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Abstract: We consider additive functionals for a class of autoregressive processes and prove that their empirical measures with 

logarithmic averaging converge almost surely via a martingale decomposition. A method developed in our previous work on additive 

functionals of ergodic Markov processes is applied in the particular case of autoregressive processes that are uniformly ergodic. We 

also obtain some equivalent results on almost sure asymptotic behavior.  
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1. INTRODUCTION  

     Consider the first-order autoregressive process defined as: 𝑋𝑛 = 𝜃𝑋𝑛−1 + 𝜀𝑛 for n ≥ 1, with initial state 𝑋0 = 𝜀0 and 

the driven noise {𝜀𝑛}𝑛≥0 defined as a sequence of random variables defined on a probability space (Ω, ℱ, ℙ) and taking 

values in a complete separable metric space (𝐸, ℬ𝐸). Assume that the random variable 𝜀0 has the probability distribution 

μ and the random variables {𝜀𝑛}𝑛≥1 are independent and identically distributed, independent of 𝜀0, with mean zero and 

finite variance 𝜎2 and with probability distribution 𝜈.  

     Thus {𝑋𝑛, 𝑛 ≥ 0} is a Markov chain defined on Ω with values in the general Polish space (𝐸, ℬ𝐸) and with initial 

probability measure 𝜇. Let 𝑝(𝑥, 𝐴) be its transition probability kernel,  

                                  𝑝(𝑥, 𝐴)  =  𝑃(𝑋𝑛+1 ∈ 𝐴 | 𝑋𝑛  
= 𝑥)  =  𝑃(𝜃𝑥 + 𝜀𝑛 

∈ 𝐴)  =  𝜈(𝐴 − 𝜃𝑥). 

Then one defines the transition probability operator on the space of bounded continuous functions, 𝑃: 𝒞𝑏(𝐸) →
𝒞𝑏(𝐸), by    

𝑃𝜑(𝑥) ≔ 𝔼[𝜑(𝑋𝑛+1)|𝑋𝑛 = 𝑥] = ∫ 𝑝(𝑥, 𝑑𝑦)𝜑(𝑦). 

Therefore,  

 Pφ (x) = ∫ φ (y + θx)𝜈(dy). 

Let 𝑝𝑛(𝑥, 𝐴) ≔ 𝑃(𝑋𝑛 ∈ 𝐴 |𝑋0 = 𝑥) be the n-step transition probability and 𝑃𝑛  its corresponding transition operator. 

For initial measure 𝜇 one can define the probability measure 𝜇𝑃(𝐴) = 𝑃𝜇(𝐴) = ∫ 𝜇(𝑑𝑥)𝑝(𝑥, 𝐴).  

Throughout this paper, we assume that the autoregressive process {𝑋𝑛, 𝑛 ≥ 0} satisfies the following properties:  

A1: the process is stable, i.e. |𝜃| < 1; 

A2: the process is smooth, i.e. the distribution of 𝜀𝑛 has a continuous density 𝑔, 
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            𝑝(𝑥, 𝑑𝑦) = 𝑔(𝑦 − 𝜃𝑥)𝑑𝑦,   (𝑥, 𝑦) → 𝑔(𝑦 − 𝜃𝑥) continuous; 

A3: the process is simple, i.e. the density is positive ∀ 𝑥 ∈ ℝ; 

A4: 𝐸 𝑙𝑜𝑔+|𝜀𝑛| < ∞, 𝑙𝑜𝑔+(𝑥) = max {0, log 𝑥}; 

A5: Doeblin condition: for some 𝑚 > 0, 𝜀 < 1, 𝛿 > 0, there exists a probability measure 𝜙 such that if 𝜙(𝐴) > 0 then 

for any 𝑥 ∈ 𝐸, 𝑃𝑚(𝑥, 𝐴) ≥ 𝛿. 

Proposition 1.1 The autoregressive process {𝑋𝑛 , 𝑛 ≥ 0} satisfying the properties A1 − A5 is uniformly ergodic.  

