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Abstract: In this paper, we investigate the convexity of a generalized Pearson distribution introduced by Shakil et al.  

[16], known as Shakil-Kibria-Singh (SKS) distribution, in literature. Several related properties are also discussed. 
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1. INTRODUCTION 
 

Convex functions play a very significant role in many areas of mathematical and management sciences. They are 

especially important in the study of optimization problems, Calculus of variation and probability theory. A function 

 RRf :  is called convex if on an interval Rba ],[ , if ],[, 21 baxx   

  )()1()()1( 2121 xfxfxxf   , where 10   . 

Also, if the second derivative )(xf  of the function )(xf  exists on an interval Rba ],[ , then a necessary and  

sufficient condition for the function )(xf  to be concave on the interval Rba ],[ is that ,0)(  xf

],[, 21 baxx  . Also, the function )(xf  to be convex on the interval Rba ],[ is that ,0)(  xf

],[, 21 baxx  . For details, see Webster [19, page 97]. 

A function  RRf :  is called log-concave if the function )ln( f is concave. Similarly, the function f  is called 

log-convex if the function )ln( f  is convex.  

The notions of log-concavity and log-convexity play major roles in various disciplines like economics, political 

science, biology, industrial engineering, social sciences, information theory and optimization. Various properties of the 

notion of log-concavity/log-convexity and their applications can be found in Riordan and Sappington [15], Laffont and 

Tirole [11], Lewis and Sappington [12], Maskin and Riley [13], Caplin and Nalebuff [5, 6], Mathews [14], and 

Borzadaran and Borzadaran [3].       

Let X be a continuous random variable with density function )(xf  and cumulative density function )(xF  defined on 

an open interval ),( ba  of the set of real numbers R then Rx , )(1)( xFxS   is called survivor function; 

)(

)(
)(

xS

xf
xh   is called hazard function, 

x

a
dttFxL )()(   is called Left side integral and 

b

x
dttSxR )()(  is 

called right side integral of ).(xf  

The log-concavity and log-convexity of survival function xFxS (1)(  ) have applications in reliability theory 

and is used to determine the increase and decrease of failure rate. Jagadeesh and Chowdhry [10] has used log-concavity 

of reliability function in finance. Flinn and Heckman [7] has used the log-concavity of the function 

http://www.uob.edu.bh/english/pages.aspx?module=pages&id=2922&SID=684
https://en.wikipedia.org/wiki/Optimization
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



x

dttSxR )()( , 

to analyze the  optimal strategy for jobs and unemployment. Similarly, Bagnoli and Bergstrom [1] have studied marring 

market model by using the formula 

 


x

dttFxL )()( . 

In this paper, we investigate the convexity of some probability models developed by Shakil et al. [16], known in the 

literature, as Shakil-Kibria-Singh (SKS) distribution. The organization of the paper is as follows.  In Section 2,  we 

briefly review SKS distribution. In Section 3, we investigate the convexity of SKS distribution. In Section 4, we 

examine the logarithmic convexity and infinite divisibility of SKS distribution. Finally, in Section 5, we provide some 

concluding remarks.  

 

2. SKS DISTRIBUTION 
 

A continuous distribution is said to belong to the Generalized Pearson systems if its pdf  (probability density 

function) f  satisfies a differential equation of the form 










n

j

j

j

m

j

j

j

xb

xa

xf

xf

0

0
/

)(

)(
 ,                           (1.1) 

where Rba jj , are real numbers and Znm,  are positive integers. The differential equation (1.2) is called the 

Generalized Pearson Differential Equation (GPDE).  That is, 




























 








ZnmRba

xb

xa

xf

xf
xfS jjn

j

j

j

m

j

j

j

,;,,
)(

)(
:0)(

0

0
,                    (1.2) 

 

where Z  is the set of all positive integers. The set S of probability density functions )(xf is called the generalized 

Pearson System. Shakil et al. [16] obtained the solution of (1.2), by taking 

00,,,1,0,0;12,1,1,1,0,1,2 1   xandbpjbpppjapnpm pjj  ,  

Thus (1.1) resulted as 

1

1

0

2

2
/

)(

)(







p

p

p

p

p

p

xb

axaxa

xf

xf
, from which, following Shakil et al. [16],  the following pdf is obtained 

 

,,0,,0),exp()( 1 RxxxCxxf pp   
               (1.3) 

where ,,0,,, 1

1

1

1

0

1

2












 Zpb
b

ba

pb

a

pb

a
p

p

pp

pp

p
  and C  is a normalizing constant which is 

classified as follows:  

 

Case I:  when α > 0, β > 0, ν ∊ R  and p 𝜖 Z , then the normalizing constant 

 








