents the comparative analysis of proposed design with Spartan 6 FPGA's built-in IPcore 

for floating-point multiplier. The results are compared in terms of recourse utilization, power consumption, observed delay, logic 

levels and maximum achieved frequency. It is shown that our design is better in terms of achieved frequency with a small  increase in 

resource utilization.  
 

Keywords: Floating-point multipier,Carry-look ahead adder, FPGA,IPcore ,Adaptive filter 

 

1. INTRODUCTION 

In adaptive filter design, the step size (mue) used to set 
the weights of adaptive filters is kept small, as  too large 
step size gives a fast response to weight changes but 
results in a large excess mean square error 
(MSE)[1].Mostly, it is taken in fractions. Fractional or 
floating-point arithmetic is one of the key areas in 
adaptive filters, dealing not with the filter coefficients in 
factional values but also the intermediate arithmetic 
operations. Beside scientific computations, many DSP 
applications need floating -point arithmetic[2] . 

The fractional or floating-point arithmetic has always 
remained a bottleneck to be implemented on hardware.  It 
is required to convert floating-point values to large 
precision fixed-point representation for resulting in large 
dynamic range, but the hardness of this conversion and 
the quantization error reduces usage of this float to  fixed 
point arithmetic in high precision embedded systems[3] . 

Though, various high level languages (Like C,C++) 
based implementations of floating-point multiplier are 
observed so far,  but the hardware based implementation 

has still remained a bottleneck. With the development of 
Very Large Scale Integration (VLSI) technology, Field 
Programmable Gate Array (FPGA) has become the best 
candidate for implementing floating-point multipliers (due 
to their high integration density, low price, high 
performance and flexible applications). 

The FPGAs come with various built-in primitives and  
IPcores (Intellectual Property), optimized in  terms  of 
area, speed or power[4]. Like, the IPcore for floating-
point multiplier is optimized in terms of area, but results 
in reduced performance in terms of frequency[5]. Hence, 
not restricting the design based on  built-in IPcore, one 
can have the opportunity to get customized optimization 
in terms of area, power as well as frequency . This 
approach tends to more adaptable and flexible circuits .  

In this work, we have shown the implementation of  
IEEE-754 single precision floating-point multiplier on 
FPGA using carry-look ahead adder (for exponent 
addition). The multiplier may be used in adaptive filters 
for multiplying the fractional step size (mue) to update the 
filter weights. Besides the comparative analysis of 
proposed design with FPGA's built-in IPcore for floating-
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point multiplier is also carried out. The results are 
compared in terms of recourse utilization, power 
consumption, observed delay, logic levels and maximum 
achieved frequency. It is shown that our design is better in 
terms of achieved frequency with a small  increase in 
resource utilization. 

Several works are reported in area of floating-point 
multiplier design and other floating-point arithmetic units 
on a range of FPGA architectures. Few of them  are  
discussed below.  

In[6] the hardware based (FPGA) implementation of a 
high speed floating-point multiplier with pipeline 
architecture is presented . In the design ,Radix-4 Booth’s 
encoding algorithm based on improved 4:2 compression 
structure is implemented as floating-point multiplier. 
While, the sum and carry vectors are added by a  carry 
look-ahead adder. The timing simulation results show that 
the floating- point multiplier can be steadily run at the 
frequency of 80 MHz.  

In[7] authors have reported a fast and area efficient 
carry select adder, that is implemented for exponent 
addition in floating-point multiplier along with the parallel 
processing of various units used in the architecture. The 
result shows a decrement of 27 % in the combinational 
path delay with an increment of around 8% in the number 
of LUTs used in comparison to other works discussed in 
paper. Whereas, the maximum frequency achieved in that 
design is 24.41 MHz causing the bottleneck for design to 
be used in high speed circuits. 