Proof: First, note that the Markov chain {𝑋𝑛, 𝑛 ≥ 0} is a Harris chain (see [6], chapter 5, example 6.2). From A4, we get 

that 𝔼|𝜀𝑛| < ∞, and therefore one can chose M sufficiently large such that 𝔼|𝜀1| ≤ (1 − 𝜃)𝑀. Thus, if |𝑥| ≥ 𝑀,  

     𝔼𝑥|𝑋1| ≤ |𝜃||𝑥| + (1 − |𝜃|)𝑀 ≤ |𝑥|. 

Therefore, according to Theorem (3.9) [6], the Markov chain is Harris recurrent, and so it admits a stationary measure. 

Next, we want to show that the stationary measure is unique.  

Let’s define 𝑆𝑛 = ∑ 𝜃𝑘𝜀𝑘
𝑛
𝑘=1  and the filtration ℱ𝑛 = 𝜎{𝜀𝑘, 𝑘 ≤ 𝑛}. Then {𝑆𝑛 , 𝑛 ≥ 0} is a ℱ𝑛-martingale. Since 𝔼|𝑆𝑛|2 ≤

 𝜎2  ∑ |𝜃|2𝑘 < ∞ 𝑛
𝑘=1  and 𝑠𝑢𝑝𝑛𝔼|𝑆𝑛|2 = 𝜎2  ∑ |𝜃|2𝑘 < ∞ 𝑛

𝑘=1 , the sum 𝑆𝑛 is an uniformly integrable martingale, so it 

converges a.s. to a random variable X that defines a stationary measure 𝜋.  

On the other hand, 𝑋𝑛 = (𝜀𝑛 + 𝜃𝜀𝑛−1 + ⋯ + 𝜃𝑛−1𝜀1) + 𝜃𝑛𝑋0. While the first part converges a.s. to X and the other 

converges in probability to 0, it follows that the law of 𝑋𝑛 converges weakly to the stationary distribution 𝜋. Thus, the 

stationary measure is unique.  

Since the Markov chain is aperiodic and Harris recurrent then the Doeblin condition (A5) is equivalent with the uniform 

ergodicity of the Markov chain (Theorem 16.2.3 in [12]).  

Note that the Markov chain {𝑋𝑛 , 𝑛 ≥ 0} is uniformly ergodic if  

                                          𝑠𝑢𝑝∥𝜑∥≤1 ∥ (𝑃𝑛 − Π)𝜑 ∥→ 0,   𝑛 → ∞, 

  where the stationary projector Π: ℬ𝐸 → ℬ𝐸   is defined as  

                   Π𝜑(𝑥) = ∫ 𝜋(𝑑𝑦)𝜑(𝑦)1(𝑥),     1(𝑥) = 1 for all 𝑥 ∈ 𝐸. 

Π is a projector operator since Π2 = Π. 

2. MARTINGALE DECOMPOSITION FOR ADDITIVE FUNCTIONALS OF AUTOREGRESSIVE PROCESSES 

Let’s assume that {𝑋𝑛, 𝑛 ≥ 0} is an autoregressive process with unique invariant measure 𝜋 so that  

𝜋(𝐴) = ∫ 𝑝(𝑥, 𝐴)𝜋(𝑑𝑥). 

Define the additive functional  

                                                            𝑆𝑛(𝑓) = ∑ 𝑓(𝑋𝑘)𝑛−1
𝑘=0 , 𝑛 ≥ 1,                                                              (2.1) 

    where 𝑓 ∈ 𝐿0
2 (𝜋) = {𝑓: 𝐸 → ℝ, ∥ 𝑓 ∥2= (∫|𝑓|2𝑑𝜋)

1

2 < ∞, ∫ 𝑓 𝑑𝜋 = 0} such that 𝔼𝜋(𝑆1
2) = 𝜎2 ∈ (0, ∞) and for any 

initial distribution 𝜇 and any 𝑘 ≥ 1, 𝔼𝜇(𝑆𝑘
2) < ∞. 

