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Abstract: Location estimation is one of the basic activities in statistical data analysis so considerable effort has been put into the 

development of procedures for the robust estimation of measures of location. Because the distribution-free variance of most of 

existing measures is difficult to obtain in closed form, these measures work under strong modelling assumptions. We propose a 

robust location measure in which the expectation of a lower order statistics is replaced by the expectation of a larger order statistics. 

The main attraction of this measure is that its distribution-free variance is obtained in closed form. Comparisons with some of the 

best location estimators, mean, Hodges-Lehmann estimator, Huber's M-estimator and median are given based on Monte Carlo 

simulations. Computationally, the new estimator has an explicit expression and requires no iteration. 

Keywords: Huber's M-estimators; L-statistics; mean; median; order Statistics. 

1. Introduction 

Robust alternative to the arithmetic mean for estimating 

location have a history going back at least to Laplace, 

see Stigler (1973). Using normal contamination model, 

Tukey (1960) dramatically demonstrated how little 

efficient the mean can become when contamination 

increases, also showed that alternative location 

estimators such as the median can achieve higher 

asymptotic efficiency than the mean. As a result, 

considerable effort has been put into the development of 

procedures for the robust estimation of measures of 

location where the statisticians have felt aware of the 

need for robust procedures, in the sense of procedures 

that remain good when the assumed model does not 

quite fit; see, for example, Staudte and Sheather (1990) 

and Huber (1981) for a comprehensive accounts of these 

developments.  

Estimators that avoid such pitfalls do exist. Two good 

choices are Huber's M-estimator and Hodges-Lehmann 

estimator. The former minimizes ∑          when   

is chosen to be quadratic for small values and linear for 

larger one where   is the location parameter; see, Huber 

(1981) and the latter is the median of            

pairwise averages            (        ; see, 

Staudte and Sheather (1990). These estimators maintain 

good efficiency from small to large sample sizes for a 

wide range of symmetric distributions but exact 

variances and distribution-free of these variances are not 

directly available for these estimators. Consequently, 

robust location estimators which have distribution- free 

variance are desirable. 

In this article, we propose a robust location measure in 

the class of symmetric distributions in which the 

expectation of a lower order statistics is replaced by the 

expectation of a larger order statistics. This measure has 

a number of advantages: its exact variance and 

distribution-free of this variance are available in closed 

form and requires no iteration. 

In Section 2 we define the proposed estimator. In 

Section 3 we obtain exact and distribution-free 

variances of the proposed estimator. Robustness criteria, 

simulation study and comparisons with other methods 

are given in Section 5.  

2.  Extended mean 

Let         be an iid sample of size   from a 

continuous symmetric distribution with cumulative 

distribution function      , density function        and 

quantile function     ,        and let              

denote the corresponding order statistics. The 

population mean is defined as 
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               ∫       
 

 

 

  We define population extended mean (EM) in terms of 

higher order statistics as  

                                

as the expectation of              , can be written 

as   

        
  

            
∫                   

 

 

 

see; for example, David (1981), we may re-express    

as 

   
       

       
∫                               

 

 

 

Important special case is    , ordinary population 

mean  , and we would emphasis that    is weighted by 

the cumulative distribution functions     and        

and this will give different weights for observations 

 ̂     ̂      while   is weighted by    which gives 

equal weights for all the observations (   ).  

We study EM in details for values of     and    only 

where the distribution-free variances of sample EM are 

obtained in simple form and could be computationally 

handle easily. In this case we have the following 

expressions for population EM 

            ∫       
 

 

 

and 

             ∫               
 

 

 

Observe that    may be defined even if      is not 

defined, for example, Cauchy distribution    does not 

exist while    is defined. 

2.1 Sample extended mean  

We now consider estimators of population EM which 

are linear function of order statistics              of a 

random sample              of size    from the 

population. Let us define the random variable 

    ∑                    

 

   

 

 

From Sillito (1951) and Downton (1966) it is 

straightforward to prove that 

       ∑                       

 

   

     (
 

    
)              

where                    . 

We could rewrite        as 

             ∑               

 

   

 

where 

        
                       

            
 

and ∑           . 

From              we could estimate              as 

 ̂            ∑           

 

   

 

 which is an unbiased estimator of             . 

Hence, we define the sample EM using   and 

 ̂            to be  

 ̂               ∑           

 

   

 

Which is clearly an unbiased estimator of    for fixed  . 

In particular, an unbiased estimator of    and    are  

 ̂  ∑            

 

   

        ̂  ∑           

 

   

 

The weights         are plotted in Figure 1 for 

              and sample size     . From this 

Figure we see that when t = 0 the weights are all equal, t 

> 0 the weights decrease from a maximum for median 

value to zero for 2t extreme sample values. 

 

 

 



 

 
                                                                                Int. J. Bus. Stat. Ana. 2, No. 1, 11-19 (Jan-2015)                           13 

 

 

http://journals.uob.edu.bh 

  

 

Figure1: The weights         for (a)    , (b)    , (c)    , (d)     of sample size     . 