2
p

2

1

1

2



























K

p
C

p

 , and  𝑓(𝑥) = 𝐶1

p
x

p
x

ex


  1
                                (1.4) 
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where 𝐾 (
𝜐

𝑝
) (2√𝛼𝛽) represent the modified Bessel Function of third kind.                                                 

 

Case II: when 0,0,0   , and 
Zp ; then the normalizing constant 

                                    
 













p

p
C

p






2  , and 

p
x

exCxf
  1)( 2                                         (1.5)

                                      

 Case III: when  0,0,0   , and 
Zp ; then the normalizing constant 

                               

  











p

p
C

p





3
 , and 𝑓(𝑥) = 𝐶3

p
x

ex


  1
                                 (1.6)                                                            

Later, Hamedani [8, 9] characterized the above distribution and called it as Shakil-Kibria-Singh (SKS) distribution.  

 

3. CONVEXITY OF SKS DISTRIBUTION 
 

In this section we shall discuss the convexity of SKS distribution. For the details on the distributional properties of 

SKS distribution the interested readers are referred to Shakil et al. [16,17] 

 

Case I: Differentiating the pdf (1.4) twice in case I, we have 

       .3232221.

3

2222222

12

2

pppp xpxppxpxppp

p
x

p
x

exC
xd

fd












  

Thus, the pdf (1.4) will be convex if 0
2

2


xd

fd
, that is   

        ,03232221 2222222   pppp xpxppxpxppp   

or  

         03222132 22223422  pxppxpxppxp pppp  , 

 

which needs to be solved numerically. 

 

Example 2.1: When p =1, α = 4, β =2 and ν = 4, in case I, we have 

𝑓(𝑥) =
2

𝐾4(4√2)

x
x

ex

2
4

3


, 

with    










 2

22

2

*1624
48

10

2
4

 29510.00644306 xx
xx

x
x

ex
xd

fd
 . 

Using Maple, the following graph of the above pdf has been drawn. It is evident from the figure 2.1 that the pdf is 

unimodal, skewed right and concave down, for the given values of parameters. 
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Figure 2.1 Graph of )(xf  

 

After solving numerically using Maple, the following graphs of )(xf  (in Figures 2.2 and 2.3) have been drawn in 

the intervals  715.0,0  and  4,64.1  respectively, for which 0
2

2


xd

fd
.  

 

Figure 2.2 Graph of )('' xf in (0, 0.715)                      Figure 2.3 Graph of )('' xf in (1.64, 4) 

     

Consequently, the above pdf is convex in the intervals  715.0,0  and  4,64.1  respectively. 

Case II: When 11  pandv  in case II, then differentiating pdf (1.5) twice, we have  

 

 222

2 )1()(   ppx xpxpepCxf
p

 
. 
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Now ,0)(  xf  if   0)1( 222   pp xpxp , that is,   0)1(2  ppxx pp  . This is possible only 

when 






 


p

p
x p



1
,  that is, x

p

p

p
1

1







 


.  

So the density function )(xf  is concave, if 





















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
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
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p

p
x

1

1
,0


.  

Similarly, the density function )(xf  is convex, if 


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

















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
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 ,

1
1

p

p

p
x


. 

 In this case, the point 










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




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




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


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


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

 







  pp

p

p
f

p

p
11

1
,

1


 is the inflection point for the density function. In particular,   

when 2p , then the density  

function )(xf  is concave  when , 

 

  

. The inflection point of the density is 




























 2

1
,

2

1
f   and convex when                               

 

Case III : Now considering the  pdf (1.6) in case III, and differentiating it twice, we have 

 

       pp xpxpp
p

x
exC

xd

fd 222

32

2

32213  


 
  

 

Obviously, the pdf, in this case, will be convex if 0
2

2


xd

fd
, that is   

 

        03221 222   pp xpxpp  , 

 

which needs to be solved numerically. 

 

Example 2.2: Taking p = 3,  β = 1, and ν = 4 in pdf (1.6), we have 

              𝑓(𝑥) = 𝐶3

3
3

 x
ex ,  𝐶3 =

3

𝛤(− 
4

3
)
 = 3.04676. 

Using Maple, the graph of this density function is shown in the following figure. 

1
,

2
x



 
  
 
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1
0,

2
x



 
 
 
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        Figure 2.4 Graph of )(xf  

 

It is evident from the figure 2.4 that the pdf, in this case, is skewed right and concave up for the specified values of 

parameters 1,3  p , and ν = 4. 

Further, we have 

    0,05.11

1

18.28056 63
3

2

2




  xxxxex
xd

fd
. 

 

Hence, in view of Webster [19, page 197], the above pdf is convex.