In[8]the floating-point multiplier is proposed by 
utilizing reduced complexity Wallace multiplier for 
mantissa multiplication to minimize the latency. 
Normalization and Alignment Shifter has also been 
designed using barrel shifter to obtain the higher precision 
and lower latency. The total delay for this shifter is found 
to be 5.845 ns. While, the average delay of proposed 
approach is 37.673ns resulting the average frequency to 
restrict up to 26.54 MHz. 

The work referred in[9] presents multi-functional, 
multiple precision floating-point Multiply-add Fused 
(MAF) unit. The mentioned multiply-add fused unit is 
accomplished to perform a quadruple accuracy. The 
design is done on a 65 nm silicon process attaining 
highest operating frequency of 293.5 MHz at 381 mW 
power. 

In[10]FPGA based implementation of single precision 
floating-point multiplier and adders using the different 
adder approaches is discussed. The design shows that the 
carry-select adder based circuit offers best performance of 
all candidates including full carry-look ahead. Whiles, the 
frequency achieved at maximum does not exceed from 
14.29 MHz. 

A 16/18 bit pipelined multiplier following IEEE-754 
standard is presented in[11].The design lacks in rounding 

mode support. The  maximum frequency achieved is 
19.0MHz. 

A latency optimized floating-point built-in primitive 
of Vertex II FFPGA is instantiated in [12]. The  latency of  
design is observed to be 4 clock cycles; whereas, the  
maximum frequency  is100 MHz. 

 In[13]Handle-C along with Xilinx XCV1000 FPGA 
is used for designing of a parameterizable floating-point 
pipelined multiplier. With five stages of pipelining the 
design could reach to 28MFlops. 

The implementation of IEEE-754 multiplier is 
observed in[14] targeted on Xilinx Virtex-5 FPGA. The 
pipelined approach is used to maximize the efficiency. It 
is also seen that over flow and underflow cases are 
tackled, but the rounding is not implemented. The design 
achieves 301 MFLOPs with the latency of three clock 
cycles.  

With the idea of increasing the speed by reducing the 
delay, with incorporating an optimal adder like carry look 
ahead, the author in[15] has deigned IEEE-754 floating- 
point multiplier. The beauty of the design is its flexibility 
of being interfaced with any 32 bit processor. 

In[16] authors describe a proficient implementation of 
an IEEE-754 single precision floating-point multiplier 
using Vedic mathematics-as with using Vedic 
mathematics partial products can be reduced, so that the 
area and power constraints of the floating- point multiplier 
can be reduced efficiently. The carried out work can be 
further improved by using high speed adders and 
substructures. 

All the architectures mentioned above results in 
optimization in one way or other, but still some space is 
there to optimize the FPFA based floating-point multiplier 
in terms of area as well as frequency. This idea of 
customized optimization  is carried out in this work and 
the results achieved show the succession of idea.   

This paper further proceeds as follows: adaptive filter 
followed by carry-look ahead adder and IEEE-754 single 
precision floating- point multiplier is discussed in section 
2. Section 3 describes the system design in FPGA. While, 
results and conclusion is given in section 4 and 5 
respectively. 

2. DESIGN COMPONENTS 

In this section we have briefly described the basic 
components separately.  

A. Adaptive Filter  

The system that manages to produce the relationship 
of two signals using iterative manner in real time 
environment is known as an adaptive filter[17] . 

The theme of adaptive filter is the adaptation in order 
to adjust the characteristics of the filter through an 
interaction with the environment [18]. 
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The basic components of adaptive filter shown in 
Figure1 include: 

 The signals being processed by the filter. 

 The structure that defines how the output signal of 
the filter is computed from its input signal. 

 The parameters within this structure that can be 
iteratively changed to alter the filter’s input-
output relationship. 

 The adaptive algorithm that describes how the 
parameters are adjusted from one time instant to 
the next [19]. 
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Xk Dk
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+

 

Figure 1.  Block diagram of adaptive filter 

Most of the common adaptive algorithm is Least 
Mean Square (LMS).  