Theorem 2.1 Let {𝑋𝑛 , 𝑛 ≥ 0}  be an autoregressive process satisfying the conditions (A1)-(A5) and 𝜋  it unique 

invariant measure. Let 𝑓 ∈ 𝐿0
2 (𝜋) such that:  

(i) ∥ 𝑃𝑘𝑓 ∥𝐿2(𝜋)≤ 𝜌𝑘  ∥ 𝑓 ∥𝐿2(𝜋)  for some 0 < 𝜌 < 1, 𝑘 ∈ ℕ; 

(ii)  
𝑑𝜇𝑃𝑘

𝑑𝜋
 ≤ 𝐷 < ∞,   𝑘 ∈  ℕ   and  ∫ 1{𝑥:𝑓2(𝑥)>𝑛} 𝑓2(𝑥)𝜋(𝑑𝑥) ≤ exp(−𝜑(𝑛))  for n large, with  
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𝜑: ℝ+ → ℝ+  such that  lim𝑥→∞
𝜑(𝑥)

log(𝑥)
 →  ∞; 

(iii) |𝑃𝑘𝑓(𝑥)| ≤ 𝐶𝑛, whenever |𝑓(𝑥)| ≤ 𝑛, for some 1< 𝐶 <  ∞, 𝑥 ∈ 𝐸, 𝑘 ∈  ℕ, and large n.  

Then the additive functional 𝑆𝑛(𝑓) defined in (2.1) satisfies the martingale decomposition:  

                                                                𝑆𝑛(𝑓) = 𝑀𝑛 +  𝑅𝑛 ,  

where {𝑀𝑛, 𝑛 ≥ 1} is a mean zero martingale relative to ℱ𝑛 =  𝜎(𝑋0, … , 𝑋𝑛), the natural filtration generated by the 

trajectories of the Markov chain. The remainder 𝑅𝑛 converges in probability to zero and 

lim
𝑛→∞

1

log 𝑛
log ℙ {

𝑠𝑢𝑝1≤𝑘≤𝑛𝑅𝑘
2

𝑛
> 𝜀} = −∞.                                                              (2.2) 

 

Proof:  The Markov property of the autoregressive process can be represented in the form 

 

𝔼[𝜑(𝑋𝑛 )|ℱ𝑛−1] = 𝑃𝜑(𝑋𝑛−1). 
Let 𝑀𝑛 be the sum of martingale differences, 

𝑀𝑛 = ∑(𝜑(𝑋𝑘) −

𝑛

𝑘=1

 𝔼[𝜑(𝑋𝑘 )|ℱ𝑘−1]), 

then 

𝑀𝑛 = 𝜑(𝑋𝑛) − 𝜑(𝑋0) + ∑[𝐼 − 𝑃]𝜑(𝑋𝑘).                                                                                                (2.3)

𝑛−1

𝑘=1

 

As proved in Proposition (1.1), under the conditions (A1)-(A5) the autoregressive process is uniformly ergodic, 

therefore its infinitesimal generator $I-P$ is reducible-invertible operator (Theorem 2.2.2 in [7]). In this case, the 

Poisson equation  

[𝐼 − 𝑃]𝜑(𝑥) = 𝑓  
admits a unique solution. The solution is the potential operator of 𝐼 − 𝑃, denoted by 𝑅0, which is a bounded operator 

with the following representation: 

𝑅0 = ∑[𝑃𝑛 − Π], 𝑤ℎ𝑒𝑟𝑒   Π𝑓(𝑥) = ∫ 𝜋(𝑑𝑦)𝑓(𝑦)1(𝑥).

∞

𝑛=0

 

 

The assumption Π𝑓 = 0 implies that 𝑅0𝑓 = ∑ 𝑃𝑛𝑓∞
𝑛=0  and the equation (2.3) yields the martingale decomposition:  

 

   𝑆𝑛(𝑓) = 𝑀𝑛 +  𝑅𝑛 , 
 

with  {𝑀𝑛, 𝑛 ≥ 1} a mean-zero martingale with respect to the filtration ℱ𝑛 and the remainder term  

 

𝑅𝑛 = 𝜑(𝑋0) − 𝜑(𝑋𝑛) =  𝑅0𝑓(𝑋0) − 𝑅0𝑓(𝑋𝑛). 
 