 

 
 

4. LOGARITHMIC CONVEXITY  AND INFINITE DIVISIBILITY OF SKS DISTRIBUTION   
 

Following Shakil et al. [16], the pdf (1.3) of SKS distribution is given by 
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If we consider )(ln)( xfxH  , then (4.1) can be written as 
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Now, the  density function )(xf  is log-concave,  if )(ln)( xfxH  is concave. That is, 

 .0)(  xH                  (4.2)  

We have           
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 )(xH  1

0
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  pp xDxDxD , which on differentiating gives 
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For ,0x 2px > 0, so, in view of equation (4.3), we have 

0)(  xH  only when .0)( 2  pxxH  If ,)()( 2 pxxHxz  then 
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and .2p  Now, the following Theorem easily follows: 

 

Theorem 4.1. For the Pearson family with the form (4.1), we have  
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Pearson family is log-concave. 

 

Now, in order to examine the logarithmic convexity and infinite divisibility of SKS distribution, we will need the 

following Lemmas. 

 

Lemma 4.1 A function  RRf :  is called log-concave on an open interval (a, b) if the function )ln( f is 

concave on (a, b), where .),( Rba    
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Lemma 4.2 (see Webster [19, page 207]; Boyd and Vandenberghe [2, page 104]): Let Rf :  be a 

real-valued function on an open interval   of the real line R . Then f  is log-convex if   0xf  for all x  in 

I  and its logarithm, Rf :log , is convex.  

Lemma 4.3 (see Steutel and Harn [18, page 117]): Let F  be a distribution on R  with   00 F , having a 

density f  that is log-convex on  ,0 . Then F  is infinitely divisible.  

As noted in the introduction, the notions of log-convexity play major roles in various disciplines, such as 
economics, biology etc., for which the interested readers are referred to the references cited in the 
introduction. 

Case I(a): From (1.4), we have 

𝑓(𝑥) = 𝐶1

p
x

p
x

ex


  1
 

Taking log on both sides, we have 

   pp xxxCxfy   ln1ln)(ln 1  

Similarly,      pp xxxmxy   ln1 , where 
1lnCm   

  111  


 pp xpxp
xxd

xyd



 

 
    22
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1  
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 pp xppxpp

xxd
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
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Obviously, 
 

0
2

2


xd

xyd
, provided     011

1 22

2


  pp xppxpp
x




. Multiplying both sides by 

2px , we have, 0)1()1()1( 2  ppxvxpp pp  , Consequently, by Lemma 4.2, we have  

)(ln xfy    is convex, which in turn implies )(xf  is log-convex ( because ),(xf being a pdf is > 0). Hence   

)(xf  is infinitely divisible by lemma 4.3 

 

Case I (b) 

Now, if ux p  , then above inequality reduces to 0)1()1()1( 2  ppuvupp   

If )1( pp > 0, i.e., if 1p , )1(4)1( 222

1  pp > 0 , then, by Lemma 5.1,  the density 

function )(xf is log-concave for x > 0 if 21 uxu p  , where 
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. 

 

Case II: We have  Zpand0,0,0   

p
x

exCxf
  1)( 2         where 
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2                                         (4.4)       

and Z  is the set of all positive integers. We get: 

             pxxCxf   ln1lnln 2  
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If we consider  xfy ln  , 2ln Cm  ,  we have 

    pxxmy   ln1 ,                                                                       (4.5)     

from which we have 
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   when the function is concave.  

 

Case III: When  Zpand0,0,0   

𝑓(𝑥) = 𝐶3
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Now, taking natural log of the above pdf, we have 

 

    pxxCxfy   ln1ln)(ln 3 .    

Let’s consider 3ln Cm . Then 
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 which is the required condition for probability density function to be concave in this case. 
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6. CONCLUDING REMARKS 

The notions of the convexity and the logarithmic convexity play an extremely important role in mathematics, 

statistics, economics, political science, management science, information theory, and optimization. In mathematics, 

convexity and the logarithmic convexity of functions are used to prove various mathematical properties, particularly 

mathematical inequalities. Also, the logarithmic convexity of survival function )(xS is used in reliability theory to 

determine the increase and decrease of failure rate. Jagadeesh and Chowdhry [10] has shown the important applications 

of the logarithmic concavity of reliability function in finance.  Similarly, Flinn and Heckman [7] has used the 

logarithmic concavity of the function 



x

dttSxR )()( , to analyze the optimal strategy for jobs and unemployment, 

and Bagnoli and Bergstrom [1] has used the log-concavity of  the function   


x

dttFxL )()(   to develop a marring 

market model. Thus, it is expected that the results on the convexity and the logarithmic convexity of SKS distribution 

can be further explored that may find some important applications in statistics and some other areas listed above. 
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