The LMS is the adaptive algorithm, used to drive the 
desired filter coefficients with stochastic gradient descent 
method. The filter is adapted based on the current time 
error (difference between the desired signal and the actual 
signal) [20]. 

B. Carry -look ahead adder 

One of the major bottlenecks of ripple carry adder is 
the time of carry propagation (where the next output sum 
bit is dependent upon the previous carry). This can be 
handled once the next stage carry is calculated at prior. 
This approach is adapted by carry-look ahead adder, that 
is one of the fast digital adders [21]. 

 

Carry Look Ahead Adder

Bit 0

P0 G0      S0

X0 Y0

C0

Bit 1

P1 G1      S1

X1 Y1

C1

Bit 2

P2 G2      S2

X2 Y2

C2

Bit 3

P3 G3      S3

X3 Y3

C3

 

Figure 2.  Block diagram of carry-look ahead adder 

In comparison to ripple carry adder, carry-look ahead 
adder has improved speed, as it pre-calculates the carry 
bit.  

Hence, using this adder in the design will result in 
overall reduced delay [22]. 

The carry- look ahead approach works on the basis of 
two terms  the Propagate and the Generate. Those may be 
prior calculated as follow: 

Pi =Ai xor Bi (Carry propagate)                 (1) 
Gi=Ai and Bi (Carry generate)                 (2) 

 
The Si and Ci+1 represent the sum and carry-out. 

Respectively, the Si and Ci+1 are expressed as: 

Si = Pi xor Ci-1     (3) 

Ci+1 = Gi or (Pi and Ci) = Gi+ (Pi Ci))         (4)  [18]. 

C. IEEE -754 Single precision floating- point multiplier 

 
The IEEE-754 standard defines number 

representations and operations for floating-point 
arithmetic. The three types of floating- point formats 
given in IEEE-754 standard are Single, Double and 
Double-Extended[23] . 

 The floating- point representation of any number 
consists of three fields known as Sign, Exponent and 
Significant or Mantissa part.  The bit width distribution of 
three IEEE formats for floating- point representation is 
given in figure 3, figure 4 and figure 5 respectively. 

 

 

 

 

Figure 3.  Single precession (32−bit) 

 

 

 

Figure 4.  Double precession (64−bit) 

 

 

 

 

Figure 5.   Double extended (128−bit) 

D. Spartan 6's built-in   IPcore  of floating- point 

multiplier  

Along with other built in IPcores, Xilinx's Spartan 6 
FPGA also facilitate the designer with more complicated 
core of floating-point arithmetic (figure 6 shows the 
interface of the built-in floating- point unit ).  

Sign  Exponent  Significant/Mantissa 

1-bit 11-bits 52-bits 

Sign  Exponent  Significant/Mantissa 

1-bit 15-bits 112-bits 

Sign Exponent Significant/Mantissa 

1-bit 8-bits 23-bits 
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S_axis_a_tvalid m_axis_result_tvalid

S_axis_a_ready m_axis_result_ready

S_axis_a_data m_axis_result_data

S_axis_a_tuser m_axis_result_tuser

S_axis_a_tlast m_axis_result_tlast

S_axis_b_tvalid

S_axis_b_ready

S_axis_b_data

S_axis_b_tuser

S_axis_b_tlast

S_axis_operation_tvalid

S_axis_ operation__ready

S_axis_ operation__data

S_axis_ operation__tuser

S_axis_ operation__tlast

S_axis_ operation__tvalid

Aclk

Aresetn

aclken

 

Figure 6.  Floating- point  unit interface 

The provided core may be used for customized design- 
as the operand word length, required latency and even the 
interface may be selected as per design requirement. A 
range of arithmetic operations may be performed with this 
built-in core, where each operation variant has a common 
interface[5] . 

Amongst the steps of floating-point multiplier, the 
more resource consuming part is the mantissa multiplier.   
The mantissa multiplier takes more hardware as compare 
to the exponent addition and even the sign bit calculation 
of floating-point conversion.  