3  Exact variance of sample extended mean  

 To calculate the exact variance of sample EM we use 

the following well-known expressions for the first and 

second moments of order statistics 

 

        
  

            
∫                   

 

 

  

    
     

  

            
∫            

 

 

          

and  

 

 (        )

 
  

                    
∫ ∫               

 

 

 

 

                     

To evaluate the exact variance of sample EM we note 

that sample EM is linear combinations of order 

statistics and their particular form allows us to use the 

method of Elamir and Seheult (2004) and Downton 

(1966) to obtain the exact variances in terms of 

expectations, variances and covariances of order 

statistics from samples of fixed size which do not 

depend on the actual sample size   as 
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     ̂      ̂        ̂     

where 

    ̂   
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and 

    ̂                   

It should be noted that the computational effort 

required to obtain the variances and covariances is 

considerably less than that required using the complete 

sample. In particular, simple expressions of asymptotic 

variances of  ̂  could be obtain from normal 

distribution as 

                            

4  Distribution-free unbiased estimator 

Expression for exact variance of sample EM is only 

useful when we know the exact form of the population 

distribution of   as we have seen in Section 3. In this 

section, we show how to find distribution-free unbiased 

estimator of variance of sample EM from a general 

class of symmetric distributions. To obtain an unbiased 

estimator for the variance of   ̂  we must find an 

unbiased estimators of                  
   and 

 (                     ).  

 First, from Elamir and Seheult (2004) we find an 

unbiased estimators of                  
   and 

 (                     ) from any continuous 

distribution are given by 

 

 ̂                
  

 ∑
                    

            (
 

        
)
    

 

 

   

 

and 

 ̂(                     )

 ∑ ∑
                    

            (
 

        
)
        

       

 

 But biased estimator of               is given by 

 

 ̂            

 [∑
                       

          

 

   

    ]

 

 

Second to obtain an unbiased estimator of 

              it could re-express it in terms of cross 

product of order statistics as follows. From David 

(1981) it found that 

  

              

 ∑     
    

                
 (            )

   

   

 ∑     
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From Sillito (1966) we could write                as 
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which gives us an unbiased estimator of                

by substituting an unbiased estimators of 

                and                  

In particular, the distribution-free variance of  ̂   is 

 

 ̂  ̂  

 
  

 
[∑∑

            

    
[
                

     
   

   
             

          
]         

 ∑
                

    

 

   
    

 ] 

which are an unbiased estimator to    ̂  , very easy to 

compute nd does not need any modelling assumption.  

In large sample the asymptotic normality of   ̂  follows 

directly from the results of Hosking (1990) and Stigler 

(1974) where we have 

 ̂             

where    is the variance of  ̂ . 

 Quantile normal plots of sampling distribution of  ̂  

and  ̂  are given in Figure 2 from normal and double 

exponential distributions for sample size       

which show that the normal approximation is quite 

good for  ̂  and  ̂ . 

Figure 2 Quantile normal plots of sampling distribution of  ̂  and  ̂   from normal and double exponential distributions for 

sample size      
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5  Finite sample performance 

 In this section we perform a Monte Carlo study to 

assess the performance of the proposed estimator in 

finite sample cases. We use the breakdown point, 

stylized sensitivity curve and simulation to compare 

sample EM with sample mean, Huber's estimator, 

Hodges-Lehmann estimator and median from small 

sample sizes. 

5.1  Robustness Criteria 

We use the breakdown point and stylized sensitivity 

curve as a robust criteria to compare sample CM with 

other measures. The breakdown point is the minimum 

proportion of contaminated points in a sample that 

make the estimator unbounded; see, for example, 

Hoaglin et al. (1983) and Hampel et al. (1986). 

Following Donho and Huber (1983), the finite sample 

breakdown point of estimator     as 

       
 

 
             |           |     

Where         is a sample and         is         

with the   values replaced by the contamination values 

       . 

Then the infinite sample breakdown point is        

            . For example if    is the sample mean, 

then replacing    with      contamination points 

       and       would imply that  

|           |  |              |   .  Thus, finite 

sample breakdown point of the mean is      and its 

infinite sample breakdown point is zero. Another 

example, If     is the median of a sample of size  , 

then at least   ⌊       ⌋ contamination points to 

bring the median higher or lower than any value, 

therefore,        ⌊       ⌋ and           .  

For our estimator the breakdown point is        

         which is high in small samples; for 

example, when     , the breakdown point will be 

      and       for     and  , respectively, but in 

large samples it will be small although the sample EM 

is still protect against few outliers. However, we could 

obtain     breakdown point by increasing    to  
 

 
  but 

in this case it is not easy to find a distribution- free 

variance.  