In [8] we proved a martingale decomposition for additive functionals of ergodic Markov processes. Note that the 

Poisson equation in the martingale decomposition theorem in [8] does not have unique solution (the operator 𝐼 − 𝑃 is 

not invertible) but it was proved that the limit of the perturbed operator have the same representation, ∑ 𝑃𝑛𝑓∞
𝑛=0 . 

By following the lines of Theorem 3.1. in [8], it can be shown that the remainder 𝑅𝑛 converges in probability to zero at 

the rate given by (2.2). 

 

Corollary 2.2 If {𝑋𝑛, 𝑛 ≥ 0} is a uniformly ergodic autoregressive process with unique invariant measure 𝜋 and if 𝑓 is 

a bounded function such that ∫ 𝑓(𝑥)𝜋(𝑑𝑥) = 0 then the additive functional 𝑆𝑛(𝑓)  satisfies the martingale 

decomposition in Theorem 2.1. 
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3. FUNCTIONAL ALMOST SURE CENTRAL LIMIT THEOREM 

Almost sure central limit theorems have been extensively studied, starting with results for sequences of independent 

and identically distributed random variables, established by Brosamler [3] (1988), Shatte [14] (1988,1991) and Lacey 

and Phillip [9] (1990). A universal almost sure central limit theorem was considered by Berkes and Csáki in [2], and  

provides limit theorems for partial sums, extremes, empirical distributions and local times. Important results for 

martingales are due to Maaouia [11], Chaabane [4], Chaabane and Maaouia [5], Lifshits [10] and Bercu [1].  

We consider additive functionals of autoregressive processes 𝑆𝑛(𝑓) defined in (2.1). The functional central limit 

theorem, almost sure central limit theorems and large deviations for additive functionals of Markov processes in both 

discrete and continuous time setting, we have previously studied in [8] and [13]. Due to the martingale decomposition, 

Theorem 2.1, we can apply the method developed in [8] and obtain the almost sure central limit theorem for 

autoregressive processes.  

Let’s define the interpolation process  

Ψ𝑡
𝑛(𝜔) ≔

1

𝜎√𝑛
(𝑆[𝑛𝑡] + (𝑛𝑡 − [𝑛𝑡])(𝑆[𝑛𝑡]+1 − 𝑆[𝑛𝑡])) , 0 ≤ 𝑡 < ∞,                                                           (3.1) 

and the empirical process 𝑊𝑛: 𝒞[0, ∞) → ℳ(𝒞[0, ∞)),  

𝑊𝑛(𝜔, 𝐴) ≔  
1

𝐿(𝑛)
∑

1

𝑘
𝛿{Ψ𝑘(𝜔)}(𝐴).

𝑛

𝑘=1

                                                                                           (3.2) 

Theorem 3.1 (FASCLT) The sequence of empirical processes 𝑊𝑛  converges weakly to the Wiener measure 𝕎 on 

𝒞[0, ∞), for almost every 𝜔 ∈  Ω. 
 

FASCLT implies that for any bounded measurable function h, continuous a.e., 

lim
𝑛→∞

1

𝐿(𝑛)
∑

1

𝑘
ℎ(

𝑛

𝑘=1

Ψ𝑘(∙, 𝜔)) = 𝔼ℎ(𝕎 (∙)) = ∫ ℎ(𝑥)𝑑𝕎 (𝑥), 𝑃 − 𝑎. 𝑠. 

 

Corollary 3.2 Let Φ𝑡
𝑛(𝜔) ≔

1

𝜎√𝑛
𝑆𝑛𝑡. Then: 

(i)  

1

𝐿(𝑛)
∑

1

𝑘
ℎ(Φ𝑘(∙, 𝜔)) → ∫ ℎ(𝑥)𝑑𝕎 (𝑥),   𝑃 − 𝑎. 𝑠.

𝑛

𝑘=1

 

(ii) 

1

𝐿(𝑛)
∑

1

𝑘
ℎ(

𝑆𝑘

𝜎√𝑘
) → ∫ ℎ(𝑥)𝑑𝕎 (𝑥),   𝑃 − 𝑎. 𝑠.