Using Spartan 6's built-in IPcore, the floating-point 
multiplier may be designed particularly in four 
configurations, categorized on the basis of DSP48 usage. 
Those possible configurations are summarized in the 
table1. 

TABLE I.  IMPACT OF FAMILY AND MULTIPLIER USAGE ON THE 

IMPLEMENTATION OF THE MULTIPLIER 

Multiplier Usage 
Spartan-6 FPGA 

Family 

Virtex  6 and 7 Series 

FPGA Families 

No Usage Logic Logic 

Medium Usage 
DSP48A1+logic in 

multiplier body 

DSP48E1+logic in 

multiplier body 

Full Usage 
DSP48A1 used in 

multiplier body 

DSP48E1 used in 

multiplier body 

Maximum Usage 
DSP48A1 multiplier 

body and rounder 

DSP48E1 multiplier 

body and rounder 

 

3. SYSTEM DESIGN IN FPGA  

A. spartan 6's built-in IPcore based design  

Eight implementations were carried out in this work 
using Spartan 6 FPGA. In first four implementations, 
Spartan 6's  built-in core for floating- point multiplier was 
instantiated using IPcore based design option. Figure 7 
shows the general arithmetic functions of floating- point 
multiplier carried out by built-in IPcore.  

 

24x24 Mantissa 

Multiplier 

Sign Bit calculation 

Exponent Addition 

Bias Subtraction 

32 bit  Multiplier 

32 bit  Multiplicand 

32 bit  Product 

  

Figure 7.  Arithematic functions for floating-point multiplier  

Interface for core based design of floating- point unit 
provides various configuration options. Like, selection of 
floating- point arithmetic operation, setting the latency for 
the output and to make the design synchronous, 
asynchronous, clock enabled and using DSP48 or not.  

In our design, we selected the option of floating- point 
multiplier with zero latency, hence getting the output with 
no delay. 

After instantiating the core to main module, the clock 
was introduced in order to get the registered synchronous 
output. This configuration caused the output to observe 
the latency of one cycle.  

Among the four implementations using built in core, 
in the first design, the primitive of floating-point 
multiplier was configured  with the option of no usage of 
DSP48 as discussed in table 1. Hence, whole floating- 
point multiplier was carried out on logic units-the Look up 
tables (LUTS). 

In the second design, using the same method the 
option of medium usage of DSP48 was selected. This 
option translated the some part of 24 bit mantissa 
multiplication on built-in DSP ; whereas, the other logic 
(i.e. sign bit calculation, exponent addition, bias 
subtraction and mantissa normalization) was translated on 
LUTS. 

The third design was carried out using the full usage 
option of DSP48, that completely translated the mantissa 
multiplier on DSP48 while the other logic was translated 
on LUTS. 

And finally, the option of maximum usage of DSP48 
was utilized that not only translated the multiplier on 
DSP48 but exponent addition was also translated on DSP 
48. 
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The Register Transfer Level (RTL) view of the built-
in core based design may be seen in figure 8. 

a1

RTL_wide_fdrse_32

a[31:0]
clk

b1

RTL_wide_fdrse_32

RTL_wide_fdrse_32

b[31:0] result[31:0]
b[31:0]

result1[31:0]

clk
d[31:0]

r[31:0]

s[31:0]e[31:0]
q[31:0]

a[31:0]

DSP48
clk
d[31:0]

r[31:0]

s[31:0]e[31:0]
q[31:0]

clk
d[31:0]

r[31:0]

s[31:0]e[31:0]
q[31:0]

result1[31:0]

 

Figure 8.  RTL view of IPcore based floating- point multiplier 

B. Carry- lookahead based design  

Besides the designs mentioned above, four designs 
were implemented using verilog syntax. 

As per steps of floating-point multiplier, all the 
required modules were designed and implemented using 
the proper coding style and logic optimization to make the 
design more compact and efficient. 