While the breakdown point is a measure of how much 

contamination an estimator can tolerate before 

becoming meaningless, the sensitivity curve describes 

the effect of a single contamination point on the 

estimator. Given the sample        , the sensitivity 

curve of estimator    is defined as 

                                          

where    is the value of a arbitrary which shows the 

effect on an estimate of adding or deleting an 

observation and when    is the expected values of order 

statistics or                    the        is 

called stylized sensitivity curve; see, for example 

Andrew et al. (1972), and we expect the robust 

estimator to be bounded. 

Figures 2 and 3 give stylized sensitivity curves of 

mean, sample conceptual mean and median from 

normal distribution with sample sizes    and    and 

show that the stylized sensitivity curve of  ̂  and  ̂   is 

bounded like median but it is not bounded for mean. 
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Figure 3 Stylized sensitivity curves from normal distribution with mean 0 and variance 1 of (a)  ̂ , the sample mean (b)  ̂ , 

(c)  ̂  and (d) the median using     . 

 

5.2   Simulation study 

We perform a Monte Carlo study to assess the 

performance of the conceptual mean in finite sample 

cases. In order to investigate how it competes with 

some of the best location estimators sample mean  ̅, 

Huber's estimator, Hodges-Lehmann and median 

estimators as competitors, see Huber (1981). The 

Hodges-Lehmann estimator is the median of     

      pairwise averages    (     )      .   

Random samples are drawn from four distributions: 

normal and t-distribution with    degrees of freedom 

with sample sizes                      . For 

each underlying distribution and value of  ,        

random samples were generated.  

 

 

 

 

 

The mean, extended mean with     and  , Huber's 

estimator and the Hodges-Lehmann estimator were 

computed and the estimated variances of these 

estimators were then obtained based on these random 

samples. The simulation results are summarized in 

Table 1. 

When the underlying distribution is normal, the 

extended mean work as good as other robust 

estimators, for example,  ̂  has asymptotic efficiency 

about      to sample mean, and as good as Huber's and 

Hodges-Lehmann estimators even when   is small and 

much better than median. In    distribution EM is 

competitive to Huber's estimator and Hodges-Lehmann 

estimator and better than mean and median.  
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Table 1  Estimated variances and efficincies of mean, EM, median (med.), Hodges-Lehmann (H.L.) and Huber (Hub) from 

standard normal distribution (Norm.) and t-distribution with 5 degrees of freedom for sample sizes 

                      and number of replications 10000. 

       

Measure 10 20 35 50 100 

Mean 0.10119 0.04986 0.02823 0.01993 0.00986 

 ̂  0.11059 0.05329 0.03017 0.02106 0.01045 

Eff. 0.91 0.93 0.93 0.94 0.94 

 ̂  0.12009 0.05662 0.03194 0.02224 0.01102 

Eff 0.84 0.88 0.88 0.89 0.89 

Med. 0.14032 0.07349 0.04430 0.03046 0.01565 

Eff. 0.72 0.68 0.64 0.065 0.63 

H.L. 0.10923 0.05282 0.02992 0.02087 0.01035 

Eff. 0.93 0.94 0.94 0.95 0.95 

Hub. 0.10788 0.05196 0.02953 0.02065 0.01022 

Eff. 0.94 0.96 0.95 0.96 0.96 

      

Mean 0.1685 0.08378 0.04758 0.03377 0.01657 

Eff 0.85 0.84 0.81 0.81 0.81 

 ̂  0.14149 0.06921 0.03820 0.02726 0.01328 

Eff 1 1.02 1.01 1.01 1.01 

 ̂  0.14494 0.06986 0.03829 0.02728 0.01326 

Eff. 0.96 1 1.01 1.01 1.01 

Med 0.16278 0.08521 0.04980 0.03438 0.01725 

Eff 0.88 0.83 0.78 0.80 0.78 

H.L. 0.14486 0.07042 0.03844 0.02743 0.01329 

Eff. 0.99 1 1 1 1 

Hub 0.14354 0.07055 0.03857 0.02758 0.01342 

 

5.3  Example 

We consider Cushny and Peebles data which is given 

in Staudte and Sheather (1990). The data show the 

differing effects of optical isomers of hyoscyamine 

hydrobromide in producing sleep. We compare sample 

conceptual mean (   ) with mean and Huber's 

estimators which are given by Staudte and Sheather 

(1990) under normality assumption as 

 ̅                     ̅       

and 

 ̂                   ̂       

Where  ̂ is Huber’s estim te. 

The conceptual sample mean which does not require 

any distribution assumption is given by 

 ̂                        ̂        

If we compare with mean and Huber's estimator we 

find that  ̂  has the the same value as Huber's estimator 

and has standard error less than the sample mean and 

Huber’s estim tor.  

6   Conclusion 

We defined a measure of location from a class of 

symmetric distributions in terms of order statistics in 

which the expectation of lower order statistics is 

replaced by the expectation of larger order statistics. 

The main attraction of sample EM is that the exact and 

distribution-free variances are obtained in closed form 

and easy to compute. The simulation study showed that 

the sample EM is very competitive to other robust 

estimators in both small and large sample sizes from 

the distributions we have studied. 
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