𝑛

𝑘=1

 

 

Proof:  Since 𝔼 (𝑆1
2) < ∞, we get ∥ Ψ𝑛 − Φ𝑛 ∥≤

1

√𝑛
𝑚𝑎𝑥1≤𝑖≤𝑛|𝑓(𝑋𝑖)| → 0 a.s. , so (i) is proved. (ii) is the particular 

case when 𝑡 = 1 , i.e. the functional almost sure CLT for a sequence of random variables that are functions of 

autoregressive processes. This is in agreement with the celebrated almost sure CLT established in [3], [14], [9]. 

 

Corollary 3.3 The following asymptotic results follows: 

(i)  

lim
𝑛→∞

1

𝐿(𝑛)
∑

1

𝑘
1(−∞,𝛼] (

1

𝜎√𝑘
𝑆𝑘𝑡) =

1

√2𝜋𝑡
∫ 𝑒−𝑢2/2𝑡𝑑𝑢           ℙ − 𝑎. 𝑠.

𝛼

−∞

𝑛

𝑘=1

 

(ii)  

lim
𝑛→∞

1

𝐿(𝑛)
∑

1

𝑘
1[𝛼,∞) (𝑠𝑢𝑝0≤𝑡≤𝑇(

1

𝜎√𝑘
𝑆𝑘𝑡)) =

2

√2𝜋𝑇
∫ 𝑒−𝑢2/2𝑇𝑑𝑢           ℙ − 𝑎. 𝑠.

∞

𝛼

𝑛

𝑘=1

 

 

Proof: (i) follows directly from Corollary 3.2.(ii), by taking ℎ(𝑥) = 1𝐴(𝑥), with 𝐴 = {𝑥 ∈  𝒞[0, ∞): 𝑥(𝑡) ≤ 𝛼} for any 

𝛼 ∈ ℝ. Similarly, (ii) follows by taking 𝐴 = {𝑥 ∈  𝒞[0, ∞): 𝑠𝑢𝑝0≤𝑡≤𝑇𝑥 (𝑡)  ≥ 𝛼} and applying the reflection principle 

of Brownian motion.  
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Remark 3.4 For an autoregressive process 𝑋𝑛 = 𝜃𝑛𝜀0 + ∑ 𝜃𝑛−𝑗𝜀𝑗
𝑛
𝑗=1 , it is known that the least-squares estimator for 

the unknown parameter 𝜃 is  

                                                                    𝜃̂𝑛 =
∑ 𝑋𝑘−1𝑋𝑘

𝑛
𝑘=1

∑ 𝑋𝑘−1
2𝑛

𝑘=1
  , 

 

and 

                                                                    𝜃̂𝑛 − 𝜃 =
∑ 𝑋𝑘−1𝜀𝑘

𝑛
𝑘=1

∑ 𝑋𝑘−1
2𝑛

𝑘=1
 .  

If |𝜃| < 1 then the estimator 𝜃̂𝑛 converges almost surely to 𝜃 and  

                                                  √𝑛(𝜃̂𝑛 − 𝜃) ⟹ 𝒩(0,1 − 𝜃2).                                            (3.3) 

Let 𝑀𝑛 = ∑ 𝑋𝑘−1𝜀𝑘 
𝑛
𝑘=1  , 𝑠𝑛 = ∑ 𝑋𝑘

2𝑛
𝑘=0  and 𝑓𝑛 =

𝑋𝑛
2

𝑠𝑛
 . Since {𝑀𝑛, 𝑛 ≥ 1} is a martingale, the almost sure central limit 

theorem for martingales proved in [4] yields 

lim
𝑛→∞

1

log 𝑠𝑛

 ∑ 𝑓𝑘ℎ (
𝑀𝑘

√𝑠𝑘−1

) = ∫ ℎ(𝑥)𝑑𝐺(𝑥)       𝑎. 𝑠. ,                                                                                 (3.4)

𝑛

𝑘=1

 

which is the almost sure version of the central limit theorem (3.3). 

      In conclusion, our result in Corollary 3.2 generalizes (3.4) and provides an almost sure version for the invariance 

principle of autoregressive processes. 
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