In order to make the designs comparable with those of 
built-in IPcore of floating-point multiplier, some changes 
were made in the project goals and strategy setting options  
(we selected balanced design for our project).  

In the first design, the project goals and strategy 
option was customized to no usage of DSP48 (hence 
making the design comparable built in core based design). 
This resulted in LUT based implementation of the 
multiplier.  

In second, the   option of selecting the DSP48 be used 
was set to 60%. This customized strategy resulted in same 
number of DSP 48 multipliers to that of built in primitive 
based design ,while 40 % logic was translated on LUTS. 

For third design, the 100 % DSP48 was utilized that 
resulted whole mantissa multiplier to be translated on 
DSP48. 

Whereas in fourth design, besides the mantissa 
multiplier, the bias subtraction was also translated on DSP 
48. 

The first step of floating- point multiplier (that is sign 
bit calculation) was simply carried out using XOR gate as 
shown in figure 9.  

 

Multiplier MSB

Multiplicand MSB

 

Figure 9.  Sign bit calculation  

Twenty-four bit mantissa multiplier was set to be 
translated either on the LUTs or on DSP48 as shown in 
figure 10. 

&0

0

0

 

LUT

DSP 48

Multiplier’s 24 bit  Mantissa
Multiplicand’s 24 bit  Mantissa

Multiplier’s 24 bit  Mantissa
Multiplicand’s 24 bit  Mantissa

 

Figure 10.  LUT/DSP48 based mantissa multiplier  

Mantissa normalization is the method of converting 
the 48 bit output got after the mantissa multiplication to 
23 bits as per requirement of single precision floating- 
point multiplication.  

In this step, condition is set on the most significant bit 
of the output product, that is, if it is high the immediate 23 
bits would be the mantissa bit otherwise right shift would 
be made to check for the next MSB. The procedure would 
be continued till the first high bit is achieved.  

In our design, the multiplexer logic is implemented to 
perform this task.  

48 bit Mantissa 23 bit Mantissa

 

Figure 11.  Mantissa Normalization   

Exponent addition is another important element of 
floating- point multiplier. In our design we have used 8 bit 
carry-look ahead adder to do this work. This proposed 
modification brought very good effect in overall 
performance of the multiplier. 
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C a r r y  L o o k  A h e a d  A d d e r

B i t 0

P0 G 0      S0

X 0 Y 0

C 0

B i t 1

P1 G 1      S1

X 1 Y 1

C 1

B i t 2

P 2 G 2      S2

X 2 Y 2

C 2

B i t 3

P3 G 3      S3

X 3 Y 3

C 3

Multiplier’s 8 bit  Exponent
Multiplicand’s 8 bit  Exponent

 

Figure 12.  Exponent Addition  

After the addition of exponents, to avoid the over flow the 
constant bias value (127 in decimal) is subtracted from the 
result to restrict the output of single precession floating- 
point multiplier to 32 bits. 

&0

0

0

 

LUT

DSP 48
 

Figure 13.  Bias subtraction 

The bias subtraction can be translated on the look up 
tables or DSP48 as per required option.  

4. RESULTS  

The results given in tables are written after 
implementing the built-in IPcore of floating-point 
multiplier and the proposed design using carry- look 
ahead adder. Xilinx ISE 14.2 software and Spartan 6 
xc6slx16-3csg324 FPGA device is used in 
implementation.  All eight implementations are compared 
in terms of LUTS, DSP48 primitives, total delay 
observed, logic levels, maximum achieved frequency and 
estimated power. 

TABLE II.  DESIGN SUMMARY OF FLOATING- POINT MULTIPLIER 

WITH BUILT IN CORE USING LOGIC ONLY  AND  PROPOSED DESIGN 

No Usage Built in Primitive  Our Design  

LUTS 841 1051 

DSP48 0 0 

Delay 17.529ns 5.027ns 

Levels of Logic 60 3 

Maximum Frequency 57.049 MHz 198.922MHz 

Power Estimation 0.023 (W) 0.026 (W) 

 

 

 
 

 

 
 

TABLE III.   DESIGN SUMMARY OF FLOATING- POINT MULTIPLIER 

WITH BUILT IN CORE USING LOGIC AND  MEDIUM USAGE OF DSP48  AND  

PROPOSED DESIGN   

 

Medium Usage Built in Primitive Our Design  

LUTS 397 1020 

DSP48 1 1 

Delay 15.935ns 5.027ns 

Levels of Logic 44 3 

Maximum Frequency 62.755 MHz 198.922MHz 

Power Estimation 0.024(W) 0.026(W) 

TABLE IV.  DESIGN SUMMARY OF FLOATING- POINT MULTIPLIER 

WITH BUILT IN CORE USING LOGIC AND  FULL  USAGE OF DSP48  AND  

PROPOSED DESIGN   

TABLE V.  DESIGN SUMMARY OF FLOATING- POINT MULTIPLIER 

WITH BUILT IN CORE USING LOGIC AND  MAXIMUM  USAGE OF DSP48  

AND  PROPOSED DESIGN   

Maximum Usage 
Built in 

Primitive 
Our Design 

LUTS 108 170 

DSP48 5 5 

Delay 23.055ns 5.080ns 

Levels of Logic 11 3 

Maximum Frequency 43.374MHz 196.866MHz 

Power Estimation 0.024 (W) 0.026(W) 
 

The results shown in above tables  very clearly 
indicate the difference between the resource utilization, 
maximum frequency achieved, delay observed, logic level 
and power estimation.  All this comparison is carried out 
after post place and route simulation of the design. The 
power estimation is carried out using Xilinx Power 
Analyzer tool.  

The results in table show that with a  small increase in 
look up table utilization, a significant increase is observed 
in the maximum frequency achieved. 

The effect of using carry-look ahead adder may be 
observed in the logic levels achieved in implementations. 
As in carry- look ahead adder, the carry is calculated prior 
to next stage, hence the logic level is reduces as observed 
in the results. As for as power is concerned, all eight 
implementations consume approximately same  amount.  

The timing performance diagram shown in figure 14 
verifies our design requirement of maximum latency of 
one cycle.  Here we can see that the multiplier’s output 
comes immediately at the second positive edge of the 
clock.  

Full Usage Built in  

Primitive  

Our Design  

LUTS 106 177 

DSP48 4 4 

Delay 23.053ns 5.080ns 

Levels of Logic 11 3 

Maximum Frequency 43.378MHz 196.866MHz 

Power Estimation 0.024 (W) 0.026(W) 
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Result [31:0]

0 ns

CLK

c32b0000

100 ns 200 ns 300 ns 400 ns

c19000000Multiplier [31:0]

41180000Multiplicand [31:0]

 

Figure 14.  Timing performancen with  latency of one clock cycle 

5. CONCLUSION  

In this work, we have shown the implementation of  
IEEE-754 single precision floating- point multiplier on 
FPGA using carry-look ahead adder for exponent 
addition. Also the comparative analysis of proposed 
design  with Spartan 6 FPGA's building  IPcore for 
floating- point multiplier is carried out . The results are 
compared in terms of recourse utilization, power 
consumption, observed delay, logic levels and maximum 
achieved frequency. The maximum frequency achieved 
with IPcore based design is 62.755 MHz while our 
proposed design results in 196.866MHz that is about three 
times larger than IPcore based design, hence making it 
suitable for high speed circuits.  

It can be concluded here that not all IPcores always 
serve the selected aim. As we can see that in area point of 
view the floating- point multiplier’s built-in core is better 
but when talking about the speed, with slight increase in 
look up tables our design is better than the first.   

So, here comes the trade of for selecting the best as 
per user requirement. If the priority is area then the built-
in primitive of floating- point multiplier is better, but if 
speed is of concerned, defiantly our design is much better.  
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